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a b s t r a c t 

Hemodialysis is a common treatment for end-stage renal-disease patients to manage their renal failure 

while awaiting kidney transplant. Arteriovenous graft (AVG) is a major vascular access for hemodialysis 

but often fails due to the thrombosis near the vein-graft anastomosis. Almost all of the existing computa- 

tional studies involving AVG assume that the vein and graft are rigid. As a first step to include vein/graft 

flexibility, we consider an ideal vein-AVG anastomosis model and apply the lattice Boltzmann-immersed 

boundary (LB-IB) framework for fluid-structure-interaction. The framework is extended to the case of 

non-uniform Lagrangian mesh for complex structure. After verification and validation of the numerical 

method and its implementation, many simulations are performed to simulate a viscous incompressible 

flow past the anastomosis model under pulsatile flow condition using various levels of vein elasticity. 

Our simulation results indicate that vein compliance may lessen flow disturbance and a more compliant 

vein experiences less wall shear stress (WSS). 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Arteriovenous graft for vascular access during dialysis has faced

 long-lasting severe problem – blockage of the shunt due to

hrombosis caused by occlusion of the outflow venous anastomosis

nd draining vein [1,2] . The intimal hyperplasia (IH), i.e., the thick-

ning of the innermost layer of vessel wall, is the initial patholog-

cal event leading to thrombosis [3–5] . The most important factors

or IH initialization include the significantly disturbed flows result-

ng from the incoming pulsatile arterial flow from the graft. Vas-

ular endothelial cells lining the innermost vein wall are sensitive

o the wall shear stress (WSS), wall normal stress (WNS), and their

radients (WSSG and WNSG) [6–8] . The abnormal values of these

iomechanical variables caused by flow disturbances in the vein

re thought to induce the initialization and development of IH in

iterature [9–13] . 

Computational fluid dynamics has been used to investigate the

ow and force fields in blood flow past the AVG anastomosis by

any researchers. The influences of various factors, from AVG at-

aching angle and graft-to-vein diameter ratio, to non-Newtonian

roperties of blood and turbulent flows on the flow and force

elds have been studied. Longest and Kleinstreuer [14] conducted

omputational comparison studies of two AVG configurations using
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ser-enhanced finite volume code. Loth et al. [15] computationally

nvestigated using spectral element method the transitional flow

t the AVG anastomosis. They studies the distribution and impor-

ance of velocity fluctuation and WSS at two Reynolds numbers.

ee et al. [16] studied the influence of various flow division condi-

ions between the two ends of the AVG-hosting vein at five differ-

nt Reynolds numbers using the spectral element method. Ortega

t al. [17] studied the reduction of WSS caused by the dialysis nee-

le in the AVG by a polymer adapter. Manos et al. [18] combined

omputational fluid dynamics (ANSYS), in-vivo hemodynamics, his-

ology data, and wall mechanics to investigate the flow patterns,

SS, and intimal hyperplasia of an arteriovenous shunt model.

im et al. [19] computationally studied the flow patterns and WSS

istributions in both distal and proximal AVG anastomoses using

hree different attaching angles. Khruasingkeaw et al. [20] studied

he effect of five different attaching angles on the WSS distribu-

ion in the anastomosis of an arteriovenous graft using commer-

ial software SolidWorks. The blood was assumed to be power-law

uid. Williams [21] performed computational fluid dynamics anal-

sis for the optimization of AVG configurations to minimize shear

tress and shear rate. McNally et al. [22] computationally charac-

erized the flow and WSS fields for an arteriovenous graft anas-

omosis equipped with a novel modular anastomotic valve device

MAVD) using anastomotic angles of 90 ° and 30 °. 
However, we have noticed that all of the CFD studies of AVG-

elated flows except McNally et al. [23] have assumed that blood

essel and AVG are rigid. McNally et al. [23] computationally (via

https://doi.org/10.1016/j.compfluid.2019.02.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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ANSYS) investigated the reduction of flow disturbance and WSS by

the MAVD-attached vein-graft anastomosis controlling on-and-off

of the blood flow from the graft. They used fixed vein elasticity

and did not study the effect of vein elasticity. However, vein and

AVG are flexible and the vein flexibility may differ from patient

to patient and from time to time for a specific patient. For ex-

ample, the vein selected for dialysis may have different degree of

flexibility for patients at different age. Furthermore, the vein flex-

ibility may change over time due to IH development. Since forces

exerted by the blood flow on the vein wall may depend on the

deformability of the vessel [24–26] , and more and more simula-

tions of blood flows are utilizing various fluid-structure-interaction

methods [27–30] ; it is desired to gauge possible effect of vein-wall

compliance on the flow and force field in AVG anastomosis. Deco-

rato et al. [31] has investigated using the commercial software AN-

SYS the differences between a rigid model and a deformable one

for blood flow past an arteriovenous fistula (AVF) and found that

the time-averaged WSS was overestimated by the rigid model. To

the best of our knowledge, there exists no such studies for arte-

riovenous graft (AVG). As a first step to incorporate structure de-

formability, we introduce a 3D compliant model for the vein-AVG

anastomosis and extend the lattice Boltzmann - immersed bound-

ary (LB-IB) method [32–35] for fluid-structure interaction to study

the influence of vein flexibility on flow and force fields [36] . 

The LB-IB method is a lattice-Boltzmann based version of the

popular immersed boundary (IB) framework [37,38] . The IB frame-

work is well tested, efficient, and robust. It has long been applied

to modeling and simulation of blood flows [39–42] . In the LB-IB

method, the Navier–Stokes equations for motion of fluid and im-

mersed structure are replaced by the lattice Boltzmann (LB) equa-

tions [43–50] . The LB equations are relatively simpler to use, easier

to handle complex rigid flow domain, and more convenient to in-

clude additional fluid/flow physics into a new model [49,50] . 

After verification and validation of the method and its imple-

mentation, a series of simulations are designed and performed to

investigate influence of vein wall flexibility on flow and force fields

in the model anastomosis of an arteriovenous graft. We consider

five different levels of vein elasticity ranging from very flexible to

rigid. To the best of our knowledge, such studies are not present in

literature. 

The remaining is organized as follows. Section 2 introduces

a model problem abstracted from the arteriovenous graft for

hemodialysis. Section 3 describes mathematical formulation of

the model problem. Section 4 outlines numerical methods for

the mathematical formulation. Section 5 performs verification

and validation of the numerical methods and its implementation.

Section 6 reports main computational results on flow and force

fields. Section 7 concludes the paper with a summary. 

2. Model problem 

In this section, we introduce an AVG anastomosis model that

incorporates the vessel and graft deformability. Modeling and sim-

ulation of blood flow in arteriovenous-graft anastomosis are chal-

lenging because: 1) The vein and AVG are thin-walled deformable

structures; 2) the vein is living tissue made from nonlinearly vis-

coelastic material whose constitutive law is not yet well known;

3) the surrounding tissue of vein/graft is deformable porous me-

dia whose material properties not yet known well; 4) the blood is

a multicomponent inhomogeneous non-Newtonian complex fluid;

5) the blood flow past AVG anastomosis could be laminar, transi-

tional or turbulence; 6) the vein and AVG have complicated geom-

etry and relative position and may not lie on the same plane. 

To have a physiologically realistic yet mathematically tractable

computational model is challenging. Therefore we focus on an

idealized AVG-anastomosis model that incorporate the vein/graft
lasticity. We treat the blood as a homogeneous incompressible

iscous Newtonian fluid (the vein and AVG have relatively large

iameters) and treat blood flow as laminar flow at intermediate

eynolds numbers. Important vein-graft configuration parameters

nclude the diameter ratio of graft to vein and the graft attaching

ngle. In dialysis practice, these parameters are variable because

he patient’s vein selected for dialysis may have different size and

hape. Besides, these parameters may change over time due to de-

elopment of thrombosis and movement of the patient’s forearm.

ince influence of these variables have already been studied in lit-

rature (see Introduction) and our focus here is on the vein de-

ormability, these parameters are fixed in our model (diameter ra-

io of 1:1 and attaching angle of π /3), to avoid possible compli-

ations. The Reynolds number in dialysis is relatively high (hun-

reds to thousands) [51] . But our LB-IB method is not stable for

igh Re flows. However, the Re may be much lower when the pa-

ient is at rest (e.g. sleep) during non-dialysis period. Therefore we

x the Reynold number to 100 in our simulations. The pulsatile

ow velocity waveform at the graft inlet is taken from a recent

tudy by Quanyu et al. [52] with the maximum speed downscaled

o reflect dialysis practice. The steady native blood flow at the vein

nlet is chosen to be the mean value of the blood flow at the graft

nlet. The vein and graft are modelled as flexible structures with

ero thickness and different elasticity by the immersed boundary

ramework. The vein wall is initially a circular straight cylinder

nd the graft a circular curved cylinder, both of constant diame-

er. Each structure (vein or graft) consists of two families of cross-

inked flexible fibers that can be compressed/stretched or bent. The

wo sets of fibers are initially orthogonal to each other and they

re mechanically homogeneous along the circumferential and lon-

itudinal directions for each structure. The bending modulus and

tretching coefficients of the constitutive fibers are related to the

oung’s modulus and Poisson ratio [53] . They are different for vein

nd graft and but are assumed to be the same in longitudinal and

ircumferential directions. The tissue around the vein/graft is mod-

lled as elastic springs immersed in viscous fluid. Similar approach

as been used in [27,30] . The mechanical properties of vein may

ary from patient to patient and may change during the period of

ialysis due to the development of intimal hyperplasia and forma-

ion of thrombosis. Therefore the vein elasticity is treated as a vari-

ble and five different levels of compliance are considered in our

tudies. 

Although our AVG-anastomosis model is ideal, some of these

ssumptions are commonly used in existing studies. For exam-

le, blood flow is modelled as laminar flow in [14,19,54] and the

ein/graft are circular cylinders on the same plane in [20,23] . The

ajor advantage of our anastomosis model is the ability to simu-

ate vein/graft deformability. 

Specifically, we consider a periodic rectangular domain full of a

iscous incompressible Newtonian fluid. A distal anastomosis con-

isting of a straight segment of vein and a curved segment of graft

s placed in the center of the domain. The domain is affixed with a

ight-handed orthogonal coordinate system with the x-axis point-

ng to the opposite direction of the inflow at the vein inlet, the

-axis pointing from front to rear, and the z-axis pointing from

ottom to top, as shown in Fig. 1 . The dimension of the domain

s L x × W y × H z . The fluid domain is defined by the Cartesian space:

= [0 , L x ] × [0 , W y ] × [0 , H z ] and is associated with the Cartesian

ulerian coordinate x = (x 1 , x 2 , x 3 ) ∈ �. The graft (red) and vein

blue) are both modelled as flexible structures made of inter-

ecting circumferential and longitudinal fibers and are defined as

G = [0 , C G ) × [0 , L G ] and �V = [0 , C V ) × [0 , L V ] respectively. Where

 and L represent the arc-length of circumferential fibers and lon-

itudinal fibers, with subscript G for graft and V for vein. The sur-

aces of the structures are labled with curvilinear Lagrangian coor-

inates α = (α1 , α2 ) ∈ �V or �G to identify the variables defined
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Fig. 1. Thedistal anastomosis structure of an arteriovenous graft. 
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n the surfaces. The position of the structure is described by X ( α,

 ) ∈ �. 

. Mathematical formulation 

The LB-IB formulation for the model problem in dimensionless

orm is presented in this section. 

.1. Equations for fluid 

We use Eq. (1) , the Bhatnagar–Gross–Krook (BGK) equation

55] , to describe the motion of fluid and the immersed structure

vein and graft): 

∂q ( x , v , t) 

∂t 
+ v · ∂q ( x , v , t) 

∂ x 

+ f ( x , t) · ∂q ( x , v , t) 

∂ v 

= − 1 

τ
(q ( x , v , t) − q (0) ( x , v , t)) (1) 

The function q ( x , v , t) is the distribution function of single-

article velocity v at time t and space x . Thereby, the expression

 ( x , v , t) d x d v represents the probability of finding a particle at

ime t located in [ x , x + d x ] moving with a velocity between v and

 + d v [32] . The function q (0) ( x , v , t) is the Maxwellian–Boltzmann

istribution. The term f ( x , t) is the Eulerian force density imparted

y the immersed structure to the fluid. The term − 1 
τ (q ( x , v , t) −

 

(0) ( x , v , t)) is the famous BGK approximation [55] to the complex

ollision operator in the Boltzmann equation, where τ is the relax-

tion time connecting to the fluid kinematic viscosity ν via the re-

ation: ν = 

2 τ−1 
6 [32] . In this model, ν is determined by the param-

ter Reynolds number ( Re ) through the relation: ν = 

u l ·L l 
Re , where u l 

s the characteristic velocity and L l is the characteristic length in

attice Boltzmann units. 

To derive the fluid velocity ( u ), one first computes the fluid

ass density ( ρ) and momentum ( ρu ) from the velocity distribu-

ion function q ( x , v , t) according to ( 2 ) and ( 3 ). 

( x , t) = 

∫ 
q ( x , v , t) d v (2)

u ( x , t) = 

∫ 
q ( x , v , t) v d v (3)

Notice that it can be shown that our mathematical formulation

or the fluid motion (i.e. Eqs. (1) through 3) is equivalent to the

lassic three-dimensional Navier–Stokes equations for a viscous in-

ompressible Newtonian fluid. 
.2. Equations for structure 

The elastic structure (vein or graft) is modelled by intersecting

ongitudinal and circumferential fibers with identical mechanical

roperties. We take the graft as an example and focus on the longi-

udinal fibers. In this case, α = (α1 , α2 ) ∈ �G and α1 is used to de-

ote a longitudinal fiber, while α2 is used to denote the arc-length

long the fiber at its initial configuration. We use superscript l to

dentify the variables defined on longitudinal fibers. 

We start by evaluating the deformation energy density ( E l ),
hich consist of a stretching/compression part ( E l s ) and a bending

art ( E l 
b 
). The constants K 

G 
s and K 

G 
b 

are the stretching/compression

oefficient and bending rigidity of the graft respectively. 

 

l 
s = 

1 

2 

K 

G 
s 

∫ 
dα1 

∫ 
(| ∂ X ( α, t) 

∂α2 

| − 1) 2 dα2 (4)

 

l 
b = 

1 

2 

K 

G 
b 

∫ 
d α1 

∫ 
| ∂ 

2 X ( α, t) 

∂α2 
2 

− ∂ 2 X ( α, 0) 

∂α2 
2 

| 2 d α2 (5)

We can compute the stretching/compressing force density ( F l s )

nd the bending force density ( F l b ) by taking the negative of the

ariational derivatives of E l s and E l 
b 

according to ( 6 ) and ( 7 ) respec-

ively. 

 

l 
s ( α, t) = −∂E l s 

∂ X 

( α, t) , (6)

 

l 
b ( α, t) = −∂E l 

b 

∂ X 

( α, t) (7)

The circumferential fibers of the graft are treated similarly. We

se superscript c to identify the variables defined on circumferen-

ial fibers. The stretching/compressing force density ( F c s ) and the

ending force density ( F c b ) are computed similarly. 

Then the Lagrangian force density at any point on the graft can

e computed by summing up all the four aforementioned compo-

ents ( F l s , F l b , F c s and F c b ) as well as the contribution from the vir-

ual springs ( F spring ). Namely, ∀ α∈ �G : 

 ( α, t) = F l s ( α, t) + F l b ( α, t) + F c s ( α, t) + F c b ( α, t) + F spring ( α, t) 

(8) 

here, 

 spring ( α, t) = −K spring ( X ( α, t) − X ( α, 0)) (9)
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Fibers modelling the vein are handled similarly and the inter-

acting Lagrangian force densities on the fibers are computed the

same way. 

3.3. Equations for fluid-structure interaction 

The fluid-structure interaction is treated by the immersed

boundary method [56] . The first step is about the effect of struc-

ture on fluid. It describes how to impart the structure-fluid-

interacting force to the fluid by computing the Eulerian force den-

sity f ( x , t) from its Lagrangian equivalent ( 10 ): 

f (x, t) = 

∫ 
F ( α, t) δ( x − X ( α, t)) d α (10)

The structure (or Lagrangian) force density F ( α, t) is obtained via

( 8 ). The δ( x ) is the Dirac δ-function. The term x − X ( α, t) is the

difference of spatial coordinates between a Eulerian point and a

Lagrangian point. 

The second step is about the effect of fluid on the immersed

structure. It describes how to interpolate the structure velocity

U ( α, t) from the fluid velocity u ( x , t) as given below ( 11 ): 

U ( α, t) = 

∫ 
u ( x , t ) δ( x − X ( α, t )) d x (11)

The fluid velocity u ( x , t) is obtained via ( 2 ) and ( 3 ). This is to state

that the structure moves following the fluid. 

Finally, the motion of the immersed structure is described by a

first-order ODE system ( 12 ): 

∂ X 

∂t 
( α, t) = U ( α, t) (12)

3.4. Initial and boundary conditions 

In order to complete the mathematical model, initial and

boundary conditions are also required. We denote the union of the

left and right boundary (along x -axis) of the computational do-

main � = [0 , L X ] × [0 , W Y ] × [0 , H Z ] by S 1 and denote the remain-

ing boundary by S 2 . We assume the fluid will flow freely (friction

free) on S 1 and get bounced back on S 2 : 

∂q ( x , v , t) 

∂ x 

| x ∈ S 1 = 0 (13)

q ( x , v , t) | x ∈ S 2 = q b ( x , v , t) (14)

where q b is the velocity distribution function of particle on the

channel surface after bounce back. Details are given in Section 4 .
Fig. 2. Anastomosiss
e denote the inlets of the graft and vein by D G and D V , respec-

ively. The velocity on D G is assumed to be pulsatile while that on

he D V is assumed to be steady: 

 ( x , t ) | x ∈ D G = s a (t) (15)

 ( x , t ) | x ∈ D V = s b (16)

here s a ( t ) is the profile of the pulsatile flow speed, s b is the con-

tant speed of the steady flow, both are given in Section 6 . 

The inlets of the vein and graft and the outlet of the vein are

xed. The outer surfaces of the vein-graft are subject to forces ex-

rted by surrounding tissue which are modelled by virtual spring

mmersed in a viscous fluid. 

The initial condition for the fluid is that the fluid velocity is

ero everywhere (except the inlets of vein and graft) in the com-

utational domain: 

 ( x , 0) | x ∈ �/ (D G ∪ D V ) = 0 (17)

he vein-graft is initially located in the center of the computational

omain. 

. Numerical method 

We begin this chapter with introducing the construction of La-

rangian mesh for the vein-AVG anastomosis. Then we focus on

he discretization of the equations. 

.1. Mesh generation for vein-AVG anastomosis 

The surfaces of graft and vein are discretized by a Lagrangian

esh consisting of intersecting longitudinal and circumferential

lastic fibers as shown in Fig. 2 . The mesh for the vein is in the

hape of a cylinder surface while the mesh for the graft consists

f 3 parts: G 1 is a straight tube model connecting the suture line

connecting the vein and graft) and the first circle of G 2 , which is a

ection of a torus, and G 3 is in the same shape of the vein. Both the

 3 and the vein are horizontal so that we can define the two inlets

s disks ( D V , D G ) perpendicular to the x-axis. Discretization of G 1 ,

 2 , and G 3 are similar to that of the vein. Discretization of the su-

ure line (the intersection of the graft and the vein) takes some ex-

ra work. The approach we use is as follows: First project the first

ircle of G 2 on �V along the attaching angle θ while maintaining

 2 ; then discretize the projection so that its nodes are much denser

han the mesh points of the vein; finally, for each node on the pro-

ection, select a mesh point of the vein that is closest to it. Hence

he suture line is discretized by all the selected mesh points. Thus
tructure mesh. 
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Table 1 

Coefficient of drag comparison. 

C̄ d Re = 150, Kb = 0.005 Re = 50, Kb = 0.0 0 05 

New model −2.0252 −4.4258 

Original model −1.9926 −4.3302 

Relative errors 1.64% 2.61% 
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esh for G 1 is constructed. The mesh points of the vein within the

uture line are effectively removed by annihilating the Lagrangian

orces associated to those points. 

.2. Equation discretization 

The BGK Eq. (1) is discretized by the lattice Boltzmann D3Q19

odel [57,58] . At each node particles can move along 18 differ-

nt directions and they may also be allowed to stay. Therefore the

article velocity space v can be discretized by a set of 19 veloci-

ies. Along each of the velocity direction, the discretizations in time

nd space are performed by the method of charactersitic lines. Due

o cancellation of discretization errors, the seemingly first order

cheme turns out to be second order in time and space. 

 k ( x + v k , t + 1) = q k ( x , t) − 1 

τ
(q k ( x , t)) − q (0) 

k 
( x , t)) 

+(1 − 1 

2 τ
) w k ( 

v k − u 

c 2 
k 

+ 

v k · u 

c 4 
k 

v j ) · f (18) 

here w k is the weight and c k is the speed of sound of the model.

he external forcing term is treated by the scheme introduced by

uo et al. [59] . 

After advancing the lattice Boltzmann equations one step for-

ard, the macroscopic variables like density ( ρ) and momentum

 ρu ) can be updated by discretizing ( 2 ) and ( 3 ) as follows: 

( x , t) = 

∑ 

k 

q k ( x , t) (19)

(ρu )( x , t) = 

∑ 

k 

v k q k ( x , t) + 

f ( x , t) 

2 

(20)

.3. Structure equations discretization 

Standard finite difference method on a non-uniform mesh is

sed for all other differential equations. For example, the second
Fig. 3. Velocity profile o
erivative ( D 2 g )( α) is defined on nodes α as follows: 

(D 2 g)(αn ) = 

g(αn +1 )�n −1 + g(αn −1 )�n − g(αn )(�n −1 + �n ) 

�n −1 �n (�n −1 + �n ) / 2 

(21) 

ere αn and X n represent the Lagrangian coordinate and Eulerian

oordinates of the n th node, respectively, and �n denote the initial

rc-length between the node n and node n + 1 . 

The two integrals ( 10 ) and ( 11 ) are discretized by trapezoidal

ule. The Dirac- δ function is discretized in the standard way as in

he IB method. The cosine function version is used. 

. Verification and validation 

In this section, we address verification and validation of the

umerical methods and their implementations. First we compare

ur results with existing results on simulation of a 3D viscous

ow past a deformable sheet fixed at its mid-line. Then we per-

orm mesh refinement studies on a 3D viscous flow through a de-

ormable tube. 

Zhu et al. [32] has studied a 3D viscous flow past a flexible

heet tethered at its mid-line. We have performed the simulation

f this problem using our new code. We focus on the drag coeffi-

ient. The values of C d are exactly the same up to 8 digits in the

rst 68 steps. After 10 0,0 0 0 steps, the maximum error in C d is un-

er 3%. Table 1 lists drag coefficient C d for two different cases. The
n AVG inlet [52] . 
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Table 2 

Parameters for all simulations. 

Case Kb(V) Kb(G) Ks(V) Ks(G) 

Soft 0.005 0.006 20 30 

Less soft 0.010 0.006 40 30 

Less stiff 0.020 0.006 80 30 

Stiff 0.040 0.006 160 30 

Rigid 0.5 0.3 20 0 0 1500 
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difference is probably caused by the accumulation of rounding-off

errors. 

We perform mesh refinement studies on a 3D viscous flow

through a deformable tube. The computational results from a se-

ries of simulations with different mesh-width ( h ) are used to es-

timate the order of accuracy r . The trend of convergence in r to-

wards one is seen on a series of meshes within the capacity of the

computer at our dispose (from 10 3 to 320 3 ). Theoretically, the or-

der of accuracy in space and time should be one. This indicates

the numerical methods are correct and the implementations are

bug free. 

6. Main computational results 

In this section, we report the major computational results using

varying vein elasticity and perform analyses through flow and force

field visualization and comparison of the computational data. The
Table 3 

Wall shear stress (gradient) and wall normal st

Case WSS(V) WSS(G) WSSG(V) 

Soft 8.27 47.79 76.5 

Less Soft 14.87 47.80 150.25 

Less Stiff 22.98 47.50 248.59 

Stiff 34.23 47.13 380.81 

Rigid 158.42 644.50 1491.0 

Fig. 4. Velocity/vorticity contours ⊥ 
ocus is on the effect of vein deformability on flow and force fields

n the vein-AVG system. 

In order to gauge the possible effect of vein flexibility, a se-

ies of simulations with a wide range of vein elasticity from very

exible (soft case) to very stiff (rigid case) are performed (no-

ice that the elasticity of the graft is fixed). The model parame-

ers adopted in our simulations are summarized in Table 2 . The

ase with the least stiffness is named the “soft” (or “deformable”)

ase. The other four cases have a stiffness of 2, 4, 8, and 100

imes of the soft case, and are named the “less soft”, “less stiff”,

stiff”, and “rigid” case, respectively. Note that the vein and graft

re still elastic in the stiff case. The pulsatile flow velocity profile

 a ( t ) (see Fig. 3 ) at the graft inlet is taken from [52] . Note that

he velocity is non-dimensionalized for lattice Boltzmann simula-

ion. The steady native blood flow at the vein inlet is chosen to

e the mean value of the blood flow at the graft inlet. All pa-

ameters on Table 2 are dimensionless. The characteristic quan-

ities used for nondimensionalization are fluid mass density ρc ,

ein diameter L c , and the period of flow pulsatility T c . In lattice

oltzmann units, these quantities are as follows: ρc = 1 . 0 , L c = 10 ,

nd T c = 9300 . Some simulation results (e.g., soft and less soft

ases, less stiff and stiff cases, respectively) are similar. There-

ore, we focus on only the three typical cases (soft, stiff, and

igid). 

Note that since our goal is to gauge the possible effect of

ein/graft flexibility, rather than investigate the specific flow and

orce fields of blood flow inside a given patient-specific arteri-

venous graft anastomosis, all model parameters and outcome
ress gradients level. 

WSSG(G) WNSG(V) WNSG(G) 

790.3 8.17 119.4 

781.00 12.78 135.53 

763.32 18.73 144.47 

748.29 25.51 151.60 

10304 104.46 638.0 

Y-axis with different stiffness. 
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Fig. 5. WSS (top), WSSG (middle), and WNSG (bottom) with different stiffness. 
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uantities (e.g. WSS) are kept dimensionless throughout the paper.

iven a corresponding real world problem, it is possible to convert

he lattice Boltzmann results back to physical units via dimension-

ess ratios by way of similarity principle [47] . It is done for the

SS for the purpose of comparison with existing results. 

First, let us examine the averaged force field (WSS, WSSG, and

NSG) for all cases. We point out that the WSS values on the vein

nd graft computed from our simulations are in line with exist-

ng data in literature. The range of the averaged dimensional WSS

converted from the lattice Boltzmann units to physical units) is

pproximately from 0.35 Pa to 40.5 Pa as the vein flexibility de-

reases from the greatest (soft) to the least (rigid) in the range

isted on Table 2 . The WSS of similar vessel-graft systems was

ound to vary from less than 1 Pascals to hundreds of Pascals

14,15,17,19–21,23,60] . 

Table 3 shows the spatially averaged values of the WSS, WSSG,

nd WNSG on the vein and graft walls for five levels of the vein

eformability. “V” denotes the vein and “G” denote the graft. One

an see that as the vein becomes stiffer, all of these quantities

ncrease in the vein. But they remain approximately the same in

he graft except the rigid case where they increase sharply. Note

hat the graft elasticity is not changed except in the rigid case.
ur results indicate that a more complaint vein experiences less

SS on average. This is in qualitative agreement with the finding

n [31] . 

Now let us report the soft, stiff, and rigid cases in two pairs for

omparison. We compare the soft and stiff cases first. Fig. 4 plots

ontours of magnitude of velocity and vorticity on selected planes

ormal to the y-axis at a typical instant (instant a in Fig. 3 ). These

gures show that the radial expansion of the vein is less and the

ow speed in the vein is greater in the stiff case. Interestingly,

ore radial expansion in the graft is seen in the stiff case than

n the soft case. This may be caused by the less radial expansion

n the vein. The flow in the graft feels the “traffic” and slows down.

hus the increased pressure in the graft causes more radial expan-

ion. Fig. 5 plots the WSS, WSSG, and WNSG on the vein/graft walls

t instant a. These figures show that the distributions of these

ariables are quite different in the two cases and their values are

reater in the stiff case. 

Now let us compare the two extreme cases: The soft case with

he greatest elasticity and the rigid case with the least elastic-

ty. Fig. 6 visualizes the contours of velocity magnitude on the

lane normal to the y-axis at the four instants for rigid (left col-

mn) and soft (right column) cases. We notice that the velocity
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Fig. 6. Velocity contours ⊥ Y-axis at different instants. 
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magnitude is smaller in the soft case than that in the rigid case.

Also the contours in the soft case looks bigger due to the thicker

diameters (caused by radial expansion) of the structures (vein and

AVG). We notice that the expansion of the vein in the soft case is

not uniform, the vein becomes curved and irregular, particularly in

region close to the anastomosis. In both cases, the differences in

the four time instants are observable. But the differences for the

soft case are less distinct than the rigid case. Fig. 7 visualizes the
ontours of vorticity in magnitude on the plane normal to the y-

xis at four instants for both rigid and deformable cases. Note that

pparent differences between the two cases are seen at all four

ime instants. The contours of the soft case are more or less irregu-

ar (less smooth) than the rigid case. This is caused by the motions

f the walls of both vein and graft. 

Now let us show the vorticity components. Our simulations

how that the x-component of the vorticity is the least (very small
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Fig. 7. Vorticity contours ⊥ Y-axis at different instants. 
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n magnitude) compared to the other two components. Fig. 8 vi-

ualize the contours of ω y . It clearly shows the occurrence of sec-

ndary flows in the structure, specially in the vein. Similar sec-

ndary flows are seen in [61,62] . 

From the above figures, we can see some differences among the

our time instants in both soft and rigid cases. These differences

eflect the influence of flow pulsatility. However, the influence of

ow pulsatility on flow field is weaker in the soft case than in the
igid case: The flow patern in the vein of the soft case is quite

imilar at the four instants. 

Now we investigate force field by visualizing distributions of

SS, WSSG, and WNSG on the walls of vein and graft. Fig. 9 visu-

lizes the WSS on the vein and AVG walls for both rigid (the first

wo rows) and soft (the third row) cases. From Fig. 9 , one can no-

ice the obvious difference between the two cases. First of all, the

ein and graft are deformed by the flows and become non-uniform
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Fig. 8. Vorticity(y-component) contours ⊥ X-axis at different instants. 
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in shape (e.g., the vein becomes somewhat curved). Secondly, the

WSS on the wall of vein and graft is greater in the rigid case than

in the soft case. Also while the differences of WSS among the four

typical instants a, b, c, and d in the rigid case are discernible by

the eye, they look quite similar in the soft case (therefore only one

instant is shown here). The latter two differences are caused by the

flexibility of the vein and graft. For a structure (vein and graft here)

that can deform with flow, flow disturbances may be lessened to
ome degree because the structure moves with the flow (instead

f completely standing against it). In another word, the structure

exibility can “absorb” impact of the flow. Results of WSSG and

NSG are similar. They are shown in the fourth (WSSG) and fifth

WNSG) rows in Fig. 9 for rigid (left) and soft (right) cases at

nstant a. 

The averaged WSS, WSSG, and WNSG on the vein wall (labeled

s “V”) and graft wall (labeled as “G”) are computed and listed on
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Fig. 9. WSS (top three rows), WSSG (fourth row), and WNSG (fifth row) at different instants and stiffness. 
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Table 4 

Wall shear stress (gradient) and wall normal stress gradients level. 

Case WSS(V) WSS(G) WSSG(V) WSSG(G) WNSG(V) WNSG(G) 

Rigid(a) 158.42 644.50 1491.0 10304 104.46 637.98 

Rigid(b) 153.83 694.00 1462.6 11224 102.63 815.91 

Rigid(c) 175.82 743.58 1563.1 12034 163.04 729.62 

Rigid(d) 152.62 682.82 1533.7 10931 97.88 699.49 

Soft (a) 8.27 47.80 76.53 790.25 8.17 119.37 

Soft (b) 8.40 48.64 77.60 804.62 8.24 119.94 

Soft (c) 8.72 50.06 80.47 824.48 8.46 128.29 

Soft (d) 9.23 50.76 85.14 838.56 8.62 129.27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 for both cases. We see slight variations (less than 15%) in

the averaged values among the four instants. 

7. Summary and conclusion 

We have developed a 3D anastomosis model incorporating

vein-graft deformability for blood flow past a distal arteriovenous-

graft anastomosis based on the lattice Boltzmann-immersed

boundary method using a non-uniform Lagrangian structure mesh

for the vein-AVG anastomosis by elastic fibers. The method and its

implementation are verified and validated by comparison with ex-

isting data and mesh refinement studies. 

A series of simulations using five different levels of vein elas-

ticity have been designed and performed to investigate the effect

of vein elasticity on the flow and force fields. These flow and force

fields have been visualized and analyzed. Our computational data

are in agreement with relevant data in literature. The main sim-

ulation results are summarized as follows: 1) Vein elasticity may

lessen the disturbance of flow pulsatility on the flow and force

fields in the vein-graft anastomosis. 2) As the vein gets less elas-

tic, the WSS, WSSG, WNSG and their spatially averaged values all

increase in the vein. 
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