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Neural synchronization is believed to be critical for many brain functions. It frequently exhibits

temporal variability, but it is not known if this variability has a specific temporal patterning. This

study explores these synchronization/desynchronization patterns. We employ recently developed

techniques to analyze the fine temporal structure of phase-locking to study the temporal

patterning of synchrony of the human brain rhythms. We study neural oscillations recorded by

electroencephalograms in a and b frequency bands in healthy human subjects at rest and during

the execution of a task. While the phase-locking strength depends on many factors, dynamics of

synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent,

but short desynchronization episodes. The probability for a desynchronization episode to occur

decreased with its duration. The transition matrix between synchronized and desynchronized

states has eigenvalues close to 0 and 1 where eigenvalue 1 has multiplicity 1, and therefore if the

stationary distribution between these states is perturbed, the system converges back to the

stationary distribution very fast. The qualitative similarity of this patterning across different

subjects, brain states and electrode locations suggests that this may be a general type of dynamics

for the brain. Earlier studies indicate that not all oscillatory networks have this kind of patterning

of synchronization/desynchronization dynamics. Thus, the observed prevalence of short (but

potentially frequent) desynchronization events (length of one cycle of oscillations) may have

important functional implications for the brain. Numerous short desynchronizations (as opposed

to infrequent, but long desynchronizations) may allow for a quick and efficient formation and

break-up of functionally significant neuronal assemblies. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4794793]

Neural synchrony is hypothesized to be important for

many physiological processes. Most of the time, this syn-

chrony is not very strong, so that while neural signals

may be synchronous on the average, they go in and out of

phase. We found that neural synchronization in human

brain follows very specific temporal pattern: synchronous

states are interrupted by frequent, but short desynchro-

nization episodes. In general, the same synchrony

strength may result from many short desynchronization

events or from few long desynchronization events (as well

as from a wide spectrum of possibilities in between these

extremes). However, in human brain rhythms, the proba-

bility for a desynchronization episode to occur decreased

with its duration. In addition, the transition matrix

between synchronized and desynchronized states has

eigenvalues close to 0 and 1 (the latter has multiplicity 1)

promoting a very quick convergence to a (presumably

beneficial) stationary state after a perturbation. The

qualitative similarity of the fine temporal structure of

synchrony patterns across different subjects, brain states

and parts of the brain suggests that this may be a general

type of dynamics for the brain. Earlier studies indicate

that not all oscillatory networks have this kind of pattern-

ing of synchronization/desynchronization dynamics.

Thus, the observed prevalence of short (but potentially

frequent) desynchronization events is likely to have im-

portant functional implications for the brain. From a cell

assembly theory view point, the results may suggest that

whenever a cell assembly must be formed to facilitate a

particular function or task, short desynchronization dy-

namics may allow for a quick and efficient formation and

break-up of such an assembly.

I. INTRODUCTION

Neural synchrony is believed to be an important mecha-

nism underlying many phenomena in the human brain.1–3 It

has been extensively studied using approaches and methods

of physics and nonlinear dynamics (see Refs. 4 and 5).

Neural synchrony strength is likely to be variable in time.

The neural oscillations are known to exhibit intermittent syn-

chronization in both healthy and diseased human and animal

brain even at rest (see Refs. 6–10). It was suggested that tran-

sient dynamics in the nervous system is generic.11 Neural

signals may go in and out of synchrony due to variety of fac-

tors and approaches to detect and quantify the presence of
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this variable and weak synchrony have been considered (see

Refs. 12 and 13). However, the properties of how this syn-

chrony is patterned in time have not being explored in nor-

mal human subjects.

Since this synchrony is not perfect, the same synchrony

strength may be achieved with markedly different temporal

patterns of activity (roughly speaking oscillations may go

out of the phase-locked state for many short episodes or few

long episodes). However, synchrony is a non-instantaneous

phenomenon and from the data analysis perspective one con-

siders synchrony in a statistical sense, observed over a suffi-

ciently large number of cycles of oscillations.14 Yet if this

synchrony is present on the average, one can look at each

cycle of oscillations and see how far away it is from a

synchronized state.15 This approach can describe the differ-

ences in the dynamics and temporal structure of synchroniza-

tion/desynchronization events for the systems with similar

overall level of phase locking or similar stability of

synchronized state.15 This is especially important given that

the neural synchrony in the current study, and a number of

other neural systems, is not very strong. The underlying net-

work of presumably weakly coupled oscillators spends a sub-

stantial fraction of time in the non-synchronous state. Thus

the focus on desynchronization episodes is very reasonable.

This approach has been recently applied to study the

temporal patterns of the pathological synchronization in sub-

cortical brain areas in a group of patients with Parkinson’s

disease.10,16 Locally measured synchronous (on the average)

oscillatory activity was observed to follow a specific pattern:

the synchronized state was interrupted by numerous but

mostly short desynchronization states. However, it was not

known if this was a signature of Parkinson’s disease, a fea-

ture of the specific subcortical location, or a more general

phenomenon. Here, we show that the latter is more likely to

be the case. Since synchrony is important to facilitate inter-

actions between neurons,1–3 the temporal patterning of this

synchrony becomes a salient issue. We study synchronous

patterns of neural activity in a large sample of healthy

humans at rest and during an execution of a task. Similar

temporal patterning of synchronous activity in large cortical

areas in different states may suggest that (i) this type of pat-

terning is a generic phenomenon in the brain, (ii) it may

have some functional advantages for oscillating neural net-

works receiving, processing, and transmitting information,

(iii) it may be grounded in some general properties of neuro-

nal networks calling for the development of appropriate non-

linear dynamical theory.

II. EXPERIMENTAL DATA

We used 64-channel electroencephalograms (EEG) of

the international 10-10 system at the sampling rate of 160 Hz

recorded from 109 normal human subjects using the

BCI2000 system17,18 and available at PhysioNet.19,20 To

exclude very closely positioned electrodes we used the data

from only 19 electrodes (corresponding to the international

10–20 system).

Each subject was recorded in two different experimental

conditions: 1 min baseline recording (rest, eyes open) and

total of 6 min of recordings of fist movement tasks. During

the task period, each subject would perform a series of visu-

ally triggered 4 s long series of opening and closing fist

movements (followed by 4 s rest intervals excluded from the

analysis). In this study, we analyze three different groups of

data: Baseline All, Task All, and Task C3-C4. Baseline All

includes data from all 19 EEG electrodes during baseline

recordings. Task All includes data from all 19 EEG electro-

des during the task periods. Task C3-C4 includes only the

data from C3 and C4 electrodes (which are close to the

motor cortex) during the task periods.

III. ANALYSIS TECHNIQUES

Phase domain is an appropriate way to analyze weakly

synchronized neural signals.12,13,21,22 As the coupling

strength increases from low to moderate values synchrony

may be observed in the phase domain while the amplitudes

of oscillations remain uncorrelated.14 Thus phase may pro-

vide a more sensitive and appropriate metric to explore the

relatively moderately synchronized dynamics we study here.

All signals were referenced to the mean EEG of two

ears. EEGs first filtered in að8� 13HzÞ and bð13� 30HzÞ
frequency bands with Kaiser windowed digital FIR filter

sampled at 160 Hz and zero-phase filtering was implemented

to avoid phase distortions. Phase was then extracted via

Hilbert transform resulting in the time-series of phases (see

Refs. 12 and 14). For each pair of this time-series (measured

at the same time) /kðtÞ and /lðtÞ we consider a standard

index to characterize the strength of the phase locking

between these two signals

c ¼
����
���� 1

N

XN

j¼1

eihðtjÞ
����
����
2

;

where hðtjÞ ¼ /kðtjÞ � /lðtjÞ is the phase difference. This

synchronization index varies from 0 (complete lack of phase

locking) to 1 (perfect phase locking). However, this phase

locking index is not designed to describe the fine temporal

structure of the dynamics, rather it provides an overall index

of phase synchrony.10,15 Thus even if it is evaluated on the

short time window, it should necessarily include sufficiently

large number of oscillations and cannot be used to inspect

whether the oscillations are at the preferred phase lag or not

at each cycle.

In order to assess the fine temporal structure of synchro-

nous dynamics of the signal, we employed the analysis of

phase synchronization on short time scales via first-return

maps.15 This method allows for an analysis of the temporal

development of phase difference if some level of synchrony

(some preferred phase-locking angle) is present. Briefly,

whenever the phase of the reference signal crossed from neg-

ative to positive values, we recorded the phase of the other

signal, generating a set of consecutive phase values f/igN
i¼1;

where N is the number of such crossings. Then ð/i;/iþ1ÞN�1
i¼1

was plotted. The predominantly synchronous dynamics

appeared as a cluster of points, with the center at the diago-

nal /iþ1 ¼ /i: We used the Kolmogorov-Smirnov test to
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detect non-uniform distribution of f/igN
i¼1 with the signifi-

cance level of 0.05 to include a recording in the further anal-

ysis (the results were not qualitatively affected by this level).

After determining the center of the cluster for each pair of

analyzed signals, all values of the phases were shifted by the

same amount to position the center of the cluster at the center

of the region I (see Fig. 1).

This phase space was then partitioned into four regions

numbered in a clockwise manner, since this is the primary

direction of the dynamics. The region I is centered around

the state with the most frequently observed (preferred) phase

difference and is defined as a synchronized state. In this

sense, other three regions are considered as desynchronized

states. Note that the system can stay in the third region near

diagonal for several iterations of the map (several cycles of

oscillations). However, this happens relatively rarely. So

region I is the region which corresponds to the most pre-

ferred time lag; it is a synchronized state in this essentially

data-driven approach. Thus, the synchronized state here is

the one where the deviation from the preferred phase angle is

less than p=2:
Transition rates r1;2;3;4 for the transitions between four

regions of the map are defined as the number of points in a

region, from which the trajectory leaves the region to another

region, divided by the total number of points in the original

region (see Fig. 1). For example, r1 is the ratio of the number

of trajectories escaping the region I for the region II to the

number of all points in the region I. All rates vary between 0

and 1. The transition rates r2;3;4 are related to the durations

of desynchronizations and define them completely if transi-

tions are independent. However, as we will show below,

transitions were not fully independent in the data considered

here. In addition to this four-state model, we will also con-

sider a two-state model, where all three desynchronized

states are lumped together into a single desynchronized state.

IV. TRANSITIONS BETWEEN SYNCHRONIZED
AND DESYNCHRONIZED STATES AND DURATIONS
OF DESYNCHRONIZATION INTERVALS

Figs. 2(a) and 2(b) show examples of raw data and the

corresponding filtered data for 3 s during task execution from

C3 (panel A) and C4 (panel B) electrodes at the beta band.

Fig. 2(c) shows that the preferred phase difference between

two signals (presented here as /iðtjÞ) is bounded (although

within relatively large bounds fitting the discussion in Sec.

III) so that two phases are locked for a prolonged (with

respect to the period of oscillations) intervals, interrupted by

escapes to desynchronous states.

An example of first-return map from the data is shown

at Fig. 3. The transition rates r1;2;3;4 correspond to panels

(B), (D), (C), and (A), respectively. In one map iteration,

most points in region I evolve into points within the region

while relatively few points evolve to region II (Fig. 3(b)). So

r1 is relatively small. Other transition rates are computed

similarly.

We also computed the relative frequencies (probabil-

ities) of desynchronization events of different durations. In

the considered first-return map approach, the duration of a

desynchronization event is the number of steps that system

spends away from region I minus one. This number of steps

minus one is essentially a number of cycles of oscillations

the signals are desynchronized. The shortest duration of a

desynchronization event corresponds to the shortest path

II! IV! I. This corresponds to the desynchronization

length of one cycle (in other words, in two steps the phases

are back in a locked state).

Fig. 4 shows examples of desynchronization events of

different durations. The number of origination points for the

desynchronizations lasting for one cycle of oscillations (Fig.

4(a)) was much larger than that for other durations. This sug-

gests that the probability of the desynchronization lasting for

one cycle was high, while probabilities of longer durations

were low. We now present the cumulative results for all 109

healthy human subjects for three different cases: Baseline

All, Task All, and Task C3-C4.

At both a and b frequency bands, the means of overall

synchrony index c between any two EEGs were between

FIG. 1. Diagram of the ð/i;/iþ1Þ map. The arrows indicate all possible tran-

sitions between regions and the expressions next to the arrows indicate the

rates for these transitions.

FIG. 2. An example of raw (light gray line) and filtered EEGs (solid line)

for 3 s during task execution from C3 (panel a) and C4 (panel b) electrodes

at the beta band. (c) The phase difference of the above signals plotted as

/iðtjÞ, where tj is the time when the phase of C3 crosses from negative to

positive values as described in the text.
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0.18 and 0.43 for all three different cases. That is, the overall

levels of synchrony were moderate. The results for both fre-

quency bands were largely similar to each other. Thus, we

will present the illustrations only for b band.

The transition rates and distributions of durations of

desynchronizations are presented in Fig. 5. The rate r1 for all

three cases (Baseline All, Task All, and Task C3-C4) was

significantly lower than 0.3 while rates r2;3;4 were signifi-

cantly higher than 0.6 (p < 10�16, t-test was used here and

below). These low r1 and high r2;3;4 values promote high

probability of short desynchronization episodes. Note that in

spite of their overall similarity, the transition rates r1;2;3;4

vary across different conditions (baseline and task) and set

of electrodes (all and C3-C4), as should be expected as

EEGs in these cases should reflect different underlying

neurophysiology.

Fig. 5(b) shows that the probability to observe desynchro-

nization lasting for one cycle of oscillations was significantly

FIG. 3. An example of the first-return map for

C3 and C4 EEGs for one subject during

Baseline eyes open for the first 15 s. All four

plots have the same data points (gray dots), but

each subplot (a)-(d) presents the evolution of

points from one region. If a point evolves from

one region to another region, then we represent

it as � � �. If a point evolves within the same

region, then we represent it as � � �.

FIG. 4. Examples of desynchronizations of dif-

ferent durations (same data as in Fig. 3 for 40 s).

The gray line represents the trajectory during a

desynchronization episode. For example, the tra-

jectory for the shortest possible desynchroniza-

tion (panel a) leaves region I, passes through

regions II and IV, and returns to region I. Bold

symbols in each panel represent the initial points

for each desynchronization. (a)-(d) present all

desynchronizations of duration of one to four

cycles of oscillations, respectively.
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higher than 0.5, while the probabilities of longer desynchroni-

zations were significantly lower than 0.2 ðp < 10�16Þ for all

three cases considered. The probabilities to observe the short-

est desynchronization (length of one cycle of oscillations) for

all three cases were at least 3 times higher than the probabil-

ities of other lengths of desynchronizations (including those

lasting for two or three cycles ðp < 10�16Þ). These high prob-

abilities of the shortest desynchronization (length of one cycle

of oscillations) imply the short mean desynchronization dura-

tion. The mean lengths of desynchronization episodes were

between 1.9 and 2.7 (Fig. 5(c)). The modes and medians of

distributions of desynchronization durations were always just

one cycle of oscillations. For all pairs of signals analyzed, for

Baseline All only in 0.06% of cases the desynchronization du-

ration of one cycle was less frequent than the desynchroniza-

tion duration of two or three cycles. For the Task All and

Task C3-C4 this fraction was 4.9% and 3.4%.

The rates r1;2;3;4, the averages and the distributions of

durations of desynchronization events for Task All and Task

C3-C4 were more or less similar to each other and more dif-

ferent from those distributions for Baseline All. This is not

surprising because subjects performed a motor task in

response to an external cue, which may involve a change in

oscillatory activity in large cortical areas.

We now will consider how well the observed desynchro-

nization intervals may be described in the framework of a

Markov chain model: independent transitions between

synchronized and desynchronized states. Fig. 6 shows the

distribution of desynchronization durations in two-state

model and four-state model. In the two-state model there are

synchronized state (region I) and the desynchronized state

(regions II, III, and IV). In this model, there are only two

transition rates: r̂1 (transition rate from the synchronized

state to the desynchronized state) and rR (return rate of

resynchronization). The duration of desynchronization is the

number of time-steps that system spends in the desynchron-

ized state.

As can be seen at Fig. 6, the distributions of desynchro-

nization durations generated by four-state model were almost

(although not completely) identical to the distribution of

durations obtained directly from the data. Although the dis-

tributions generated by the two-state model were visibly dif-

ferent from those from the data, the general pattern of the

distributions was well captured by two-state model as well.

That is, the probability of the shortest desynchronization

(length of one cycle of oscillations) is much larger than prob-

abilities for other desynchronizations.

An interesting observation is that although the rates

r1;2;3;4 depend on conditions (Baseline or Task) and set of

electrodes, r1 þ r2;3;4 � 1 (see Fig. 5(a)). This leads to the

following ramification. The transition matrix of two-state

model is

1� r̂1 r̂1

rR 1� rR

� �
:

If r̂1 þ rR ¼ 1, then this system is in the detailed balance.

Moreover, the eigenvalues of this matrix are 0 and 1. So that

if the system is perturbed from a stationary distribution, it set-

tles back to a stationary distribution after just one time-step (if

there is small, but non-zero eigenvalue, the convergence is ex-

ponential, but very fast). Roughly speaking, r̂1 � 1=4 and

rR � 3=4 so that for synchronous on the average episodes we

look at about a quarter of pairs of locations of the studied

brain network are in non-synchronous state and about three

quarters are in synchronous state. If this distribution is per-

turbed, the system gets back to the stationary state within just

one cycle of oscillations given the observed transition rates.

Similar considerations are valid for the four-state model as

well. The transition matrix of four-state model (see Fig. 1) is

FIG. 5. (a) Transition rates r1;2;3;4, (b)

distribution of desynchronization dura-

tions, (c) mean duration of desynchroni-

zations at b-band. The last bin of the

histogram (b), “>8”, is a sum of the rela-

tive frequencies of all desynchroniza-

tions longer than eight. Mean 6 SD is

presented in (a) and (b).
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1� r1 r1 0 0

0 0 1� r2 r2

0 0 1� r3 r3

r4 1� r4 0 0

0
BB@

1
CCA:

If 1� r1 ¼ r2 ¼ r3 ¼ r4, then the eigenvalues of this matrix

are 0 (multiplicity of 3) and 1. The square of this matrix

projects any vector to the subspace corresponding to the

eigenvalue 1. Thus again, if the stationary distribution is

perturbed, the system will be back to the stationary distribu-

tion of synchronized and desynchronized states very

quickly.

According to our measurements r1 þ r2;3;4 are close, but

not identical to 1. This can be either due to the features of

the time-series analysis or due to the nature of the observed

system. However, even in the latter case, the considered

brain networks will be in a state where the perturbed system

rapidly converges to the stationary distribution.

Finally, we analyzed the data from pairs of distant electro-

des to eliminate volume conduction effects, which may poten-

tially affect the analysis of the patterning of synchrony. We

computed the durations of desynchronization events for pairs

of electrodes separated by at least one and at least two other

electrodes (Fig. 7). Strictly speaking, electrodes are not exactly

FIG. 6. Distribution of desynchroniza-

tion durations from the data (white bars,

the same as in Fig. 5), from the four-

state model rates r1;2;3;4(Fig. 1), and two-

state model rates. (a) Baseline dynamics.

(b) Dynamics during the task execution.

FIG. 7. Distribution of desynchroniza-

tion durations for all electrode pairs (the

same as in Fig. 5) in comparison with

the distributions obtained from pairs of

electrodes separated by at least one (dis-

tance � 2), and at least two (distance

� 3) other electrodes. (a) Baseline dy-

namics. (b) Dynamics during the task

execution.
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equidistant, however, the distance between neighboring electro-

des is not very much different and as we exclude immediate

and next neighbor electrode pairs, we obtain results for substan-

tially remote electrodes. While consideration of only remote

pairs of electrodes affected the distribution of durations of

desynchronization events, this effect was small for both base-

line and task activity. In both considered cases, the probabilities

to observe the shortest possible desynchronizations were at

least two times higher than the probabilities of longer desynch-

ronizations for both Baseline and Task cases ðp < 10�16Þ.

V. DISCUSSION

The present study analyzed the fine temporal structure

of neural synchrony in a and b frequency bands in healthy

human EEG during resting state and a motor task. We found

that in all considered cases oscillations go out of synchrony

frequently, but primarily for only a small number of cycles

of oscillations. The chances of longer desynchronization epi-

sodes decreased as the duration of the desynchronization epi-

sodes increases. Moreover, the studied system appears to be

in a detailed balance between synchronized and desynchron-

ized states within the framework of the two-state model.

Both the two-state model and four-state model can cap-

ture the temporal pattern of the short desynchronization

events (length of one cycle of oscillations) in the considered

study. However, the two-state model cannot distinguish the

difference between two different systems with the same sta-

bility of the synchronized state or synchrony level and r̂1,

while the four-state model can effectively discriminate the

difference.15 Moreover, from an experimental viewpoint, we

do not know a priori whether the two-state model is suffi-

cient to capture most of the important temporal dynamics of

complex systems. We also would like to reiterate that both

models are a way to describe synchronizations/desynchroni-

zations in pairs of different brain areas as they develop in

time rather than a detection of multiple patterns of synchro-

nous and nonsynchronous pairs or clusters in spatially com-

plex partially synchronized regime (like in Ref. 23).

Moderate coupling strength in a system of two coupled

oscillators may induce the same strength of phase-locking,

while the dynamics may be dominated by both long or short

desynchronization episodes depending on the type of oscilla-

tors.15 Thus different desynchronization patterns provide dif-

ferent means to generate the same moderate synchrony

levels. However, our analysis of EEG data indicates that the

brain networks favor moderate synchrony with frequent short

desynchronizations. While the particulars of the fine tempo-

ral structure in each frequency band are different, qualita-

tively our observations hold true both at rest and during task

execution, for pair-wise synchrony across all brain areas as

measured by EEG and for synchrony in the motor cortex.

Note that the analysis of micro-electrode measured neural

activity from subcortical areas of parkinsonian patients also

showed the dominance of short desynchronization events.10

Thus, this dominance of short desynchronizations may be a

generic feature of brain networks.

In line with this, it is interesting to note that dynamics of

the phase synchronization of neuroimaging data from the

human brain shows power law probability distribution, com-

patible with dynamical criticality, of both periods of phase-

lock interval and rapid change of synchronization at broad

frequency bands.24 While that study was focused on a longer

time scales (the analysis involved averaging, thus desynchro-

nization was not followed from cycle to cycle of oscilla-

tions), those results suggest functional implications similar

to ours. This criticality of the human brain may have

capacity to change the configuration rapidly in response to

external inputs more efficiently.25

Even though the functional significance of the observed

distribution of desynchronization events is yet unknown, we

can speculate on potential functional implications. As noted

in the beginning of this paper, neural synchrony has been

conjectured to be important for several neural functions,

including the formation of neuronal assemblies. Short

desynchronizations may be more likely to facilitate the func-

tion of synchrony in the overall low-synchrony environment,

because the synchronous state frequently gets a chance to

reestablish itself (although for short time). Numerous short

desynchronizations (as opposed to infrequent, but long

desynchronizations) are likely to indicate that synchrony is

both easy to form and easy to break. The probability of the

shortest desynchronization (length of one cycle of oscilla-

tions) increases during a task, then it decreases to the base-

line state during the resting state. This may suggests that

whenever a cell assembly must be formed to facilitate a par-

ticular function or task, short desynchronization dynamics

may allow for a quick and efficient formation and break-up

of such an assembly. On the other hand, the ramifications of

the transition matrices, whose eigenvalues are only 0 and 1

where eigenvalue 1 has multiplicity 1, which we discuss

above, suggest that once the stationary distribution of

synchronized and desynchronized states is perturbed, the

system converges back to this stationary (and presumably

beneficial) distribution very fast.

Finally, we need to note that our analysis does not

explore the potential role of noise in our observations. Noise

can have a substantial effect on intermittent phenomena,

however, it is hard to manipulate in neurophysiological

experiment. Nevertheless, time-series analysis used here

does not make assumptions regarding the noisy component

of the data. Moreover, modeling of neural-like (conduct-

ance-based) oscillators suggested that transition rates and the

duration of desynchronization events are only weakly

affected by noise of mild intensity.15

Our results call for a search for dynamical mechanisms

responsible for the short desynchronizations.
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