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The dynamics of simple neural systems is of interest to both biologists and physicists. One o
possible roles of such systems is the production of rhythmic patterns, and their altera
~modification of behavior, processing of sensory information, adaptation, control!. In this paper, the
neural systems are considered as a subject of modeling by the dynamical systems appro
particular, we analyze how a stable, ordinary behavior of a small neural system can be describ
simple finite automata models, and how more complicated dynamical systems modeling c
used. The approach is illustrated by biological and numerical examples: experiments with
numerical simulations of the stomatogastric central pattern generators network of the Calif
spiny lobster. ©1996 American Institute of Physics.@S1054-1500~96!02103-9#
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The dynamics of neural systems is an important biologi-
cal discipline where physical and mathematical modeling
can potentially provide a great deal of insight. Elaborate
models can and have been developed based on conside
ations of the detailed neural structures; however, the ap-
proach taken in this work was to use a simple model to
attempt to understand the basic purpose served by spe-
cific patterns of neural synchronization. A relatively
simple neural system was explored here, namely the cen
tral pattern generators „CPG… that control the rhythmic
activity in invertebrates. Experimental results for CPG
neuron firings for the California spiny lobster were suc-
cessfully modeled via a simple finite automata approach,
without having to resort to complicated systems of ordi-
nary differential equations.

I. INTRODUCTION

A. Levels of description

This paper is based on a short course of lectures
which biological experiments on small neuronal system
were presented along with physical approaches to the m
eling of such systems. One of our aims has been to disc
the idea of neural system modeling at different levels, illu
trated by concrete examples. It is well known that even
single, isolated neuron is a strongly nonequilibrium syste
with many degrees of freedom. Therefore a system
coupled neurons is inherently even more complicated. Ho
ever, when considering them only on a relatively large tim
scale~only one order less than the characteristic time of t
rhythmic patterns they produce!, it is possible to use anothe
level of description and model neurons as relatively simp
CHAOS 6 (3), 1996 1054-1500/96/6(3)/288/9/$10
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dynamical systems. Such modeling of neuronal generators
nontrivial patterns offers the possibility of using the same
approach as for circuits of any coupled generators~for ex-
ample, electronic generators! and to answer some very im-
portant neurophysiological questions by using the experienc
of artificial network analysis in physics and engineering. In
particular we consider two questions in detail:~i! stationary
~ordinary! and adaptive behaviors of neural systems, and~ii !
the simplest ways of modeling the ordinary behavior, so tha
the model not only makes correct ‘‘predictions’’ but is useful
also for understanding the role of different types of coupling
between neurons.

B. Motor control

How does a small insect like a centipede move all its
legs in a highly coordinated manner, such that it may suc
cessfully overcome different obstacles without considerin
what leg to place in what position? How does a small mol
lusc likeclione, the sea angel, move its wings to swim? And
how does a tongue move so that we seldom bite ourselve
yet we are able to speak, whistle, chew, etc.? With differen
answers, perhaps, then are different versions of the sam
question related to the rhythmic movements of living organ
isms. How can such activities be performed, and what are th
features of the nervous system that allow a living creature t
produce rather complicated but well coordinated move
ments?

The vertebrate examples all involve the action of a hug
number of neurons, and that is why they are hard to analyz
in detail ~at a low level, i.e. taking into account every neuron
and every synapse!. The control of rhythmic activity of in-
vertebrates is performed by relatively simple neuronal sys
288.00 © 1996 American Institute of Physics
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289Rabinovich et al.: Dynamics and kinematics of systems
tems called central pattern generators~CPG!. The issues we
address in this paper are the analysis of these small neuro
systems and the explanation of the way they operate by m
eling them as simple dynamical systems.

Neurobiologists have made enormous progress in und
standing the neuron’s behavior at the cellular level—ho
neurons are organized, how they generate action potent
how neurons influence each other through synapses, h
special chemicals—neuromodulators—act on neurons a
change their behavior, etc. At the same time it has be
studied how these cellular processes and their alterations
correlated with actual behavior of animals. However there
a gap between these two levels of analysis. Nonlinear d
namics may help to link cellular levels to behavioral leve
by explaining how a network of neurons can produce th
behavioral patterns~electrical signals that are sent to muscle
to control them! observed in nature~see, for instance the
review by Abarbanelet al.1!.

The problem is extremely difficult for complex organ
isms ~vertebrates!. We actually know almost nothing about
the detailed microcircuitry of the brain and the physiologica
differences between individual neurons. There are no expe
mental techniques presently available which can provide
ologists with the details of brain circuitry, and assumption
about how neurons in the cortex, cerebellum, etc. are ac
ally wired up must be rather speculative.

The production of behavioral sequences, as well as t
processing of sensory information, requires coordination
many neural circuits. There has to be flexibility in the way
in which such circuits can be tuned and orchestrated as w
as the way in which circuits can be combined because s
sory neurons, central neurons~interneurons! and motor neu-
rons can participate in various combinations during differe
behavioral patterns. Using the simplified nervous systems
invertebrates~simplified at least in terms of number of neu
rons!, neurobiologists have overcome many of the obstacl
which lie in the way of a detailed analysis of brain circuitry

C. CPG networks

The structure of many small systems like CPGs are ve
well known ~see Sec. II and examples therein!. Biologists
know how neurons connect with each other in detail. Th
question that arises is: What kind of mathematical objects a
required to model CPGs? Because of the huge amount
experimental data, very detailed models can be~and actually
have been! constructed. If one needs to know all the detai
of the transition processes, neuronal responds to the action
neuromodulators, a detailed model that consists of dozens
ordinary differential equations~ODEs! may be useful. If, on
the other hand, one wants to understand only roughly w
some neurons are synchronized in a particular fashion, mu
simpler logical considerations may be enough.

A nice example of the latter case is the swimming CP
of the molluscclione. We would like to discuss this example
because it is very simple and it gives the right basic idea ho
a CPG works. This small ‘‘beast of prey’’ swims with the aid
of its wings. The CPG controlling the muscles drivingclione
CHAOS, Vol. 6
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wings has been investigated in detail.2 This pattern generator
is shown schematically in Fig. 1. Roughly speaking this ge
erator consists of five neurons only~actually, there are more
neurons but some of them behave so synchronously that t
may be regarded as one!. Neuronsa and b are coupled by
mutual inhibitory coupling, i.e., excitation of one neuron in
hibits the other one, and by excitatory and inhibitory co
plings with neuronc. When the latter is active it excitesa
and inhibitsb neurons, i.e. helpsa and b fire in antiphase.
Moreover,a andb not only excite the motoneurons MN1 and
MN2 ~that contract and relax muscle! but each of them in-
hibits the motorneurons excited by the other. This constru
tion allows MN1 and MN2 to work in antiphase with very
high reliability, as needed for the coordinated work o
muscles. The considerations presented above are v
simple, however they allow one to make certain assumptio
about how the system works without complicated mathem
ics but from general qualitative principles: mutual inhibitor
coupling tries to enforce antiphase synchronization, and el
trical or mutual excitatory coupling produces in-phase sy
chronization. These principles are based on experiments~e.g.
Refs. 3 and 4! and confirmed by numerical simulations~e.g.
Ref. 5!.

Thus, in some cases it is possible to give a logical d
scription of the stable, ordinary behavior of a network6

Sometimes this is enough if one wants to understand
structure of a very simple CPG. Of course, for the study
details of neuronal dynamics, transition processes, etc., co
plicated models like systems of nonlinear differential equ
tions should be used. However, if one is interested only
the general features of the stationary operation of a sm
neural system~i.e. in its kinematics, because in this case on
considers only the motion on an attractor of the dynamic
system, so the trajectory is fixed!, verbal description or mod-
els like simple finite automata can be helpful.

Nerve impulses~spikes! are brief, with a relatively con-
stant size and shape. Consequently, the information is c
tained in trains of several spikes that form a burst. From th
point of view, the modeling of a neural network by symboli

FIG. 1. The scheme ofclioneswimming CPG. Filled circles denote inhibi-
tory synapses, empty ones—excitatory. MN1 and MN2 are motoneuron
, No. 3, 1996
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290 Rabinovich et al.: Dynamics and kinematics of systems
dynamics is correct and convenient. However, as it w
shown in many model experiments, the dynamics of the f
and slow motions are connected and important interactio
occur between these two types of motion. For example,
bursting period and phase lag between neurons may dep
on the strength of coupling. A symbolic~and especially logi-
cal! approach is not an efficient description of these pheno
ena, because when we take into account all important inf
mation about dependence on the synaptic current of the fo
of spikes, the distance between them, etc., symbolic mod
become more complex and harder to simulate numerica
than typical ODE models.

II. ARCHITECTURE AND OPERATION OF SMALL
NEURAL SYSTEMS

One type of neural pattern particularly amenable
analysis is the centrally produced cyclic motor pattern. Th
pattern consists of rhythmic bursts of impulses in the app
priate motor nerves. When these bursts reach and activate
muscles, sequential behaviors like locomotion, chewing, fl
ing, etc., are generated. Such behaviors are produced
small groups of synaptically coupled neurons—central p
tern generators, an important characteristic of which is th
their activity is autonomous, i.e. produced without the ne
for sensory feedback so that the portion of the nervous s
tem which is responsible for their generation can be remov
from the animal and the CPG can be studied in isolatio
That is why CPG is a very convenient neuronal system
investigation. Of course sensory feedback does exist a
may play an important role in regulation of motor pattern
but is not responsible for their existence.

Here we consider one example of a CPG—lobster s
matogastric CPG~see Refs. 7 and 8!. The stomatogastric
CPG of the California spiny lobsterPalinurus interruptus
innervates its foregut. The stomach contains three ossic
which function as teeth, two lateral and one medial. They a
controlled by the gastric mill CPG located in the stomatoga
tric ganglion which sits in an artery on top of the stomac
The ganglion contains about thirty neurons which have lar
cell bodies and are clearly visible. The neurons can be id
tified, removed from ganglion and cultured. There are fo
different regions of foregut: the esophagus, the cardiac s
the gastric mill containing teeth and pyloric region whe
food particles are filtered and sent to more caudal regions
the gut. The stomatogastric ganglion can be divided into t
networks—gastric and pyloric that control gastric mill an
pyloric filter respectively. Much is known about the neur
basis of their behavior, less is known about the esopha
and cardiac sac behavioral patterns.

The pyloric behavior consists of a dilation of the pylori
region due to PD~pyloric dialator! and VD ~ventricular di-
alator! cells firing. Then there is a sequential constriction
the region from front to back as the LP~lateral pyloric!, IC
~inferior cardiac! and PY~pyloric! cells fire. This pattern can
be observed at a frequency of about 0.5 Hz in both isola
and intact systems. Because there are so few neurons
volved, all of the neuron types for each CPG can be record
CHAOS, Vol.
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simultaneously with intracellular microelectrodes. The ele
trical activity consists of slow oscillatory potentials with at
tenuated action potentials riding on the depolarizing phase
each burst. All of the neurons are motor neurons with t
exception of the AB~anterior burster! neuron which is an
interneuron, i.e. it sends information only to other nerv
cells.

The basic functional circuitry for the stomatogastric ga
glion was worked out by recordings from pairs of identifie
stomatogastric neurons. Fortunately, intracellular recordin
from the cell bodies of these neurons display subthresh
activity so that monosynaptic connections between cells c
be established. By passing current between neurons, con
tions between them can be easily determined. This has le
a complete description of the two pattern generators in t
terms of their synaptic connectivity as shown in Fig. 2. F
convenience we have also pictured a scheme of the pylo
network separately in Fig. 3. Note that the majority of th
connections are inhibitory and that in addition to the patte
generating neurons, some of the identified neuromodulat
and sensory cells are also included. Although the two n
works function more or less independently of each other a
of sensory inputs, the extensive connections between t
groups and sensory input may play a crucial role for an a
mal in some non-standard situations~see Refs. 3, 7–11 and
others for experiments!.

III. THE MODELS ONE MAY NEED TO DESCRIBE
CPG DYNAMICS

A. ‘‘Adequate’’ models

The state of a neuron is determined by nonequilibriu
diffusion of different ions through its membrane. Cons
quently its activity should, in general, be modeled using
kinetic description.12 However, there is no need for such
description as long as we are interested in the neuron only
a generator of low-frequency electric pulsations. Furthe
more, the cellular membrane can often be considered as
equipotential surface, so the variables describing the state
a neuron~membrane potential, ionic concentrations, etc.! are
functions of time only. Therefore, for the construction of
reasonable model it is sufficient to apply ordinary differenti
equations for the dynamical variables: membrane potent
macroscopic ionic currents and concentrations. Here we
ploit the fact that the characteristic time scaleT of the elec-
tric activity of the neuron is much larger than the characte
istic time of the kinetic processes. A neuron can be regard
as a nonlinear electric circuit. The energy sources for ope
tion of this dissipative system are biochemical processes
metabolism. Thanks to the feedback that open and clo
ionic channels in the membrane at the respective phase
electrical activity, the state of neuron corresponding to t
resting potential may become unstable and the neuron
comes a generator. Such a generator may be regarded
dynamical system in which microscopic kinetics is reveale
only as small fluctuations.
6, No. 3, 1996
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FIG. 2. The scheme of the lobster stomatogastric ganglion.
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This dynamical approach is supported by nonlinear tim
series analysis of the membrane potential—the calculatio
embedding, correlational and Lyapunov dimensio
Lyapunov exponents, etc. Experiments performed in diff
ent laboratories indicate that the normal electrical activity
a single isolated neuron is dynamical chaos~e.g. Refs. 5 and
13!. For example let us consider an isolated LP neuron of
lobster stomatogastric ganglion~see Sec. II!.5 In this prepa-
ration it is possible to obtain very long time series of me
brane potential. The phase portrait of this behavior displa
in Fig. 4 has been reconstructed from data following
well-known Takens procedure.14 It is a strange attractor tha
can be projected onto a three-dimensional space.
Lyapunov dimension of this time-series is about 2.8 and
embedding dimension obtained by the method of false n
est neighbors method is 3–4.~For a discussion of calcula
tions of dimensions and identifying a dynamical system fr

FIG. 3. The scheme of the pyloric network.
CHAOS, Vol.
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observed data see, for example, Ref. 15.! Hence, the electri-
cal activity of this neuron takes the form of a low-
dimensional chaos, and the neuron can be modeled as a no
linear dynamical system. The same situation arises wit
many other CPG neurons~see, for example, the work of
Hayashi and Ishuzuka13 and others!.

B. Some examples of ODE models

In this section we discuss some examples of differentia
equations used for neuronal modeling. Neurons from man
small neural circuits like CPGs are often described by
conductance-based models—a generalization of the classic
Hodgkin–Huxley formalism.16 This generalization is based
on taking into account different ionic channels and depen
dences of the membrane conductances~for different ionic

FIG. 4. An attractor reconstructed from the time series~see Fig. 5c! in
three-dimensional phase space.
6, No. 3, 1996
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292 Rabinovich et al.: Dynamics and kinematics of systems
currents! on concentrations, membrane potential, etc. Th
general form of such models is

C
dV

dt
5I2(

i51

N

giai
pi~ t !bi

qi~ t !@V~ t !2Vi # ,

dai
dt

5~a` i~V!2ai !/tai~V! , ~1!

dbi
dt

5~b` i~V!2bi !/tbi~V!,i51,2,3,. . . ,N,

whereV is the membrane potential,C is the membrane ca-
pacity, andI is. Here i denotes different ionic species, and
a andb describe states of ionic channels,a`(V), b`(V) and
t(V) are some sigmoidal functions. There are many mode
with N;10 or even more. They describe neuronal behavi
very precisely, but they are high-dimensional and contain
lot of often unknown parameters. As a consequence they
hard to analyze in detail~see, for example, Refs. 17–22!.
The other feature of this type of model~as well as of the
living cells they describe! is that the actual behavior very
often is a low-dimensional one. Therefore, the dynamic
variables in system~1! are not really independent, rather they
behave like master–slaves variables. Consequently, a lot
important effects~except those connected with interaction
of particular ionic currents! can be described by low-
dimensional ODE models~of conductance-based type22 or of
a phenomenological form!.

One of the frequently used low-dimensional models
that of Rose and Hindmarsh23

dx

dt
5y1ax22bx32z1I ,

dy

dt
5c2dx22y, ~2!

dz

dt
5r @s~x2x0!2z#,

wherex is a membrane potential,y represents fast currents
~e.g. sodium and potassium!, z represents a slow current~e.g.
Ca21–current!, and I is an external current. The Rose–
Hindmarsh model and its modifications can describe ma
effects observed in neural systems.

The type of model that is most appropriate clearly de
pends on what details and features of the dynamics o
needs to know. It is possible to simplify the models furthe
and use two-dimensional systems of differential equatio
~like the conductance-based Morris–Lecar model24 or phe-
nomenological Wilson–Cowan model,25 FitzHugh–Nagumo
model26,27!, integrate-and-fire, phase oscillators, Hopfield
like models and so on. Usually very simple models are us
to analyze large, complex neuronal assemblies~like human
cortex, that contains about 53109 neurons!, because these
assemblies simply cannot be analyzed in practice by usi
CHAOS, Vol. 6
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complicated models with dozens of variables and hundreds
of parameters. Furthermore, we have no reason to believ
that the complexity in models will bring more accurate re-
sults, because we do not know the details of the cortica
circuitry.

The same or similar simple models may be used~and
actually are used! in modeling of small neural systems.
When we consider a stationary regime and our aims are lim
ited to understanding, say, how phase shifts between the po
tentials of various neurons are formed, we can use very
simple models. In some cases, derivation of relatively simple
models from more complicated and precise ones can be don
with mathematical rigor, for example, by averaging of mo-
tions on different time-scales~ e.g. see Refs. 28 and 29!.

In the next section we will introduce a class of very
simple models~finite automata! in order to describe basic
features of CPG networks~in particular, phase shifts between
spiking-bursting activity, the length of these phases, and the
relative synaptic strength! qualitatively correctly. We will
not perform a rigorous reduction from complex ODE models
to simple finite automata. Actually, there is no reason for
such a derivation because the phenomenological model help
to achieve our ‘‘modest’’ aims.

IV. FINITE AUTOMATA DESCRIPTION OF SMALL
NEURAL NETWORKS

A. What are finite automata models useful for?

Here we introduce a simple finite automata model for
neurons of CPG-like small systems. This phenomenologica
model is based on different experiments with different CPGs.
The model is a three-state finite automata that captures spik
ing, bursting and resting activity, which is usually observed
in CPG neurons.

The utilization of logical models and finite automata in
modeling of neurons is not a new one~e.g. see Refs. 30 and
31!. Simple models of neural systems have been used fo
many years. Starting with the work of McCulloch and Pitts,32

a significant number of papers have appeared, but almost a
of them have been dedicated to the problems of memory
learning and other phenomena in large neuronal ensemblie
A few papers have been dedicated to the study of CPGs, e.g
Ref. 33 — logical approach, Ref. 34 — Hopfield-like mod-
els. We want especially to mention the work of Thompson35

who used a two-state probabilistic model of each neuron to
describe the dynamics of the pyloric network, because we
consider the modeling of the pyloric network too. Here we
develop a new approach suggested by one of the authors.36 It
generalizes from two states to three in order to approximate
the CPG neurons as much as possible without missing th
transparency presented in these automata-type models. W
show how starting from a particular set of dynamical rules
belonging to each of these three states the characteristic be
havior of some CPG is accomplished. To reproduce the ex
perimental results with good agreement means in this cas
that the qualitative features utilized in finite automata are
fundamental in the dynamics of these neurons.
, No. 3, 1996
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293Rabinovich et al.: Dynamics and kinematics of systems
Networks of such models can qualitatively correctly re
resent the length of different phases in neuronal behav
phase shifts between different neurons, relative strengths
synaptic coupling. For example, they can be used for obta
ing correct relative values of these strengths. They are m
easier to use in this case than systems of ODEs, because
have fewer parameters and are simpler in numerical simu
tions. Therefore, such simple models are fairly convenie
They allow us to concentrate our attention on the main fe
tures of the network~types and architecture of connections!
and network’s behavior.

B. Spiking-bursting symbolic neuron

As we have noted in Sec. II, the characteristic behav
of a CPG neuron shows three well differentiated states:
resting, the bursting and the spiking state. Along with the
three states we have to set an ordered switch between t
according to one control variable functionally equivalent
the electric currentI . Based on different experiments~see
Sec. II, Fig. 5!, the model assumes three states (f50,1,2),
regulated by a variable that represents the current:

spiking f52, I>1,

bursting f51, 0,I,1,

resting f50, I<0.

~3!

Each state has its own set of rules and is represented
particular variables:f is a common variable for all states tha

FIG. 5. ~a!–~e! Membrane potential of isolated LP neuron, depending on t
value of input constant currentI .
CHAOS, Vol.
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denote these states,FS is the phase of spiking state~de-
scribes fast motion!, andFB is the phase of bursting state
~describes slow motion!.

The resting state is trivial and has no rules for time evo-
lution: f50 is a constant in time.

The spiking state is characterized by an amplitude
f511 f S , and a phase,FS P @0,gS(I ,wS)#, wherewS is an
integer that represents the nominal spiking period for a par
ticular currentI5I o @in the absence of any input current the
oscillator spikes everygS(I o ,wS) units of time#. The phase
evolves in time asFS(t11)5FS(t)11 if FS<gs , other-
wiseFS50. f S is written as

f S5H 1, 0<FS,rgS~ I ,wS!,

0, rgS~I,ws!<FS<gS~I,wS!,
~4!

and for the integer decreasing functiongS(I ,wS) we use

gS~ I ,wS!5HwS2aIwS , wS2aIwS,wlimit ,

wlimit , wS2aIwS>wlimit ,
~5!

where typicallya;0.1 andr;0.2 is chosen.
The bursting state is described by a second phas

FB P @0,gB(I ,wB)#, wherewB is an integer that represents a
nominal bursting period for a particular nominal current
I5I o analogously withFS . We used the following form of
gB : gB5wB(22bI ) with b;1. The time evolution of the
bursting phase is the same as that of spiking phase and

f5H 11 f S , 0<FB,mB~ I ,wB!,

0, mB~ I ,wB!<FB<gB~ I ,wB!,
~6!

in which mB(I ,wB)5IwB is chosen. Let us note again that
these functions are a general qualitative approximation.

There is an additional subject of importance when we
are talking about understanding and modeling of real neu
rons — noise. Noise exists in any real neuron, therefore th
question arises: Is noise a principal part of neural life or not
and should we introduce noise in our model? The answer i
affirmative. Numerical experiments have showed that there
exist some fine attractive structures in the phase space of th
model with very small basins of attractions. They correspond
to pathological regimes that were never observed in exper
ments. Weak noise added to the model destroys such path
logical regimes. We think that it is some kind of indirect
argument that noise is also important for the normal opera
tion of living nerve cells. In numerical simulations we intro-
duce noise in the following fashion:

wB5wB
01sh~n!, ~7!

wheres characterizes the amplitude of noise, which is abou
5% ofwB

0 @h(n) is normalized to one random Gaussian sig-
nal with zero mean#.

Based on some experiments on the phenomena calle
rebound potential37,38it is reasonable to introduce the rule for
nonlinear phase change as

he
6, No. 3, 1996
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FB~ t11!

5H 0, DI ~ t !.Cth ,

FB~ t !11, 2Cth<DI ~ t !<CthmB~ I ~ t !,wS!,

DI ~ t !,2Cth ,
~8!
CHAOS, Vol.
where Cth is the threshold at which the nonlinear phase
change takes place, andDI (t) represents the incoming cur-
rent received by the neuron from other neurons through syn
apses.

The symbolic neuron model may be summarized in the
form
I ~ t !5I o1DI ~ t !,

f ~ t !5H 2, I ~ t !>1,FS~ t !Pa~ I ~ t !!; or I ~ t !P f ~ I ~ t !!,FS~ t !Pa~ I ~ t !!,FB~ t !Pb~ I ~ t !!,

1 I~t!>1,FS~ t !Pc~ I ~ t !!; or I ~ t !P f ~ I ~ t !!,FS~ t !Pc~ I ~ t !!,FB~ t !Pb~ I ~ t !!,

0 I~t!<0; or I ~ t !P f ~ I ~ t !!,FB~ t !Pd~ I ~ t !!,
~9!

FS~ t11!5H 0, FS~ t !.gS~ I ~ t !!,

FS~ t !11, ‘‘rest’’ ,

FB~ t11!5H 0, FB~ t !.gB~ I ~ t !! or DI ~ t !.Cth ,mB~ I ~ t !!,

DI ~ t !,Cth ,

FB~ t !11, ‘‘rest’’,
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where the intervalsa, b, c, d, and f are given by

a~ I ~ t !!:@0,rgS~ I ~ t !!!,

b~ I ~ t !!:@0,mB~ I ~ t !!!,

c~ I ~ t !!:@rgS ,gS~ I ~ t !!#,

d~ I ~ t !!:@mB~ I ~ t !!,gB~ I ~ t !!#,

f :~0,1!.

Now we will use this system to model neural networks

C. Network modeling

Obviously, the modeling of synaptic connections is a
important part of neural systems modeling. It is known th
the transmission of information through synaptic connectio
is mainly due to spikes. A spike generated in the cell bod
arrives via the axon to the synaptic terminal and releas
neurotransmitters that after a brief delay reach the posts
aptic membrane and change its permeability for differe
ions and a postsynaptic potential is generated. Another sp
arriving a little bit later generates another postsynaptic p
tential which is added to the previous one. The synaptic co
nection in our model counts the number of spikes that arri
at the cell inside some time interval. The change in the cu
rent for the cell numberi is

DI i~ t !52~ f i~ t !2 f rev!(
j50

M

si jNj~ t2rwS ,t2t!, ~10!

whereM is the number of cells in the network,si j represents
the synaptic strength,Nj (t2rwS ,t2t) counts the number of
spikes that were generated inj -cell from time t2t to time
6

.

n
at
ns
y
es
yn-
nt
ike
o-
n-
ve
r-

t2rwS , and t is integer number~thus we have finite au-
tomata witht-memory step iteration!. The variablef rev rep-
resents the reverse potential of the synaptic connectio
f rev50 for inhibitory and f rev52 for excitatory synapses.
This model applies for chemical synapses only. In fact the
are the most widespread in CPGs. Still the modeling of ele
trical coupling is a minor point of our approach. We suppos
that mutual excitatory coupling~which never occurs in
CPGs, usually excitatory coupling is only in one direction!
can model an electrical synapse. This is supported by ana
sis of different experimental data and by numerical simula
tions with more complicated models. Several authors~e.g.
Refs. 3–5! conclude that electrical coupling and mutual ex
citatory coupling have the same functional role—enforcin
of in-phase synchronization~while mutual inhibitory cou-
pling tries to produce out-of-phase synchronization!.

The model will be used to simulate the behavior of th
lobster pyloric CPG described in Sec. II. Note that the AB
and both PD neurons are strongly coupled by electrical sy
apses, and therefore are always synchronized in phase. T
same situation applies to the group of eight PY neurons—
they are strongly electrically coupled, always in-phase sy
chronized, and consequently behave like one unit. In order
simplify calculations we used a pyloric network composed o
only five model neurons: VD, LP, IC, PY and AB/PD. The
results of the calculations presented in Fig. 6 can be com
pared with direct experimental measurements9 reproduced
here in Fig. 7.~Particular values of parameters in this simu
lation were the following: nominal currentI 0: 0.4, 0.5, 0.8,
0.4, 0.6; bursting periodwB : 437, 437, 583, 437, 500; spik-
ing periodwS : 28, 46, 23, 20, 21, for PY, IC, VD, LP and
AB/PD neurons respectively.! It is evident that our finite
, No. 3, 1996
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automata neurons are able to capture the two main feat
of behavior of the real pyloric network—the phase shi
between neurons and the period of the bursting phase. B
on the chosen parameters, we can infer the relative stren
of different synapses.

Let us note that the type of synchronization betwe
some neurons is not obvious even though we know the st
ture of CPG. For example, the VD neuron is electrica
coupled with PD and AB neurons. But they are synchroniz
out-of-phase. It may happen because the electrical coup
is weak enough. IC and VD neurons are mutually inhibito
coupled but fire in phase. One may suppose that in-ph
synchronization will disappear if one will make the couplin
stronger. It is not easy to prove in biological experimen
We performed numerical simulations with our model ne
work and supported the supposition.

Such a manipulation with network parameters can
continued. By changing the synaptic coefficientssi j in the
model, we can predict what happens when neuromodula
~chemicals that modify the synaptic strengths! are applied to
the stomatogastric ganglion. The usage of a finite-autom
model is a simple job. One may easily change network
rameters in order to understand their significance. To do i

FIG. 6. The behavior of finite automata neurons of the simplified pylo
network ~traces of the ‘‘membrane potential’’f ).

FIG. 7. The behavior of a living pyloric network~traces of the membrane
potential! ~Ref. 9!.
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a physiological experiment on a living CPG is a very hard o
even impossible, in some cases, task. Therefore, the mod
described above is a nice tool for understanding the dynam
ics of the lobster pyloric CPG and other CPGs. We would
like to note again that models like~4! are rather rough mod-
els of living networks so they may capture only rough fea
tures of the neuronal system’s behavior.

V. CONCLUSION

The main role of a CPG is the production of rhythmic
patterns. First of all, CPGs create motor patterns and on
then modify them according to different needs~adaptation,
control, etc.!. To model this basic, fundamental function of
CPGs, very simple dynamical systems like simple finite au
tomata can be constructed. We use the word ‘‘kinematics’’ in
the title of the paper meaning that we consider this stabl
unaltered motion of a living neural network, which is an
inherent action~production of behavioral patterns! and is de-
fined only by some key features of the neurons and types
coupling. It corresponds only to the motion on the attracto
of the system and in this sense the trajectory of motion i
fixed. We have demonstrated here, that models like simp
finite automata can be very helpful for description of such a
behavior. If one wants to understand alterations of these b
sic behaviors~i.e. to know how CPG can not only generate
but also process information! more complicated dynamical
systems are helpful. In this case it is more convenient to us
ordinary differential equations, which one can naturally ob
tain in a rational manner from more detailed phenomenolog
cal approach.
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