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Abstract

Pattern formation via synchronization and oscillator death is considered in networks of diffusively coupled
limit-cycle oscillators. Different examples of patterns and their dynamics are presented including nontrivial effects
such as: (i) synchronized clusters induced by disorder and (ii) transitions from non-propagation to propagation of
fronts via the intermittency. © 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

A growing interest in investigations of the dynamics of ensembles of self-excited oscillators is stim-
ulated by the importance of these investigations for the solution of fundamental problems of nonlinear
physics such as, for example, pattern formation and the emergence of low-dimensional chaos in multi-
dimensional systems [1–3], as well as for the analysis of specific physical phenomena. Such ensembles
are frequently encountered in physics, engineering, chemistry, biology, and other branches of science.
Modern applications include chains of lasers, Josephson junctions, and relativistic magnetrons, as well as
modeling of the mechanisms of rhythmic activity of the cardiac and nervous systems (see, e.g. the literature
cited in [4,5]). In recent years, this interest has also been associated with advances made in constructing
information processing systems consisting of a large number of active elements (CNN — cellular neural
networks [6]).

In the present paper, we will focus on those features of spatio-temporal dynamics of large ensembles
of oscillators that significantly depend on synchronization effects. In particular, we will consider in detail
patterns whose formation is connected with the so-called oscillator death (amplitude death), when, after
breakdown of synchronization, a sufficiently strong dissipative coupling becomes equivalent to additional
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damping for each interacting oscillator. In the case of inhomogeneous frequency mismatch or pronounced
edge effects, the synchronization breaks down locally, which leads to formation of fronts and localized
structures. If the frequency of the oscillations depends on their amplitude, this mechanism may give
rise to formation of localized structures in two coupled chains even in the absence of edge effects and
inhomogeneities of frequency mismatch along the chains [7].

Let us review the basics of this phenomenon in a simple, yet generic example of two coupled limit-cycle
oscillators with different frequenciesω1,2:

ż1 = iω1z1 + (p − |z1|2)z1 + d(z2 − z1) (1)

ż2 = iω2z2 + (p − |z2|2)z2 + d(z1 − z2),

wherez1,2 = |z1,2|exp(iφ1,2) are slow complex amplitudes with phasesφ1,2.
Depending on the qualitative properties of the solutions, one can distinguish in the bifurcation diagram

three main regions (see Fig. 1): (1) the region of oscillator death in which a trivial solution is stable (we
recall that we consider the case when the self-excitation conditionp > 0 is fulfilled for the uncoupled
oscillators); (2) the synchronization regionφ̇1 = φ̇2, where the frequencies of the slowly varying ampli-
tudes coincide; and (3) the region of nonsynchronized oscillations limT→∞T −1(φ1 −φ2) 	= 0, where the
phase difference is unbounded. The transition between regions 2 and 3 has a complicated structure, with
both regularly and chaotically modulated oscillations possible in a general case. The transitions between
regions 1 and 2 or 1 and 3 are much simpler and are determined from analyses of the stability of the trivial
solution. For the system of two oscillators, the eigenvalues for small perturbations are equal to

λ1,2 = p − d ±
√
d2 − (∆/2)2,

Fig. 1. Bifurcation diagram for a system of two coupled oscillators: (1) region of oscillator death where a trivial solution is stable;
(2) region of synchronization; and (3) region of nonsynchronized oscillations.
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where∆ = ω2 − ω1 is the frequency difference of the oscillators. In this case, a transition to a
double-frequency regime occurs ifd = p, ∆ > 2d, and to a single-frequency regime ifd = (∆2/4 −
p2)/2p, ∆ < 2d (Fig. 1).

The following interpretation of oscillator death may be useful. Consider a linearized equation for one
of the oscillators:

ż2 = i∆z2 + pz2 + d(z1 − z2).

Here, the term containing the oscillation amplitude of the first oscillatordz1, on breaking of synchroniza-
tion, may be regarded as a nonresonant external force, and the second term that depends on the magnitude
of coupling−dz2 exerts the same effect as additional losses. If the losses do not exceed the amplification
(d < p), a double-frequency regime is possible. Ford > p, there remain only forced oscillations with
an amplitudeρ2 = d/|i∆ + p − d| that decreases as the mismatch∆ is increased.

The phenomenon of oscillator death has attracted the attention of researchers probably since the appear-
ance of the papers by Bar-Eli [8,9] (see also [10–12]). A significant progress was achieved in theoretical
and numerical analysis of oscillator death in systems of oscillators with “all-to-all” coupling [4,11,13,14].
In recent years, oscillator death has become an object of experimental study [15,16].

The purpose of the present paper is to consider oscillator death and localized structures in two paradig-
matic systems: a chain of limit-cycle oscillators with inhomogeneous distribution of natural frequencies
along the chain (Section 2), and two coupled homogeneous chains with the frequency of the oscillations
depending on their amplitude (Section 3). Our investigations reveal a number of nontrivial phenomena
such as cluster synchronization induced by disorder and transitions from non-propagating to propagating
fronts via intermittency.

2. Inhomogeneous chains

2.1. Model

In this paper, we restrict ourselves to considering a one-dimensional chain of diffusively coupled oscil-
lators with free ends and linear variation of frequency along it. Such a model was chosen for the following
reasons. On the one hand, this model provides a rather broad range of parameters in which synchronized
clusters co-exist with regions of oscillator death as is typical of inhomogeneous systems. On the other
hand, the model contains the simplest type of inhomogeneities in the sense that, in the limit when the phase
approximation [17] is valid, this system, with end effects neglected, becomes homogeneous because the
meaningful parameter in this limit is not the frequency but the frequency difference between neighboring
elements. This simplicity allows us in a number of cases to obtain the simplest scaling approximations
and formulate fairly general results employing a limited number of numerical solutions [18].

In addition, analysis of such chains is of independent interest because they arise in a natural manner
when phenomena observed in real life are modeled. Two most instructive examples are the dynamics of
the small intestine of mammals and vortex shedding in a flow behind cone-shaped bodies (e.g. supports
or chimneys). It is known that if the mammalian small intestine is divided into sections of 1–3 cm long,
then each of them is able of oscillating at a definite frequency that changes along the intestine almost
linearly over large enough distances [19]. Studies of the vortex shedding in a flow behind cone-shaped
bodies also involves analysis of chains of coupled oscillators with linearly varying natural frequencies, if
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derivatives with respect to the coordinate along the cone axis are replaced by finite differences (see, e.g.
[20]).

Consideration of inhomogeneous chains is carried out on an example of chains of oscillators whose
dynamics in a quasiharmonic approximation is described by the discrete analog of the complex Ginzburg–
Landau equation for slow complex amplitudeszj = |zj |exp(iϕj ) [18,21]:

żj = iωjzj + (p − |zj |2)zj + d(zj+1 − 2zj + zj−1), j = 1, . . . , N, (2)

with the boundary conditionsz1 = z0; zN+1 = zN corresponding to a chain with free ends. Without loss
of generality we can suppose thatω1 = 0. In subsequent numerical experiments we setp = 0.5, and the
number of oscillatorsN = 100. The distribution of natural frequencies along the chain is taken in the
form

ωj = ∆
j − 1

N − 1
. (3)

Introduction of different types of inhomogeneities, superimposed on the linear trend, is considered further
in the section.

If the values of the frequency gradient along the chain∆ and of the couplingd in Eqs. (2) and (3) are
relatively small, a regime of global synchronization is realized. With increasing frequency mismatch∆

and decreasing couplingd well pronounced and rather extended plateaus or steps that are intermittent
with a relatively narrow transition region appear in the dependence of the average local frequencies of
oscillations on the spatial coordinate. We characterize this effect as cluster synchronization, where the
term cluster denotes a coupled set of oscillators having the same average periodT and the corresponding
mean frequencyΩ ∼ T −1, with no demand for a constant phase difference between the elements and
with allowance for limited variations over time.

Theoretical investigations of cluster synchronization in arrays with linear frequency variations have
been carried out for a long time, including modeling the specific behavior of mammalian small intestine
[19,22,23]. The problem was formulated and analyzed in the general context in [24] within the framework
of the phase equation. However, amplitude effects can be essential in some cases, for example, for the
formation and restructuring of cluster structures. A vivid manifestation of these effects is oscillatory
death, that occurs at sufficiently strong dissipative coupling in regions of fast increase (or decrease) of
the natural frequencies along the chain. Regions of vanishing oscillation amplitude are formed, even if
the conditions of self-excitation are fulfilled for each element in the absence of coupling [25–28]. The
mechanism of formation of such regions is based on increased losses of oscillations in each oscillator
under the action of a sufficiently large dissipative coupling after the breakdown of synchronization [18].

2.2. Cluster synchronization

2.2.1. Synchronized clusters for small values of frequency mismatch and coupling
For the globally synchronous regime, amplitude equations in a zero approximation give the same

oscillation amplitudes for all elements of the array. Then, a system of linear equations for phases of
oscillators can be derived and solved, which finally yields a criterion for the synchronous regime to be
stable (see, e.g. [24]):∣∣∣∣∆N8d

∣∣∣∣ < 1. (4)
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Fig. 2. Averaged frequenciesΩj and their difference�Ωj = Ωj+1 − Ωj for perfect and intermediate cluster structures for
∆ = 0.2.

For∆ ≈ 8d/N , the regime of global synchronization loses stability and for not too large∆ andd two
basic regimes are realized, as∆/d is increased, depending on the specific values of the parameters. The
first is the regime of multifrequency generation, where most elements of the array (except, perhaps, the
edge ones) generate different frequencies like in Fig. 2(a and c). The second one is the regime of cluster
synchronization, where all the oscillators are divided into several groups inside each of which all the
elements oscillate at the same average frequency (Figs. 2(b) and 3). The values of frequency for each
cluster (except the edge ones) are close to those obtained by averaging natural frequencies over all the
elements forming the cluster. In the considered case of a linear dependence of the frequency onj in Fig. 3,
this corresponds to the intersection of the linesΩ = Ωj = φ̇j andΩ = j∆/N exactly in the middle of

Fig. 3. Averaged frequenciesΩj for different values of the coupling coefficientd in the case∆ = 0.2.
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Fig. 4. Critical values of the frequency gradient (×) in the range∆ ≈ (0.5−17)×10−3 for d = 1 and of the coupling coefficient
(+) in the ranged ≈ 0.3− 3.8 for∆ = 2× 10−3 depending on the size of the middle clustersNn. The critical values denote the
values, at which then-cluster structure breaks down prior to the transition from then to then+1 cluster. The scale is logarithmic
to an accuracy of arbitrarily chosen origin; the straight lines correspond to the dependence (6).

the cluster. These cluster structures are periodic in time: the frequency differences between the clusters
in such structures coincide and are equal to the lowest cluster frequency

Ωn = ∆/(n + 1). (5)

The size of the clusters,Nn, for small∆ may be approximated, to an accuracy of±1 element, by the
relations for the middle clusters:

Nn = N − 1

n + 1
, (6)

and for the edge clusters:

Nn = 3

2

N − 1

n + 1
. (7)

Here,N(= 100) is the number of elements andn(= 2, . . . ) is the number of clusters. The sizes of middle
clustersNn at the instants when they break are plotted in Fig. 4. The scaling by parameters∆ andd is
similar to the one that specifies, in the constant amplitude approximation(|zj | = |z0|), the limiting size
of the array with free ends in which the global synchronization (4) may occur:

Nn ∼
(

8d

∆

)1/2

. (8)
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Fig. 5. Space–time diagrams: (a) intensities of|zj |2 and (b) real parts Re(zj ) for ∆ = 0.2 and different values of the coupling
coefficient. The spatial coordinatej = 1, . . . ,100 is plotted on the horizontal axis, and timet ∈ [0,4000] along the vertical
axis.

The spatio-temporal behavior of cluster structures is illustrated in Fig. 5, where the darker regions mark
the higher values of intensities of|zj |2 (Fig. 5(a)) and real parts Re(zj ) (Fig. 5(b)) of complex amplitudes
of oscillations. Oscillograms of intensities for the middle elements of the array are shown in Fig. 6.
Detailed comparison of the data given in these figures as well as in Fig. 2 leads to the conclusion that
perfect cluster structures may be formed (ford = 0.8; 1.2; and 1.8 in Figs. 2 and 5).

The intensity of|zj |2 decays periodically almost to zero at the cluster boundaries (Fig. 6(c)). With
increasing distance from the boundary of the clusters, the intensity decreases so that the change of
the real part of complex amplitudeszj in the (j, t)-plane shown in Fig. 5(b) represents correctly the
phase ofzj . The formation of a defect in the spatio-temporal pattern of the phase (or Re(zj )), that is
visualized as the singularity of the intensity field of|zj |2, corresponds to the transition between the
clusters.

Since the number of the defects,nD, formed in one period of a perfect cluster structure is a unity less
than the number of clustersn and their repetition rate isT = 2πΩ−1

n , the number of the defects per unit
time is equal to

ρD = nD

T
= ∆(N − 1)

2π

n − 1

n + 1
. (9)
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Fig. 6. Intensity oscillograms for the middle elements of the array for∆ = 0.2: (a)d = 1.45; (b)d = 1.65; and (c)d = 1.8.
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Estimates by these formulas agree well with the data obtained directly from numerical solutions.
In particular, the number of the defects is equal to 44, 40 and 39 for the case shown in Fig. 5(a) at
d = 0.8, 1.2, and 1.8, and to 45, 42, and 38, respectively, when calculated by the formula (9). Note
that, when the transitions between the structures withn andn + 1 clusters are caused by changes of
the coupling coefficientd, the average defect density changes only slightly atn ≥ 4. At the same time,
their relative position in the(j, t)-plane alters significantly. For example, in Fig. 6(a) it changes from
completely ordered atd = 1.2 to irregular atd = 1.45, and then again to a regular one but now with a
different symmetry atd = 1.8. The time series undergo the corresponding changes too (see Fig. 6).

Both the picture of synchronization presented above and its description in a rather general form on the
basis of numerical solutions are possible due to high degree of symmetry and homogeneity of the problem
in a quasiharmonic approximation at small frequency gradients and coupling coefficients. Actually, the
meaningful quantity in this approximation is not the frequency itself but the frequency difference∆.
Consequently, the system may be regarded to be homogeneous if the edge effects are neglected. The
picture is becoming more complicated, as∆ andd are increased to make the effects of multistability and
the changes of the amplitudes of oscillations along the array essential.

2.2.2. Multistability
Investigations into processes of cluster structure formation revealed multistability, the most vivid man-

ifestation of which is formation of structures containing a different number of clusters depending on
initial conditions. The existence domains of structures having a definite number of clusters obtained in
numerical experiment with adaptation of the initial conditions to small variations of the parameters are
shown in Fig. 7. The adaptation procedure was as follows: The mismatch∆ was varied successively

Fig. 7. The ranges of frequency gradients at which structures withn perfect clusters of the type shown in Fig. 2(b) are given for
coupling coefficientsd = 1; 2; and 5.
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Fig. 8. Averaged frequenciesΩj in the transitions fromn to n+ 1 clusters: (a) “hard” transition ford = 5; (b) “soft” transition
for d = 1. The corresponding regions of parameters are indicated in Fig. 7 by (�).

by+5×10−4 or by−5×10−4. The values from the steady-state solution obtained in the previous variant
were taken as the initial conditions forzi(t). Although the procedure described does not guarantee that
all possible regimes will be found, it enables us to reveal qualitatively different transitions in the domain,
where the states possessing a different number of clusters co-exist, i.e. in the region of multistability
and in the region of parameters where it is absent. In the first case (Figs. 8 and 9(a)), as∆ increases
by <5 × 10−4, a “hard” transition without intermediate structures from the state with four clusters to
the state with five clusters occurs. In the second case (Fig. 8(b)), a “soft” transition occurs at a much
greater interval of variations∆ ≈ 2.2 × 10−3, with a smooth transition of intermediate structures one
into another.

Note that a nonmonotonic dependence of the number of clusters on the magnitude of frequency mis-
match (Fig. 8) is observed in the region of multistability when solutions under the same initial conditions
are sought (in particular,xj (0) = −2 for evenj , xj (0) = 2 for oddj , andyj (0) = 0 for all j ). This
is evidently due to an intricate structure of the basins of the corresponding attractors in phase space, the
deformation of which leads to the alternating initial conditions in each of them. This lays the basis for
one of the methods of governing the processes of formation of the structures of mutually synchronized
elements [28].

The sophisticated structure of the phase portrait of the considered system does not exclude that mul-
tistable regimes of other types, when the structure of the clusters rather than their number is changed,
may also be observed. For verification of this hypothesis we conducted a series of experiments in which
the amplitude and phase distributions formed earlier in the clusters but now with a different number of
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Fig. 9. Nonmonotonic sequence for the number of clusters (4,5,4,5,6,5,6 upwards) under monotonic variation of the frequency
gradient∆ and identical initial conditions (d = 5). The corresponding values of the parameters are marked in Fig. 7 by (×).

elements were taken as initial conditions (usually, the number of elements in the cluster was changed by
Nn = ±1,2). It was found that the same cluster structure was always established in the region of the
parameters of interest with such variations of initial conditions.

2.3. The action of disorder on oscillatory death

As we increase∆ and d, oscillator death may appear in the array. In this situation, the oscillator
death manifests itself first of all as a formation at the center of the chain of a region in which the
oscillation amplitudes vanish. Let us recall again that the oscillator death is associated with the fact
that, for a large difference of natural frequencies of neighboring oscillators, the influence of nonresonant
terms proportional tozj+1, zj−1 in the equation (2) forzj is relatively weak, and the diffusive coupling
introduces damping (the term−2dzj ) that exceeds amplification at larged(d ≥ p/2). For chains with
free ends, when the linear frequency trend grows, this effect is manifested first at the center of the chain
where desynchronization occurs first with increasing frequency mismatch [18] (Fig. 10).

Here, we are addressing the issue of how spatial disorder introduced to the linear trend of natural
frequencies influences oscillatory death in the system [21]. The influence of disorder on dynamics of
oscillatory arrays proved to be very nontrivial. The inhomogeneities (including spatially irregular ones,
i.e. disorder) introduced into the system in which complex spatio-temporal patterns exist can, for example,
lead to more synchronous behavior of the oscillators. Examples include improved synchronization in
ensembles of coupled nonlinear pendulums modeling chains of Josephson junctions [29] and in arrays
of coupled maps used as models of earthquake dynamics [30], as well as regularization of dynamics in
chains of coupled chaotic oscillators [31–33]. However, the influence of spatial disorder on oscillator
death in oscillator arrays with local couplings has not previously been analyzed in these works.
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Fig. 10. Oscillator death in the chain with constant frequency gradient. Total frequency range (the difference between the lowest
and highest frequenciesω1 andω100) is 6.0. Plotted is the time-averaged intensity profile.

Although manifestations of the considered effects in specific applications fall outside the scope of our
paper, as qualitative characteristics we choose functionals that can be useful for estimating the action
of signals from oscillator chains on some types of sensors. These functionals are the normalized mean
“incoherent” energy

ε = 〈∑N
j=1|zj |2〉

〈∑N
j=1|z(0)j |2〉

= 〈∑N
j=1|zj |2〉
Np

(10)

and normalized mean “coherent” energy

w = 〈|∑N
j=1zj |2〉

〈|∑N
j=1z

(0)
j |2〉

= 〈|∑N
j=1zj |2〉
N2p

, (11)

wherez(0)j are the complex amplitudes of in-phase oscillations excited in the limit of infinitesimal fre-
quency mismatch;〈·〉 denotes averaging over time. In the numerical experiments presented in this section
we setd = 10.

2.3.1. Oscillatory death elimination by disorder
We introduce disorder in a way such that the value of the linear frequency trend∆ and the range of

random frequency scatter∆∗ change independently of each other, i.e.

ωj = ∆
j − 1

N − 1
+ ∆∗ξj , (12)

whereξj are random numbers distributed uniformly in the interval [−0.5; +0.5]. As beforeN is the
number of oscillators in the chain.

In typical variants of this series, introduction of disorder into distribution of natural frequencies either
did not affect significantly oscillator death (“unfavorable” disorder) or resulted in pronounced growth of
oscillation amplitudes, so that the region of death diminished appreciably or even vanished (“favorable”
disorder). The latter was dominating in the series on the average. Typical examples are represented by
spatial distribution of time-averaged oscillation intensities〈|zj |2〉 in Fig. 11(a), and by spatio-temporal
diagrams for|z| in Fig. 11(b). Fig. 11(c) shows spatio-temporal diagrams for Imzj (t) that illustrate the
variation of phase in time and space: the variation of the picture from maximally dark to light in the region
of smooth variations of amplitude corresponds to the change of phase byπ .
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Fig. 11. Chain with linear frequency trend and introduced disorder (12),∆ = 6.0 and∆∗ = 0.2∆. (a) Time-averaged intensity
profile 〈|zj |2〉 (solid line), averaged frequencies of oscillationsΩj (bold line), and natural frequenciesωj (circles connected
by dashed line); (b)x–t plot of amplitude|zj (t)| (time increases upward for 30 units and the position along the array varies
horizontally), white corresponds to zero and black to the maximal value of the amplitude, which is about

√
p; (c) x–t plot of

Im(zj (t)), white and black colors correspond to minimal and maximal values of Im(zj (t)) (about±√
p), respectively.

Mean “incoherent”ε and “coherent”w energies versus the range of random frequency scatter of
oscillator natural frequencies relative to the linear trend are plotted in Fig. 12 for different values of the
trend (the values ofε andw were obtained by averaging the “incoherent” and “coherent” energies over
the ensemble of 25 sets of natural frequencies{ωj }Nj=1 with different samples of disorder). From the
data presented in Fig. 12(a) it follows that, for the values of parameters∆ andd corresponding to weak
manifestation of the effect of oscillator deathε(∆∗ = 0) ≈ 0.6–0.7 (the curves in Fig. 12(a) for∆ = 0.75;
1.5), introduction of disorder into the frequency distribution does not lead to pronounced changes in the
average level of incoherent energy (∼10%). However, for∆ andd such thatε(∆∗ = 0) ≈ 0.1 � 0.3),
more than a two-fold increase of the incoherent energy can occur when disorder is introduced. It is worthy
of noting that this effect is interesting not only from an academic point of view because it is observed
at the values ofε that are of practical importance. If the effect is evaluated in comparable frequency
gradients, then, as it follows from the data given in Fig. 12(a), introduction of spatial disorder can be
equivalent to more than a two-fold decrease of frequency gradient. For example, the oscillator death effect
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Fig. 12. Dependences of the “coherent” (a) and “incoherent” (b) energiesε andw on the relative level of disorder∆∗/∆ introduced
by the rule (12) for different values of the linear frequency trend∆.

corresponding toε = 0.3 for ∆ = 3.0 is approximately the same as for∆ = 6.0 but with additionally
imposed frequency disorder.

Concerning the “coherent” energyw we can say that, even in the case of complete synchronization in a
chain with a linear trend, the value of〈|∑N

j=1zj |2〉 may be much smaller than its maximumN2p because
of the finite phase difference between oscillations of neighboring oscillators. Consequently, analysis of
the normalized value ofw is meaningful not only forw ≈ 1 but forw � 1 as well. As it follows from
the data in Fig. 12(b), in this case introduction of disorder into frequency distribution may have the same
effect as a decrease of the large-scale frequency gradient by more than three times. In addition, under
the action of disorderw can change in a wider interval thanε. For instance, for the data in Fig. 12(b),
introduction of disorder at∆ = 2.25–4.5 results in an almost fourfold increase ofw.

A distinctive feature of the dependencesε = ε(∆∗) andw = w(∆∗) shown in Fig. 12 is the existence
of the optimal value∆∗

opt maximizingε andw. It is interesting that this optimal value of the frequency
band∆∗ characterizing the spread relative to the mean value at each point of the array proved to be
comparable to the total range of large-scale (regular) variation of frequency∆. At least, it is true for the
parameter region of practical interest in whichε > 0.1; w > 1/N in the absence of disorder.

2.3.2. Mechanism of disorder influence on oscillator death
A previous study of pattern formation in the system under consideration [18] indicates that there exist

at least two mechanisms of the action of introduced disorder on oscillator death. One of them involves a
transformation of the attractor (or attractors) as a whole and the other, which is effective in the presence of
multistability, implies that the attractors change only slightly, but their attracting basins are transformed.
However, it was found that bistability regions occupy only a small portion of parameter space. So, the role
of the second mechanism is insignificant, if any. In our case, it could manifest itself only at∆ ≈ 1, i.e. at
relatively weak oscillator death. However, the difference in the values of “incoherent” energyε(∆∗ = 0)
for four-cluster (0.630) and five-cluster (0.628) structures is small and comparable with the changes of
their energies under the action of weak disorder without change in the number of clusters. In particular,
for ∆∗ = 0.035, the values ofε(∆∗ = 0.035) are equal to 0.616 and 0.638, respectively.
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The action of the first mechanism involving a transformation of the entire cluster structure is demon-
strated in Fig 11. It is clear from this figure that favorable situations are possible when disorder gives
rise to synchronized clusters with oscillation intensities comparable to those observed in arrays without
oscillator death. Formation of such clusters is caused by longwave components in the frequency distribu-
tion. Let us explain it by a very simple example, where the superimposed frequency scatter has a purely
sinusoidal dependence, so that

ωj = ∆
j − 1

N − 1
+ ∆∗

2
sin

2π

Nλ

(j − 1),

whereNλ is the spatial period. Apparently, the formed frequency distribution at sufficiently large amplitude
of deviations (∆∗/∆ ≥ π/Nλ) will have nearly horizontal plateaus, so thatωj+1 − ωj � ∆/(N − 1).
ForNλ � 1, the size of these plateaus will be large enough for the synchronized clusters formed under
conditions of small mismatches to depend weakly on the desynchronization action of the elements located
in regions with large gradients ofωj .

This is confirmed by comparing the dependencesε(∆∗) obtained for disorder with filtered shortwave
components and unfiltered disorder. For the specific series of disorder corresponding to Fig. 11, the spectra
and the relevant dependencesε(∆∗) are given in Fig 13. Random component ofωj was filtered with the
aid of a linear low-pass filter:

ωj = ∆
j − 1

N − 1
+ ∆∗F [ξj ],

where

F [ξj ] = (ξj−1 + ξj + ξj+1)

3

acts as a filter of high harmonics. It is easy to show that the action of such a filter is equivalent to
multiplication of the Fourier spectrumS(k) by f (k) = (1+ 2 cosk)/3. It is important that the shortwave
components of spatial disorder weakly affect the value of energyε. Therefore, it is actually demanded that
the frequency distribution should have sufficiently extended plateaus “on the average” as it is illustrated in

Fig. 13. (a) Power spectrum of the random component ofωj depicted in Fig. 11 (dashed line) and of the filtered random
component (solid line); (b)ε vs. relative disorder level, the same set of random numbers{ξj }Nj=1 was used with different∆∗.
Solid line corresponds to filtered disorder, dashed line to the non-filtered one;∆ = 6.0.
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Fig. 14. Chain with a meander of magnitude∆∗ imposed on the linear frequency trend,∆ = 6.0 and∆∗ = 0.2∆. Time-averaged
intensity profile〈|zj |2〉 (solid line), averaged frequencies of oscillationsΩj (bold line), and natural frequenciesωj (circles
connected by dashed line) are presented.

Fig. 14. This figure presents the case of a distribution in which the frequency gradients of initial distribution
are retained everywhere except at several points. Jumps at some points provide a nonmonotonic variation
of the frequency and conservation of the total range of frequency scatter like in the case of their monotonic
variation. With the mechanism described above taken into account, the optimal value of the frequency
scatter∆∗

opt in Figs. 12 and 13 becomes clear. It is due to the fact that a longwave component of sufficiently
large amplitude can compensate the initial frequency gradient in the array.

3. Coupled homogeneous chains

This section will be devoted to consideration of coupled homogeneous chains of oscillators with
oscillator death [34,35]. As a model we consider two coupled chains of self-excited oscillators whose
dynamics in a quasiharmonic approximation is described by the following equations for the slowly varying
complex amplitudesaj andbj :

ȧj = (p + i∆)aj − (1 + α)|aj |2aj + (d1 + id2)(aj+1 − 2aj + aj−1) + c(bj − aj ), (13)

ḃj = pbj − |bj |2bj + d1(bj+1 − 2bj + bj−1) + c(aj − bj ), (14)

for j = 1, . . . , N , with the boundary conditionsa0 = a1, aN+1 = aN, b0 = b1, andbN+1 = bN (free
ends). Here,∆ andα describe the linear and nonlinear frequency mismatches of the oscillators,p is the
growth rate,d1 andd2 are the coefficients of active and reactive coupling between elements in the chains,
respectively, andc is the coefficient of coupling between chains. This is a fairly generic system, which
probably has no direct relevance to experimental situations, but is a good model to study phenomena that
can happen in Nature in general.

3.1. Mechanism of localized structure formation

We will mainly focus on localized structures with partially or completely synchronized oscillators
[8]. One of the mechanisms responsible for the formation of such structures (adequately referred to as
coherent structures) is associated with oscillator death. Due to this effect, the trivial equilibrium state
is stable for sufficiently strong couplingc and large linear detuning∆. At the same time, if the linear
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detuning can be compensated by the nonlinear one(α|ajk|2 ≈ ∆), then an equilibrium state with finite
amplitudes is also stable within a certain range of parameters. For a homogeneous state, one can obtain

|aj |2 = |bj |2 =∆α − 4(c − p) + {
[∆α − 4(c − p)]2 − 16

(
1 + 1

4α
2
) [

1
4∆

2 − c2 − (c − p)2
]}1/2

× [
4

(
1 + 1

4α
2
)]−1

, (15)

with

4c2 − 4(c − p)2 < ∆2 < 4c2 − 4(c − p)2 + [
1
2∆α − 2(c − p)

]2 (
1 + 1

4α
2
)−1

, (16)

∆α − 4(c − p) > 0.

One can naturally expect that, for certain limitations on the value of the coupling between the elements,
states withaj = bj = 0 andaj = bj 	= 0 can coexist in both chains and thus form stationary fronts and
localized structures.

Depending on the initial and boundary conditions and on external actions, these state may form patterns
of various configurations.

Let us consider an elementary example ofd2 = 0 and define the initial amplitude distribution as a step
function:

a2
j = b2

j =
{(

0.0, j = 1, . . . ,50
0.72, j = 51, . . . ,128

)

(here∆ = 2; α = 5.75; p = 0.5; c = 0.51).
At weak coupling between the elements inside the array (d1 � d1cr = 0.09), a motionless front that

separates the oscillators in excited and unexcited states is formed. At strong coupling (d1 > d1cr), the
regime of oscillator death is prevailing, and the region in which it is realized broadens and embraces all
the array. Ford1 � d1cr, the front velocityV has the dependence on coupling parameter typical of critical
phenomena:V ∼ √

d1 − d1cr, but makes a sharp (stepwise) transition from zero to nonzero velocities at
d1 = d1cr.

Suppose that a localized excitation with amplitudes close to the stationary ones described by
the expression (15) is defined at the initial moment of time. Then, atd2 = 0, either localized structures
are formed (ifd1 > d1cr) or the excitations damp (ifd1 > d1cr). The presence of a reactive component
in the coupling coefficientd2 	= 0 in one of the chains provides for the existence of localized structures
in the latter case too. The result will depend significantly on the sign of the productαd2. If αd2 < 0, i.e.
when the corresponding Schrödinger equation describes self-compression of localized perturbation in the
limit α → ∞, d2 → ∞, the damping is accelerated. In the opposite case (αd2 > 0), the result depends
on the competition of two effects: the expansion of the region of oscillator death described above and
the spreading, in the opposite direction, of localized excitation due to combined action of nonlinearity
α|a|2 and “dispersion”d2. Let us consider possible results of such a competition on an example of the
evolution of a localized perturbation with a high initial amplitude forp = 0.5; d1 = 0.3; c = 0.51; ∆ =
2.0; α = 5.75; andN = 128.

As the dispersiond2 is increased atαd2 > 0, the propagation velocity of the fronts forming the
localized structure decreases. At a certain critical valued ′′

1 ≈ d1 = 0.3, the effect of oscillator death is
balanced by nonlinear self-expansion of the perturbation, and a stable structure is formed. Its size grows
as the dispersiond ′ increases and, eventually, when the second critical valued ′′

2 ≈ 0.9 is attained, the
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effect of self-expansion becomes predominant. This leads to delocalization of the excitation which finally
embraces all the array.

The most interesting phenomena occur when the values ofd2 approachd ′′
2 . Within the framework of

a rigorously symmetric problem (ai ≡ a128−i+1, bi ≡ b128−i+1, i = 1, . . . ,64), an almost stationary
amplitude distribution|aj |, |bj | is first formed from the homogeneous localized excitation ford2 slightly
smaller than the critical one. This amplitude distribution is retained at large intervals of dimensionless time
of the problem (∼103–104). After that, for much shorter time (≈10), the structure (regions of high-intensity
oscillations) abruptly expands symmetrically and then rapidly recovers its initial quasistationary amplitude
distribution. Still further, this process is repeated. Asd2 is increased, the average repetition rate of such
bursts increases. The time intervals between these events are random even in the absence of noise. Bursting
structures in this case look like in the case of non-symmetric structures located at the boundary of the
chains (see Fig. 15).

Additional forcing or perturbation of the initial conditions that break the symmetry with respect to
the center of the chain do not change significantly the structure in the time intervals between the bursts.
However, the structures shift in one or another direction at each burst. These shifts occur randomly, both

Fig. 15. Dependence of the oscillation intensity|aj (t)|2 on the element’s position in the arrayj and timet (shading corresponds
to the intensity).
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at noise forcing and without it when the initial conditions are taken to be asymmetric. Random walk of
the structure eventually leads it to the end of the chain. Thus, we naturally encounter the problem of a
boundary layer in the considered chain of self-excited oscillators.

3.2. Nonpropagation to propagation transition via intermittency

Boundary layer structures formed as a result of the mentioned above “random walks” are very similar to
free structures. Nevertheless, from the physical point of view another interpretation can be useful. Consider
two semi-infinite coupled chains, with a boundary layer structure formed by some initial perturbation of
several elements near the boundary att = 0. In this case for zero value of reactive coupling (d2 = 0) this
initial excitation remains localized for any value ofd1. Front propagation is possible only for sufficiently
large values of the reactive couplingd2 > d2cr(d2cr ≈ 0.9 for p = 0.5; d ′ = 0.3; c = 0.51; ∆ =
2.0; α = 5.75). In certain domains ofd1 (in particular ford1 ≈ 0.3, which is used in the present paper)
the transition from nonpropagation to propagation occur via intermittency.

An example of such a situation is given in Fig. 15. Again, one can see the intermittency in the dynamics
of amplitudes of oscillators, when long laminar phases of constant amplitudes are interrupted by chaotic
bursts. The number of bursts during the time interval∆t = 50,000 versus the value of reactive couplingd2

is plotted in Fig. 16 for active couplingd1 = 0.302. One can see two regions of intermittent behavior. The
transition to intermittency in the left and right regions occurs after the loss of stability of a periodically
oscillating structure with periodically modulated amplitudes ofa andb (quasistationary mode) and of a
stationary structure with constant amplitudes ofa andb (stationary mode), respectively. The time series
of the intensity of oscillations of one of the elements ford2 from both intermittent regions are presented
in Fig. 17.

In order to identify the bifurcations which lead to chaotic intermittent behavior in the system we
employed two commonly used tools. First we have constructed a one-dimensional return map by taking
local maxima in the observed time series|a95(t)|2. Fig. 18 shows the return maps for different values of
coupling parameterd2 for the transition from quasistationary mode to intermittency. Return maps have
a quadratic-like form, which corresponds to the simplest map exhibiting type-I intermittency (according

Fig. 16. Dependence of the number of bursts ([per time interval�t = 50,000]) on the reactive couplingd2 at d1 = 0.302. For
d2 > 0.93, there are no intermittent bursts and front propagation is observed.
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Fig. 17. Examples of time series showing intermittency. Intervals of laminar behavior are randomly interrupted by short bursts:
(a)d2 = 0.56, and (b)d2 = 0.72.

to the classification by Pomeau and Manneville [36]) and which can be written in the form:

xj+1 = ε + xj + x2
j , (17)

whereε is the distance from the bifurcation point, that depends ond2.
We have also calculated the statistical distribution of the laminar intervals. The results are represented

by a histogram in Fig. 19. They show that this distribution has two maxima corresponding to minimal and
maximal lengths of the laminar intervals. Such a distribution is the second good criteria of the existence
of type-I intermittency. The peak in the region of long laminar intervals is less sharp than the one in
the region of short laminar intervals. Such a distribution of laminar intervals lengths is usually observed

Fig. 18. The first return map constructed from the maxima of the time series of the intensity of oscillations of the 95th element
for three different values ofd2: d2 = 0.546 — before bifurcation (stable attracting point),d2 = 0.547 andd2 = 0.55 — after
bifurcation from quasistationary mode (quadratic-like map); andd1 = 0.3.
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Fig. 19. Example of a histogram for the distribution of laminar intervals length for the 95th element after bifurcation from the
quasistationary mode. Parameters:d1 = 0.3, andd2 = 0.55.

for type-I intermittency in the presence of noise [37]. In our 4N -dimensional system the role of such
noise can be presumably played by some nonresonant modes, which become slightly excited above the
bifurcation thresholdd∗

2, but do not grow during intermittency.
The situation is quite different in the region where intermittency is born from a stationary mode. Return

maps obtained from local maxima of time series of intensity and sample histogram are presented in
Figs. 20 and 21, respectively. One can see that the return map is not one-dimensional strictly speaking.
Our preliminary examination of the bifurcation suggests that the bifurcation can correspond to type-I
intermittency (i.e. the Floquet multiplier crosses the unit circle at+1), but the return map has a high-order
(for example, cubic) term with such a coefficient that this term is essential near the bifurcation point

Fig. 20. The first return map constructed from the maxima of the time-series of the intensity of oscillations of the 95th element
for two different values ofd2 after bifurcation from the stationary mode,d1 = 0.302.
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Fig. 21. Example of a histogram for the distribution of laminar interval length for the 95th element after bifurcation from the
stationary mode. Parameters:d1 = 0.302, andd2 = 0.75.

(a similar map with essential cubic term was considered for example in [38]). Analysis of this bifurcation
will be reported elsewhere.

Finally, we consider the action of external noise on the intermittent front dynamics considered above.
We introduce an additive noise into our system (13) and (14) in the following fashion:

ȧj = (p + i∆)aj − (1 + α)|aj |2aj + (d1 + id2)(aj+1 − 2aj + aj−1)

+ c(bj − aj ) + δ(ξ1 + iξ2), (18)

Fig. 22. The number of bursts per 5× 104 times units in the system with noise (18)–(19) vs.d2, d1 = 0.302. The amplitude of
noiseδ = 0 (no noise,+), 0.0001 (×), 0.0005 (∗), 0.001 (�), 0.002 (�), and 0.003 (�). The curves break at the values ofd2,
where intermittency is replaced by pure propagation.



L.L. Rubchinsky et al. / Mathematics and Computers in Simulation 58 (2002) 443–467 465

ḃj = pbj − |bj |2bj + d1(bj+1 − 2bj + bj−1) + c(aj − bj ) + c(aj − bj ) + δ(ξ3 + iξ4), (19)

whereξk, k = 1,2,3, and 4 are random numbers uniformly distributed over [−0.5;0.5]. The results of
numerical simulation are presented in Fig. 22 (cf. Fig. 16). Quite naturally small-amplitude noise slightly
alters the frequencies of bursting, but when the amplitude of the noiseδ is increased, an unexpected
phenomena can be observed. First, the frequency of chaotic bursting increases for some values ofd2, and
for intense noise (δ = 0.2 and 0.3) chaotic bursting arises for such valuesd2, where bursting was not
observed. But the most important observation is that the number of chaotic bursts decreases and even
vanishes for certain domains ofd2. Thus, noise can suppress chaotic intermittent bursting and provides a
way to control the intermittent front dynamics.

4. Conclusion

We would like to conclude the paper with a few comments on the role of spatial and temporal irreg-
ularities in networks of dynamical elements. A traditional view is that chaos and/or disorder act in a
destructive way. Many examples are known presently which provide the evidence of the opposite. We
have already mentioned that disorder introduced into networks of oscillators can enhance synchronization
and make chaotic dynamics regular [29–33]. Noise introduced into nonlinear dynamical systems can lead
to nontrivial effects too. As a well-known example we can mention stochastic resonance [39–42]. Spa-
tially uncorrelated noise can enhance stochastic resonance effects in the spatio-temporal variant [43,44],
facilitate signal propagation in arrays of bistable systems [45,46], sustain traveling waves in subexcitable
chemical media [47], sustain patterns (including the spiral ones) [48,49], induce pattern transitions [50]
and fronts [51], and so on. In our paper we considered how disorder can induce formation of patterns
(synchronized clusters) and increase the intensity of oscillations and how noise can suppress chaotic
bursting in systems with oscillatory death. These effects can be considered as new examples of nontrivial
action of noise in arrays of coupled oscillators.
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