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The dynamics of simple neural systems is of interest to both biologists and physicists. One of the

possible roles of such systems is the production of rhythmic patterns, and their alterations

(modification of behavior, processing of sensory information, adaptation, cprtréhis paper, the

neural systems are considered as a subject of modeling by the dynamical systems approach. In
particular, we analyze how a stable, ordinary behavior of a small neural system can be described by
simple finite automata models, and how more complicated dynamical systems modeling can be
used. The approach is illustrated by biological and numerical examples: experiments with and

numerical simulations of the stomatogastric central pattern generators network of the California

spiny lobster. ©1996 American Institute of Physids$1054-15006)02103-9

The dynamics of neural systems is an important biologi- dynamical systems. Such modeling of neuronal generators of
cal discipline where physical and mathematical modeling nontrivial patterns offers the possibility of using the same
can potentially provide a great deal of insight. Elaborate  approach as for circuits of any coupled generatéos ex-
models can and have been developed based on consider-ample, electronic generatgrand to answer some very im-
ations of the detailed neural structures; however, the ap- portant neurophysiological questions by using the experience
proach taken in this work was to use a simple model to of artificial network analysis in physics and engineering. In
attempt to understand the basic purpose served by spe- particular we consider two questions in detdi): stationary
cific patterns of neural synchronization. A relatively  (ordinary and adaptive behaviors of neural systems, @nd
simple neural system was explored here, namely the cen- the simplest ways of modeling the ordinary behavior, so that
tral pattern generators (CPG) that control the rhythmic the model not only makes correct “predictions” but is useful
activity in invertebrates. Experimental results for CPG  also for understanding the role of different types of coupling
neuron firings for the California spiny lobster were suc-  between neurons.

cessfully modeled via a simple finite automata approach,

without having to resort to complicated systems of ordi- B. Motor control

nary differential equations. . ) ) )
How does a small insect like a centipede move all its

legs in a highly coordinated manner, such that it may suc-
|. INTRODUCTION cessfully overcome different obstacles without considering
what leg to place in what position? How does a small mol-
lusc like cliong the sea angel, move its wings to swim? And
This paper is based on a short course of lectures imow does a tongue move so that we seldom bite ourselves,
which biological experiments on small neuronal systems/et we are able to speak, whistle, chew, etc.? With different
were presented along with physical approaches to the modinswers, perhaps, then are different versions of the same
eling of such systems. One of our aims has been to discuspiestion related to the rhythmic movements of living organ-
the idea of neural system modeling at different levels, illus-isms. How can such activities be performed, and what are the
trated by concrete examples. It is well known that even deatures of the nervous system that allow a living creature to
single, isolated neuron is a strongly nonequilibrium systenproduce rather complicated but well coordinated move-
with many degrees of freedom. Therefore a system ofments?
coupled neurons is inherently even more complicated. How- The vertebrate examples all involve the action of a huge
ever, when considering them only on a relatively large timenumber of neurons, and that is why they are hard to analyze
scale(only one order less than the characteristic time of then detail (at a low level, i.e. taking into account every neuron
rhythmic patterns they produget is possible to use another and every synap$eThe control of rhythmic activity of in-
level of description and model neurons as relatively simplevertebrates is performed by relatively simple neuronal sys-

A. Levels of description
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tems called central pattern generat@@$G. The issues we
address in this paper are the analysis of these small neuronal
systems and the explanation of the way they operate by mod-
eling them as simple dynamical systems.

Neurobiologists have made enormous progress in under-
standing the neuron’s behavior at the cellular level—how
neurons are organized, how they generate action potential,
how neurons influence each other through synapses, how
special chemicals—neuromodulators—act on neurons and
change their behavior, etc. At the same time it has been
studied how these cellular processes and their alterations are
correlated with actual behavior of animals. However there is
a gap between these two levels of analysis. Nonlinear dy-
namics may help to link cellular levels to behavioral levels
by explaining how a network of neurons can produce the ) o ) ) o
behavioral patterngelectrical signals that are sent to musclesf IG. 1. The scheme dflione swimming CPG. Filled circles denote inhibi-

. ) ory synapses, empty ones—excitatory. MN1 and MN2 are motoneurons.
to control them observed in naturésee, for instance the
review by Abarbaneet al?l).

The problem is extremely difficult for complex organ-
isms (vertebrates We actually know almost nothing about wings has been investigated in defallhis pattern generator
the detailed microcircuitry of the brain and the physiologicalis shown schematically in Fig. 1. Roughly speaking this gen-
differences between individual neurons. There are no expererator consists of five neurons or(gctually, there are more
mental techniques presently available which can provide bineurons but some of them behave so synchronously that they
ologists with the details of brain circuitry, and assumptionsmay be regarded as oneéNeuronsa and b are coupled by
about how neurons in the cortex, cerebellum, etc. are actumutual inhibitory coupling, i.e., excitation of one neuron in-
ally wired up must be rather speculative. hibits the other one, and by excitatory and inhibitory cou-

The production of behavioral sequences, as well as thglings with neuronc. When the latter is active it excites
processing of sensory information, requires coordination ofind inhibitsb neurons, i.e. helpa andb fire in antiphase.
many neural circuits. There has to be flexibility in the waysMoreover,a andb not only excite the motoneurons MN1 and
in which such circuits can be tuned and orchestrated as weNIN2 (that contract and relax musglbut each of them in-
as the way in which circuits can be combined because serhibits the motorneurons excited by the other. This construc-
sory neurons, central neurofisterneuronsand motor neu- tion allows MN1 and MN2 to work in antiphase with very
rons can participate in various combinations during differenthigh reliability, as needed for the coordinated work of
behavioral patterns. Using the simplified nervous systems ahuscles. The considerations presented above are very
invertebrategsimplified at least in terms of number of neu- simple, however they allow one to make certain assumptions
rons, neurobiologists have overcome many of the obstacleabout how the system works without complicated mathemat-
which lie in the way of a detailed analysis of brain circuitry. ics but from general qualitative principles: mutual inhibitory
coupling tries to enforce antiphase synchronization, and elec-
trical or mutual excitatory coupling produces in-phase syn-
chronization. These principles are based on experinierds

The structure of many small systems like CPGs are venRefs. 3 and #and confirmed by numerical simulatiofe.g.
well known (see Sec. Il and examples theneiBiologists  Ref. 5.
know how neurons connect with each other in detail. The Thus, in some cases it is possible to give a logical de-
question that arises is: What kind of mathematical objects arscription of the stable, ordinary behavior of a netwbrk.
required to model CPGs? Because of the huge amount ometimes this is enough if one wants to understand the
experimental data, very detailed models card& actually  structure of a very simple CPG. Of course, for the study of
have beehconstructed. If one needs to know all the detailsdetails of neuronal dynamics, transition processes, etc., com-
of the transition processes, neuronal responds to the action pficated models like systems of nonlinear differential equa-
neuromodulators, a detailed model that consists of dozens ¢ibns should be used. However, if one is interested only in
ordinary differential equation€ODES may be useful. If, on the general features of the stationary operation of a small
the other hand, one wants to understand only roughly whyeural systenti.e. in its kinematics, because in this case one
some neurons are synchronized in a particular fashion, muatonsiders only the motion on an attractor of the dynamical
simpler logical considerations may be enough. system, so the trajectory is fixgdrerbal description or mod-

A nice example of the latter case is the swimming CPGels like simple finite automata can be helpful.
of the molluscclione We would like to discuss this example Nerve impulsegspikes are brief, with a relatively con-
because it is very simple and it gives the right basic idea hovstant size and shape. Consequently, the information is con-
a CPG works. This small “beast of prey” swims with the aid tained in trains of several spikes that form a burst. From this
of its wings. The CPG controlling the muscles driviclgpne  point of view, the modeling of a neural network by symbolic

C. CPG networks
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dynamics is correct and convenient. However, as it wasimultaneously with intracellular microelectrodes. The elec-
shown in many model experiments, the dynamics of the fastrical activity consists of slow oscillatory potentials with at-
and slow motions are connected and important interactiontenuated action potentials riding on the depolarizing phase of
occur between these two types of motion. For example, theach burst. All of the neurons are motor neurons with the
bursting period and phase lag between neurons may depeedception of the AB(anterior bursterneuron which is an
on the strength of coupling. A symboliand especially logi- interneuron, i.e. it sends information only to other nerve
cal) approach is not an efficient description of these phenomeells.
ena, because when we take into account all important infor- The basic functional circuitry for the stomatogastric gan-
mation about dependence on the synaptic current of the formlion was worked out by recordings from pairs of identified
of spikes, the distance between them, etc., symbolic modelstomatogastric neurons. Fortunately, intracellular recordings
become more complex and harder to simulate numericalljrom the cell bodies of these neurons display subthreshold
than typical ODE models. activity so that monosynaptic connections between cells can
be established. By passing current between neurons, connec-
tions between them can be easily determined. This has led to
a complete description of the two pattern generators in the
terms of their synaptic connectivity as shown in Fig. 2. For

One type of neural pattern particularly amenable toconvenience we have also pictured a scheme of the pyloric
analysis is the centrally produced cyclic motor pattern. Thishetwork separately in Fig. 3. Note that the majority of the
pattern consists of rhythmic bursts of impulses in the approconnections are inhibitory and that in addition to the pattern
priate motor nerves. When these bursts reach and activate tgenerating neurons, some of the identified neuromodulatory
muscles, sequential behaviors like locomotion, chewing, fly-and sensory cells are also included. Although the two net-
ing, etc., are generated. Such behaviors are produced hyorks function more or less independently of each other and
small groups of synaptically coupled neurons—central patof sensory inputs, the extensive connections between two
tern generators, an important characteristic of which is thagroups and sensory input may play a crucial role for an ani-
their activity is autonomous, i.e. produced without the neednal in some non-standard situatiofsee Refs. 3, 7-11 and
for sensory feedback so that the portion of the nervous systhers for experiments
tem which is responsible for their generation can be removed
from the animal and the CPG can be studied in isolation.
That is why CPG is a very convenient neuronal system for
investigation. Of course sensory feedback does exist angl. THE MODELS ONE MAY NEED TO DESCRIBE
may play an important role in regulation of motor patternsSCPG DYNAMICS
but is not responsible for their existence. A “Adeguate” models

Here we consider one example of a CPG—Ilobster sto- q
matogastric CPQsee Refs. 7 and)8 The stomatogastric The state of a neuron is determined by nonequilibrium
CPG of the California spiny lobstdrPalinurus interruptus  diffusion of different ions through its membrane. Conse-
innervates its foregut. The stomach contains three ossicleguently its activity should, in general, be modeled using a
which function as teeth, two lateral and one medial. They ar&inetic descriptiort? However, there is no need for such a
controlled by the gastric mill CPG located in the stomatogaseéescription as long as we are interested in the neuron only as
tric ganglion which sits in an artery on top of the stomach.a generator of low-frequency electric pulsations. Further-
The ganglion contains about thirty neurons which have largenore, the cellular membrane can often be considered as an
cell bodies and are clearly visible. The neurons can be iderequipotential surface, so the variables describing the state of
tified, removed from ganglion and cultured. There are foura neuronlmembrane potential, ionic concentrations, Jetce
different regions of foregut: the esophagus, the cardiac safyunctions of time only. Therefore, for the construction of a
the gastric mill containing teeth and pyloric region wherereasonable model it is sufficient to apply ordinary differential
food particles are filtered and sent to more caudal regions agéquations for the dynamical variables: membrane potential,
the gut. The stomatogastric ganglion can be divided into twanacroscopic ionic currents and concentrations. Here we ex-
networks—gastric and pyloric that control gastric mill and ploit the fact that the characteristic time scalef the elec-
pyloric filter respectively. Much is known about the neural tric activity of the neuron is much larger than the character-
basis of their behavior, less is known about the esophagastic time of the kinetic processes. A neuron can be regarded
and cardiac sac behavioral patterns. as a nonlinear electric circuit. The energy sources for opera-

The pyloric behavior consists of a dilation of the pyloric tion of this dissipative system are biochemical processes of
region due to POpyloric dialatoy and VD (ventricular di- metabolism. Thanks to the feedback that open and close
alatop cells firing. Then there is a sequential constriction ofionic channels in the membrane at the respective phases of
the region from front to back as the L(Rteral pylorig, IC  electrical activity, the state of neuron corresponding to the
(inferior cardia¢ and PY (pyloric) cells fire. This pattern can resting potential may become unstable and the neuron be-
be observed at a frequency of about 0.5 Hz in both isolatedomes a generator. Such a generator may be regarded as a
and intact systems. Because there are so few neurons idynamical system in which microscopic kinetics is revealed
volved, all of the neuron types for each CPG can be recordednly as small fluctuations.

Il. ARCHITECTURE AND OPERATION OF SMALL
NEURAL SYSTEMS
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FIG. 2. The scheme of the lobster stomatogastric ganglion.

This dynamical approach is supported by nonlinear time-observed data see, for example, Ref) Hence, the electri-
series analysis of the membrane potential—the calculation afal activity of this neuron takes the form of a low-
embedding, correlational and Lyapunov dimensionsdimensional chaos, and the neuron can be modeled as a non-
Lyapunov exponents, etc. Experiments performed in differlinear dynamical system. The same situation arises with
ent laboratories indicate that the normal electrical activity ofmany other CPG neuronsee, for example, the work of
a single isolated neuron is dynamical chées). Refs. 5 and Hayashi and Ishuzuk&and others
13). For example let us consider an isolated LP neuron of the
lobster stomatogastric ganglidgeee Sec. )L° In this prepa-
ration it is possible to obtain very long time series of mem-
brane potential. The phase portrait of this behavior displaye
in Fig. 4 has been reconstructed from data following the In this section we discuss some examples of differential
well-known Takens proceduré It is a strange attractor that equations used for neuronal modeling. Neurons from many
can be projected onto a three-dimensional space. Themall neural circuits like CPGs are often described by
Lyapunov dimension of this time-series is about 2.8 and the&onductance-based models—a generalization of the classical
embedding dimension obtained by the method of false neaHodgkin—Huxley formalisnt® This generalization is based
est neighbors method is 3—@-or a discussion of calcula- on taking into account different ionic channels and depen-
tions of dimensions and identifying a dynamical system fromdences of the membrane conductan@es different ionic

53. Some examples of ODE models

FIG. 4. An attractor reconstructed from the time seriese Fig. 5t in
FIG. 3. The scheme of the pyloric network. three-dimensional phase space.
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current$ on concentrations, membrane potential, etc. Thecomplicated models with dozens of variables and hundreds

general form of such models is of parameters. Furthermore, we have no reason to believe
N that the complexity in models will bring more accurate re-
Cd—V:I—E g-aP‘(t)bqi(t)[V(t)—V-] sults, because we do not know the details of the cortical
dt = i " circuitry.
The same or similar simple models may be usadd
da; actually are usedin modeling of small neural systems.
rra (axi(V)—a)/ 7o (V), (1) When we consider a stationary regime and our aims are lim-

ited to understanding, say, how phase shifts between the po-

tentials of various neurons are formed, we can use very
ﬂ: (b (V)= b))/ 7 (V),i=1,2,3 N simple models. In some cases, derivation of relatively simple
dt oof i bi ) 1&y 9y NG . .

models from more complicated and precise ones can be done
with mathematical rigor, for example, by averaging of mo-

whereV is the membrane potentidl, is the membrane ca- . ) .
P &L d tions on different time-scalese.g. see Refs. 28 and 29

pacity, andl is. Herei denotes different ionic species, an n th t " il introd | f
a andb describe states of ionic channeds,(V), b..(V) and n the next section we will introduce a class ot very

7(V) are some sigmoidal functions. There are many model imple models(finite autqmata_in order o despribe basic
with N~ 10 or even more. They describe neuronal behavio eatures of CPG network@ particular, phase shifts between

very precisely, but they are high-dimensional and contain épiking-bursting activity, the length of these phases, and the
’ lr(_glative synaptic strengthqualitatively correctly. We will

not perform a rigorous reduction from complex ODE models
to simple finite automata. Actually, there is no reason for
such a derivation because the phenomenological model helps
fo achieve our “modest” aims.

hard to analyze in detailsee, for example, Refs. 17-22
The other feature of this type of modés well as of the
living cells they describeis that the actual behavior very
often is a low-dimensional one. Therefore, the dynamical
variables in systertil) are not really independent, rather they
behave like master—slaves variables. Consequently, a lot of

important effects(except those connected with interactions!V. FINITE AUTOMATA DESCRIPTION OF SMALL
of particular ionic currents can be described by low- NEURAL NETWORKS

dimensional ODE modelof conductance-based tyifer of A what are finite automata models useful for?

a phenomenological form

One of the frequently used low-dimensional models is Here we introduce a simple finite automata model for

that of Rose and Hindmargh neurons of CPG-like small systems. This phenomenological
model is based on different experiments with different CPGs.

dx The model is a three-state finite automata that captures spik-
a:y+ ax’—bx®—z+1, ing, bursting and resting activity, which is usually observed

in CPG neurons.

The utilization of logical models and finite automata in
modeling of neurons is not a new ofeg. see Refs. 30 and
31). Simple models of neural systems have been used for
many years. Starting with the work of McCulloch and Pitts,

7 a significant number of papers have appeared, but almost all
a=r[S(X—Xo)—Z]. of them have been dedicated to the problems of memory,
learning and other phenomena in large neuronal ensemblies.
wherex is a membrane potentiay, represents fast currents A few papers have been dedicated to the study of CPGs, e.g.
(e.g. sodium and potassiunz represents a slow curref@.g.  Ref. 33 — logical approach, Ref. 34 — Hopfield-like mod-
Ca&"—curren}, and | is an external current. The Rose— els. We want especially to mention the work of ThompSon
Hindmarsh model and its modifications can describe manwho used a two-state probabilistic model of each neuron to
effects observed in neural systems. describe the dynamics of the pyloric network, because we

The type of model that is most appropriate clearly de-consider the modeling of the pyloric network too. Here we
pends on what details and features of the dynamics oneevelop a new approach suggested by one of the authtirs.
needs to know. It is possible to simplify the models furthergeneralizes from two states to three in order to approximate
and use two-dimensional systems of differential equationshe CPG neurons as much as possible without missing the
(like the conductance-based Morris—Lecar méter phe- transparency presented in these automata-type models. We
nomenological Wilson—Cowan mod@lFitzHugh—Nagumo show how starting from a particular set of dynamical rules
modef®?%, integrate-and-fire, phase oscillators, Hopfield-belonging to each of these three states the characteristic be-
like models and so on. Usually very simple models are usetiavior of some CPG is accomplished. To reproduce the ex-
to analyze large, complex neuronal assemblik® human  perimental results with good agreement means in this case
cortex, that contains about>510° neuron$, because these that the qualitative features utilized in finite automata are
assemblies simply cannot be analyzed in practice by usinfundamental in the dynamics of these neurons.

dy )
a—c—dx -y, )
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denote these stated)s is the phase of spiking stat@le-
AU scribes fast motion and ® is the phase of bursting state
(@) I=2nA (describes slow motion
The resting state is trivial and has no rules for time evo-
lution: f=0 is a constant in time.
WMMNLMM)\ The spiking state is characterized by an amplitude,
f=1+fg, and a phasebg € [0,g<(l,ws)], wherewg is an
{b) 1=1nA . . . i
integer that represents the nominal spiking period for a par-
ticular currentl =1, [in the absence of any input current the
oscillator spikes evergg(l,,Ws) units of timg. The phase

evolves in time asbg(t+1)=dg(t)+1 if dg=<gg, other-
wise ®=0. fg is written as

(c) 1=0nA [1, O=Pg<rggl,wy),
S:

0, rggqlwy)=ds=gql,wg), @

and for the integer decreasing functigg(l,ws) we use

(d) I=-1nA
Ws— alwg, Wg— alWg<Winit ,
gs(l,wg) = o (5)

Wiimit,  Ws— alWs=Wiinit

z here typicallya~0.1 andr~0.2 is chosen.

E I=-2nA w 4 ) .

9[___ (©) 1=2n The bursting state is described by a second phase

1 sec. ®g e [0,0g(l1,wg)], wherewg is an integer that represents a

FIG. 5. (8)—(e) Membrane potential of isolated LP neuron, depending on thenomlnal bursting p_e”Od for a particular nommal current
value of input constant curreit I =1, analogously witn®g. We used the following form of

Og: 9g=Wg(2—Bl) with B~1. The time evolution of the
bursting phase is the same as that of spiking phase and

Networks of such models can qualitatively correctly rep- 141 0=dg<my(l,we)

resent the length of different phases in neuronal behavior, ¢_ S B BL RS (6)

phase shifts between different neurons, relative strengths of 0, mg(l,wg)<=Pg=<gg(l,wWg),

synaptic coupling. For example, they can be used for obtain-

ing correct relative values of these strengths. They are mucdh which mg(l,wg)=Iwg is chosen. Let us note again that

easier to use in this case than systems of ODEs, because tHégse functions are a general qualitative approximation.

have fewer parameters and are simpler in numerical simula- There is an additional subject of importance when we

tions. Therefore, such simple models are fairly convenientare talking about understanding and modeling of real neu-

They allow us to concentrate our attention on the main fearons — noise. Noise exists in any real neuron, therefore the

tures of the networktypes and architecture of connectipns question arises: Is noise a principal part of neural life or not,

and network’s behavior. and should we introduce noise in our model? The answer is
affirmative. Numerical experiments have showed that there
exist some fine attractive structures in the phase space of the

B. Spiking-bursting symbolic neuron model with very small basins of attractions. They correspond

. - . _to pathological regimes that were never observed in experi-
As we have noted in Sec. Il, the characteristic behavior )

) . . ..ments. Weak noise added to the model destroys such patho-
of a CPG neuron shows three well differentiated states: th

resting, the bursting and the spiking state. Along with theseizaoglcal regimes. We .th'nk that it is some kind of indirect
. argument that noise is also important for the normal opera-
three states we have to set an ordered switch between theim L . . . .
: . . . tion of living nerve cells. In numerical simulations we intro-
according to one control variable functionally equivalent to A . -
. . : duce noise in the following fashion:
the electric current. Based on different experimen{see

Sec. Il, Fig. 5, the model assumes three statés-0,1,2),

— w0
regulated by a variable that represents the current: Wg=Wg to77(n), ™
spiking f=2, 1=1, whereo characterizes the amplitude of noise, which is about
bursting f=1, 0<I<1, (3) 5% ofwd [#7(n) is normalized to one random Gaussian sig-

nal with zero meah

Based on some experiments on the phenomena called
Each state has its own set of rules and is represented ngbound potentidl-®it is reasonable to introduce the rule for
particular variablest is a common variable for all states that nonlinear phase change as

resting f=0, I<0.

CHAOS, Vol. 6, No. 3, 1996
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dpg(t+1) where Cy, is the threshold at which the nonlinear phase
change takes place, aid (t) represents the incoming cur-
0, AlD>Crn, rent received by the neuron from other neurons through syn-
=1 Pp()+1,  —CyusAl(t)<=Cypmg(l(t),wg), apses.
Al(t)<—Cyp, The symbolic neuron model may be summarized in the
(8)  form
[(t)=1,+Al(t),

2, 1(H)=1Dgt)ea(l(t)); or I(t)ef(l(),Ps(t)ea(l(t),Pg(t)eb(l(t)),
f(=4 11O=Ldgt)ec(I(t)); or I(t)ef(I(t),Pgt)ec(l(),Pa(t)eb(I(t)),

0 I(t)=<0; or I(t)ef(I(t)),Pg(t)ed(l(t)),

9

PR BRI USRI ®

s | Dg(t)+1, “rest”,
0, ®p(t)>gg(l(t)) or Al(t)>Cy,mg(l(t)),
Dg(t+1)=1 Al(1)<Cyy,
dp(t)+1, “rest”,
|
where the intervals, b, c, d, and f are given by t—rwg, and 7 is integer numbefthus we have finite au-

a(l(1):[0rg<(1 (1)), tomata with7-memory step itgratio)m The variab[efrev rep-
resents the reverse potential of the synaptic connection,
b(I(t)):[0,mg(l(1))), fie, =0 for inhibitory andf,,,=2 for excitatory synapses.

) This model applies for chemical synapses only. In fact they
c(1(1)):[rgs.gs(H(t)], are the most widespread in CPGs. Still the modeling of elec-
d(1(t)):[mg(1(1)),gg(1(t))], trical coupling is a minor point of our approach. We suppose

that mutual excitatory couplingwhich never occurs in
f:(0,). CPGs, usually excitatory coupling is only in one direcjion
Now we will use this system to model neural networks.can model an electrical synapse. This is supported by analy-
sis of different experimental data and by numerical simula-
tions with more complicated models. Several auth@g.
Refs. 3-5 conclude that electrical coupling and mutual ex-
Obviously, the modeling of synaptic connections is ancitatory coupling have the same functional role—enforcing
important part of neural systems modeling. It is known thatof in-phase synchronizatiotwhile mutual inhibitory cou-
the transmission of information through synaptic connectiongling tries to produce out-of-phase synchronization
is mainly due to spikes. A spike generated in the cell body  The model will be used to simulate the behavior of the
arrives via the axon to the synaptic terminal and releasepbster pyloric CPG described in Sec. Il. Note that the AB
neurotransmitters that after a brief delay reach the pOStsyl}Ind both PD neurons are Strong|y Coup|ed by electrical syn-
aptic membrane and change its permeability for differentypses, and therefore are always synchronized in phase. The
ions and a postsynaptic potential is generated. Another spikeame situation applies to the group of eight PY neurons—
arriving a little bit later generates another postsynaptic POthey are strongly electrically coupled, always in-phase syn-
tential which is added to the previous one. The synaptic cOnghronized, and consequently behave like one unit. In order to
nection in our model counts the number of spikes that arriv&implify calculations we used a pyloric network composed of
at the cell inside some time interval. The change in the CUrgnly five model neurons: VD, LP, IC, PY and AB/PD. The
rent for the cell number is results of the calculations presented in Fig. 6 can be com-
M pared with direct experimental measurem@meproduced
Ali(t)= —(fi(t)—frev)z sijNj(t—rws,t—7), (10 here in Fig. 7(Particular values of parameters in this simu-
1=0 lation were the following: nominal current: 0.4, 0.5, 0.8,
whereM is the number of cells in the network; represents 0.4, 0.6; bursting periowg: 437, 437, 583, 437, 500; spik-
the synaptic strengtiN;(t—rwg,t— 7) counts the number of ing periodws: 28, 46, 23, 20, 21, for PY, IC, VD, LP and
spikes that were generated jircell from timet— 7 to time  AB/PD neurons respectivelylt is evident that our finite

C. Network modeling
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a physiological experiment on a living CPG is a very hard or
AB/PD____JJMWU even impossible, in some cases, task. Therefore, the model
described above is a nice tool for understanding the dynam-

vD IJJJllllmq (IR ics of the lobster pyloric CPG and other CPGs. We would
like to note again that models likg) are rather rough mod-
,_|_| els of living networks so they may capture only rough fea-
IC JLUT tures of the neuronal system’s behavior.

LP 'mq ”lu{ V. CONCLUSION

The main role of a CPG is the production of rhythmic
PY P”] ’ﬂq patterns. First of all, CPGs create motor patterns and only
then modify them according to different nee@slaptation,
FIG. 6. The behavior of finite automata neurons of the simplified pyloriccontml’ etc)' TO model thIS_ basic, funda_ment_al fU”C_t'F)” of
network (traces of the “membrane potential). CPGs, very simple dynamical systems like simple finite au-
tomata can be constructed. We use the word “kinematics” in
the title of the paper meaning that we consider this stable
automata neurons are able to capture the two main featurégaltered motion of a living neural network, which is an
of behavior of the real pyloric network—the phase shiftsinherent actior(production of behavioral patternand is de-
between neurons and the period of the bursting phase. Baséded only by some key features of the neurons and types of
on the chosen parameters, we can infer the relative strengtigoupling. It corresponds only to the motion on the attractor
of different synapses. of the system and in this sense the trajectory of motion is
Let us note that the type of synchronization betweerfixed. We have demonstrated here, that models like simple
some neurons is not obvious even though we know the strudinite automata can be very helpful for description of such a
ture of CPG. For example, the VD neuron is electricallybehavior. If one wants to understand alterations of these ba-
coupled with PD and AB neurons. But they are synchronizedic behaviorgi.e. to know how CPG can not only generate
out-of-phase. It may happen because the electrical couplingut also process informatipmmore complicated dynamical
is weak enough. IC and VD neurons are mutually inhibitorysystems are helpful. In this case it is more convenient to use
coupled but fire in phase. One may suppose that in-phagerdinary differential equations, which one can naturally ob-
synchronization will disappear if one will make the coupling tain in a rational manner from more detailed phenomenologi-
stronger. It is not easy to prove in biological experiments.cal approach.
We performed numerical simulations with our model net-
work and supported the supposition. ACKNOWLEDGMENTS
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