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Abstract Motor symptoms of Parkinson’s disease are
related to the excessive synchronized oscillatory ac-
tivity in the beta frequency band (around 20 Hz) in
the basal ganglia and other parts of the brain. This
review explores the dynamics and potential mecha-
nisms of these oscillations employing ideas and meth-
ods from nonlinear dynamics. We present extensive
experimental documentation of the relevance of syn-
chronized oscillations to motor behavior in Parkin-
son’s disease, and we discuss the intermittent charac-
ter of this synchronization. The reader is introduced
to novel time-series analysis techniques aimed at the
detection of the fine temporal structure of intermit-
tent phase locking observed in the brains of Parkin-
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sonian patients. Modeling studies of brain networks
are reviewed, which may describe the observed inter-
mittent synchrony, and we discuss what these stud-
ies reveal about brain dynamics in Parkinson’s dis-
ease. The Parkinsonian brain appears to exist on the
boundary between phase-locked and nonsynchronous
dynamics. Such a situation may be beneficial in the
healthy state, as it may allow for easy formation and
dissociation of transient patterns of synchronous ac-
tivity which are required for normal motor behav-
ior. Dopaminergic degeneration in Parkinson’s disease
may shift the brain networks closer to this boundary,
which would still permit some motor behavior while
accounting for the associated motor deficits. Under-
standing the mechanisms of the intermittent synchrony
in Parkinson’s disease is also important for biomedical
engineering since efficient control strategies for sup-
pression of pathological synchrony through deep brain
stimulation require knowledge of the dynamics of the
processes subjected to control.

Keywords Intermittency · Phase locking · Phase
synchronization · Basal ganglia · Subthalamic
nucleus · Neuronal modeling

1 Introduction

Activity of neural circuits is a long-standing object
of studies in nonlinear dynamics. Ideas, concepts and
methods of nonlinear dynamics have been used to gain
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insight into the function of neural systems (reviewed
in, e.g., [1–4]). One of the important dynamical phe-
nomena identified in these studies is synchronization.
Different kinds of synchronization possible; however,
what unites them is the temporal coordination of the
dynamics [5].

Oscillations and synchronization in the brain are
involved in a variety of brain functions, for exam-
ple, perception, cognition, memory, and development
[6–9], and also motor behavior [10–12]. Excessively
strong, weak, or otherwise improperly organized pat-
terns of synchronous oscillatory activity appear to con-
tribute to the generation of symptoms of different neu-
rological and psychiatric diseases [13–15]. The neu-
ronal synchrony may be quite fragile and hard to de-
tect. This may necessitate the use of time-sensitive
data analysis methods, a trend which is noticeable
in various areas of neuroscience [16]. Effective treat-
ment strategies also call for better understanding of
the mechanisms behind this kind of synchrony from
a nonlinear dynamics perspective.

Parkinson’s disease is one of the medical conditions
where the symptoms are apparently related to patholo-
gies of neural synchrony in certain brain regions. This
review discusses this relationship and reviews recent
results on synchronous Parkinsonian neurodynamics
from both nonlinear time-series analysis and dynam-
ical modeling perspectives. We also discuss the func-
tional ramifications of recent experimental and model-
ing results and their potential importance for develop-
ing engineering methods to control brain synchrony in
Parkinson’s disease.

2 Basal ganglia motor circuits in Parkinson’s
disease

Parkinson’s disease is a major neurodegenerative dis-
order characterized by chronic dopamine deficiency
resulting in a set of primarily movement-related symp-
toms. The landmark of Parkinson’s disease is overall
slowness of movement. This hypokinetic behavior in-
volves bradykinesia and akinesia (slowness of ongoing
movement/inability to start new movement) and rigid-
ity (stiffness of joints). Another important symptom is
rest tremor, which occurs in a substantial number of
Parkinson’s disease cases, but probably has a different
set of biological mechanisms and is not considered in
this review.

Fig. 1 Schematics of basal ganglia-thalamocortical circuitry.
The basal ganglia receive inputs from cortical areas to striatum
and subthalamic nucleus (STN), which is a major site for sur-
gical interventions, and thus the main location from which in-
traoperative electrophysiological data are recorded. The output
nucleus of the basal ganglia, Globus Pallidus pars interna (GPi),
sends its projections to the thalamus as well as to the brainstem.
Other depicted basal ganglia structures are Globus Pallidus pars
externa (GPe), Substantia Nigra pars compacta (SNc), and pars
reticulata (SNr), and striatum. Excitatory, inhibitory, and mod-
ulatory dopaminergic projections are presented in the diagram
by circles, bars, and arrows, respectively. While the complete
neuroarchitecture of these networks is more complicated, the
diagram presents the major pathways

The loss of dopamine in Parkinson’s disease is be-
lieved to directly affect a part of the brain called basal
ganglia (see Fig. 1 for a schematic diagram of rele-
vant neuroanatomy). The basal ganglia are a group of
subcortical nuclei receiving extensive projections from
cortex and sending extensive projections to the thala-
mus and which are, among other things, involved in
the neural control of movement. The neurodegener-
ation in Parkinson’s disease may extend beyond the
dopaminergic system and the loss of dopamine may
lead to a complex mix of direct and indirect conse-
quences, slow compensatory response, etc. However,
the changes in the dynamics of neural activity in the
basal ganglia in Parkinson’s disease (and in animal
models of this disorder) are well documented in rela-
tion to the symptoms. For these reasons, the basal gan-
glia constitute the major surgical targets for ablative
surgeries and deep brain stimulation (DBS) in Parkin-
son’s disease.

One may, perhaps, identify two major questions in
the science of Parkinson’s disease. The first one is
what triggers the neurodegeneration and what are the
relevant molecular and cellular pathways, etc. The sec-
ond is how and why the lack of dopaminergic mod-
ulation (and perhaps other neurodegenerative conse-
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quences) translates into specific changes in the dynam-
ics of neural activity, which in turn leads to the symp-
toms. In that sense, Parkinson’s disease can be also
viewed as a naturally occurring experiment, where pa-
rameters of the brain circuits are modified and the re-
sulting dynamics can be observed. Thus, understand-
ing of pathophysiology of the basal ganglia in Parkin-
son’s disease may enhance the understanding of nor-
mal basal ganglia functioning.

Oscillations in the basal ganglia physiology, in par-
ticular in relation to motor control, are observed in dif-
ferent mammals (rodents, monkeys, humans), in dif-
ferent behavioral conditions and in different dopamin-
ergic states (reviewed in [17–21]). Overall, the Parkin-
sonian low-dopamine state (Parkinson’s disease in hu-
mans as well as pharmacologically induced dopamin-
ergic lesions in rodents and nonhuman primates) is
accompanied by an increase of oscillatory and syn-
chronous activity [22–25]. Correlations of oscillatory
activity between different locations in basal ganglia
are variable, depend on the brain state, and are dynam-
ically organized [26–28]. The spatial organization of
synchronous patterns is also complex [27, 29–31].

The feedback circuits in basal ganglia [32, 33] and
the rich membrane properties of basal ganglia neu-
rons [34, 35] have been shown to support oscillations.
In particular, oscillatory activity in the beta frequency
band (loosely defined as activity around 20 Hz) is re-
lated to motor control and its alterations in the Parkin-
sonian state. Movement attenuates the power of and
synchronization between basal ganglia activity and the
cortical EEG [36] and attenuates synchronization be-
tween subthalamic nucleus (STN) neurons [37]. The
strength of beta oscillations in STN local field poten-
tial (LFP) is inversely correlated with motor perfor-
mance [38]. Single-unit STN recordings in PD yield
similar results [39]. Note that LFP and single-unit
recordings represent two different kinds of neuronal
activity. The former is mostly formed by synaptic po-
tentials, while the latter is mostly formed by the so-
matic and axonal electrical activity. However, both
signals exhibit oscillatory dynamics in basal ganglia,
apparently because somatic activity is influences by
synaptic activity and the oscillatory dynamics is exhib-
ited by multiple basal ganglia—thalamocortical loops,
rather than an oscillator confined to a single nucleus.

The action of dopaminergic medication on move-
ment and synchronized oscillations fits this frame-
work. Administration of L-DOPA (a major dopamin-
ergic drug used in Parkinson’s disease management)

decreases coherence between STN and GPi in the beta
range [40], attenuates beta power in STN LFP [37, 41],
and leads to similar effects in other parts of the basal
ganglia-thalamocortical network [42]. The nonselec-
tive dopamine agonist apomorphine suppresses beta-
band LFP activity in PD patients [43]; intraoperative
injection of apomorphine in STN and pallidum leads
to similar effects on spiking [37, 43]. Dopaminergic le-
sions in rodents increased LFP coherence across basal
ganglia and cortex in beta-band. Application of apo-
morphine tends to partially reverse this effect [44].
Beta-band synchronization of the EEG from motor ar-
eas correlated with the severity of motor symptoms
and decreased as the symptoms were alleviated by
dopaminergic medication or DBS [45, 46].

One study observed correlations of beta-band ac-
tivity in the maximally-symptomatic off-medication
state with the degree of responsiveness to dopaminer-
gic medication [47], which suggests that the action of
dopaminergic agents may be more complicated than
just suppressing the beta activity. However, overall
dopamine-mediated changes in oscillatory activity are
similar to the movement-induced changes. These find-
ings seem to hold regardless of whether linear or non-
linear analysis is used [48] and are confirmed by more
recent studies [49]. Therapeutic DBS, which improves
motor symptoms, is also reported to decrease synchro-
nized oscillatory activity in the beta-band [50–52].

All these studies have given rise to a “prokinetic
gamma and antikinetic beta” paradigm [18–21, 53, 54]
suggesting antikinetic character of beta-band activity.
Beta-band activity has a normal physiological function
[55], but its excess is pathological.

There are also a few experiments, which do not
support a direct causal link between beta oscillations
and slowness of movement. In the GPi of monkeys
subjected to a progressive dopaminergic lesion, one
group started to observe synchronized oscillatory ac-
tivity after they detected motor impairment [56]. Sim-
ilarly, there was an observation emergence of promi-
nent beta oscillations after motor impairments in ro-
dent models of Parkinson’s disease [57]. However, the
motor deficits seen in the aforementioned experiments
could be of dystonic, not Parkinsonian nature [54, 57].
Furthermore, the difficulties of detection of variable
weakly synchronized oscillations were acknowledged
[56]. Thus, beta oscillations and motor activity are re-
lated when a change in the dopaminergic action is in-
volved. The induction of beta-band oscillations in mo-
tor systems leads to slowness of movement not only in
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Parkinsonian patients [58], but even in normal human
subjects [59].

One need to keep in mind that Parkinsonian state
may be much more than just the increased beta-band
activity in STN. The Parkinsonian state may present
not only changes in the oscillatory dynamics, but
wider changes in the firing rates and patterns across
multiple functional cortico-subcortical loops involv-
ing different parts of the basal ganglia, thalamus, and
cortex [60, 61]. The involvement of cortical struc-
tures with basal ganglia oscillatory dynamics is nat-
ural given the anatomical and functional connections
between cortex and basal ganglia. The complex struc-
ture of oscillatory cortico-basal ganglia correlations in
different dopaminergic states has being studied in var-
ious contexts (e.g., [26, 27, 30, 31, 49]). Also, electri-
cal stimulation in STN may exert its effect through the
activation of specific cortical areas [62]. Even though
many experimental studies in humans report the data
recorded in STN (mostly because of STN happened
to be a convenient and efficient neurosurgical target in
Parkinson’s disease), cortical areas as well as striato-
pallidal circuits (which are investigated in animal stud-
ies, e.g., [28]) appear to be simultaneously involved in
complex oscillatory dynamics.

Thus, we suppose the substantial relevance of beta-
band oscillations to the motor deficits of a dopamine-
deprived Parkinsonian state is supported by the large
body of experimental evidence. Therefore, knowledge
of the properties of these oscillations and their network
and cellular mechanisms are of tremendous impor-
tance. These two issues are clearly connected. From
the nonlinear dynamics perspective, the details of the
temporal dynamics of these oscillations may help us
to understand the properties of the underlying net-
works. The temporal dynamics of these oscillations
on the short time-scales together with accompanying
time-series analysis methods will be discussed in the
next three sections. We then discuss how the result-
ing knowledge maybe used to gain insights into the
dynamical mechanisms of the observed synchronous
oscillations via modeling with coupled dynamical sys-
tems.

3 Variability of synchronized oscillations in
Parkinsonian basal ganglia

One method for the management of advanced Parkin-
son’s disease is functional stereotactic neurosurgery.

The neurosurgeon either makes a lesion in the basal
ganglia or thalamus or implants an electrode in these
structures, which is then connected to a high-frequency
stimulator. In all cases, an essential stage of these pro-
cedures is microelectrode-guided targeting [63, 64].
A high impedance (of the order of 0.1–1.0 M�, as
measured in the brain at 1 kHz or so) microelectrode is
used for recording of neural activity in order to guide
placement of the DBS electrode. The signal is usu-
ally high-pass filtered (300 Hz or above) to yield a
time-series, suitable for the detection of extracellular
spikes, and the same signal may also be low-pass fil-
tered (200 Hz or below) to detect LFP. In case of the
STN, synapses originate from projection fibers of neu-
rons outside STN (we will discuss the origin of STN
LFP in detail in Sect. 6). The extracellularly recorded
high-frequency signal is used to discriminate spikes
and subsequently to perform spike-sorting to obtain
single unit activity.

Because of the importance of the beta-band oscil-
lations, both time-series—continuous low-frequency
LFP and binary (1 or 0) spiking signals—are band-
pass filtered to the beta band. The result of the filter-
ing of the spiking signal will no longer be “spiky”;
it will be a continuous time-series, representing the
modulation of the firing rate in the beta band. This ap-
pears to be appropriate for analyzing the original sig-
nal, as the bursts in the beta band represent patholog-
ical beta-band oscillations in the single unit signal, as
we discussed above. A more detailed description of the
sources, collection and pre-processing of the data can
be found in [65]. An example of original and filtered
time-series from the STN of a Parkinsonian patient is
shown in Fig. 2. The spectra of these time-series are
presented in Fig. 3; spectral peaks in the beta band are
visible, but these peaks are relatively broad.

The patterns of synchronous oscillatory activity in
basal ganglia are highly variable over short time inter-
vals; this requires methods capable of detecting short
episodes of synchrony. Thus, one needs to detect sta-
tistically significant episodes of synchronization. We
will consider an approach developed in [66, 67].

First, signals are subjected to signal-to-noise ratio
criteria to detect the episodes of oscillations in the beta
band. Then an analysis of the phase locking is per-
formed. The phase of the neuronal signals is presumed
to be important and phase synchronization is a generic
phenomenon in networks of oscillatory elements [5].
A traditional and robust way to recover the phase of
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Fig. 2 Electrical activity of Parkinsonian basal ganglia. A is
raw recordings of extracellular unit (spiking signal); C is record-
ings of LFP signal. The signals are modulated in many different
ways. Because of the relationship between beta-band activity
and Parkinsonian motor symptoms, the episodes with signifi-

cant oscillatory activity in the beta band were detected and the
data from these episodes are band-pass filtered to the beta band
only, resulting in a more sine-like spiking signal (B) and LFP
signal (D)

Fig. 3 Fourier spectra of extracellular spiking unit (A) and LFP (B) recorded in STN of a Parkinsonian patient. In both cases, there is
a relatively broad peak in the beta frequency band

an oscillatory signal is to use the Hilbert transform to
obtain an analytic signal ζ(t) from the real time-series
x(t); ϕ(t) (the phase of the complex variable ζ(t)) is
the Hilbert phase of the time series. Alternative phase
reconstruction methods give similar results [68]. The
continuous analog of the operation is:

ζ(t) = x(t) + ix̄(t)

x̄(t) = H(x) = 1

π
P.V .

∫ ∞

−∞
x(τ)

t − τ
dτ

z(t) = ζ(t)

‖ζ(t)‖ = eiφ(t)

Phases ϕspikes(t), ϕLFP(t) and phase difference Φj =
ϕspikes(tj ) − ϕLFP(tj ) for spikes and LFP are con-

structed and we consider

γN(tk) =
∥∥∥∥∥

1

N

k∑
j=k−N

eiΦj

∥∥∥∥∥
2
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Fig. 4 Dynamics of synchronous activity in time. Black line
is the value of the phase-locking index γ computed over a
short time-window with duration of 1 s (A) and 1.5 s (B). Each
point on the graph of γ (t) is the value of γ computed over the

time-window preceding this point. The gray line is the 95%
significance level estimate, obtained from surrogate data as de-
scribed in [65, 66]

on the time-window consisting of N data points. Thus
we have a measure of “instantaneous” synchrony,
varying between 0 and 1. However, due to the noisy
nature and unknown statistical properties of the ob-
served signals, the significance is hard to estimate.
One can generate surrogate time-series with the same
spectral properties as the original data. This is an im-
portant step: time-series are narrow-banded slowly-
varying signals and surrogates should be generated
accordingly. The comparison of γ obtained from real
data with the distribution of γ from the surrogates al-
lows for discrimination between real synchrony and
coincidence by chance [66].

Application of this analysis to the data from Parkin-
sonian patients indicates that γ exhibits substantial
variation in time (see Fig. 4). The gray line on the
figure is the value of γ obtained from surrogate data
(95% confidence level). The value of γ moves above
and below significance level as time goes by. Each
point in the graph of γ is the phase-locking index com-
puted over the time window of a corresponding length
preceding this point, so that γ is not a truly instanta-
neous measure. And this is the way it’s supposed to be,
because synchronization is not an instantaneous phe-
nomenon. Certain value of γ indicates that this is the
average level of the phase locking within certain time-
interval (1 s in Fig. 4A, 1.5 s in Fig. 4B). As one can
see at the figures, the values of γ do depend on the
length of this window. This is very natural, for long

time-windows one expects to see less time-variability,
for shorter time-windows one has a better temporal
resolution and more time-variability as well as less
powerful statistics [66]. However, note that for both
window length variability of that γ is apparent and the
values of γ are in the same range.

One may quantify the average values of γ , or the
amount of time the index spends in a certain interval.
However, given the high variability of γ with time,
it is desirable to develop methods for characteriza-
tion of this variability; preferably in a way that does
not depend (or does not strongly depend) on the time-
window length. These ideas are discussed in the next
section. In Sect. 5, we will present the results of the
application of these ideas to the signals recorded from
Parkinsonian brains and will interpret these results.

4 Time-series analysis of observed intermittent
synchronized dynamics

As we saw in Fig. 4, the phase-locking index γ com-
puted over short time-windows exhibits high variabil-
ity. There is a way to study this variability of syn-
chrony in more detail. We see that there is some over-
all level of phase-locking present in the data. Thus, we
can detect the preferred phase difference angle (it is
not necessarily zero in this data) and look at whether
and how this phase difference angle deviates from its
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preferred value at each cycle of oscillations. This is,
of course, not an instantaneous measure of synchrony
(such a measure is not possible), because we already
know that some phase-locking is present. If it were
not, then the analysis presented below would not be
valid. Thus, one first needs to detect synchronization,
for example, by the methods described in the previ-
ous section. After it is detected, one can proceed and
study synchronization/desynchronization dynamics at
each instant of time. These ideas were sketched in [65]
and further developed and justified in [69]. Essentially,
this is a way to study the dynamics in the phase space
away from the synchronous state. This is important
because in the weakly synchronized case the system
spends most of its time away from the synchronized
state. This approach reveals the temporal patterning
of synchronous/desynchronous episodes, which can-
not be revealed by traditional correlation coefficients,
stability properties of the synchronization state, or tra-
ditional characteristics of intermittent behavior (distri-
butions of the laminar episodes), etc. [69].

We will describe this approach in discrete time,
constructing first return maps for the phase difference.
We will also describe it in the context of the Parkinso-
nian electrophysiology data. After the signals are fil-
tered as explained above and phases are reconstructed,
one selects one of the signals (to be specific, let it be
LFP) and chooses a check point for the phase of this
LFP signal. Again, to make it specific, let this check-
point be zero, although this value is clearly not impor-
tant and can be chosen in different ways. Each time
the phase of the LFP signal crosses this check point in
a preset direction (either from negative to positive val-
ues or vice versa, the particular choice does not mat-
ter), the value of the spiking signal phase is recorded.
This procedure will generate a set of consecutive val-
ues {ϕspikes,i}, i = 1, . . . ,N , where N is the number of
the checkpoint crossings. Since these values of ϕspikes

are recorded when ϕLFP = 0, {ϕspikes,i}, i = 1, . . . ,N

is essentially the sequence of the phase difference be-
tween signals, measured once in a cycle of LFP oscil-
lation.

Now we can consider a first-return map for the
recorded values of the phases {ϕspikes,i}, i = 1, . . . ,N .
One can plot ϕspikes,i+1 vs. ϕspikes,i for i = 1, . . .,
N − 1 (noting that the phase space of our map is a
torus, because each coordinate is the phase, defined
modulo 2π). A fully phase-locked dynamics would
result in a single point on the diagonal ϕspikes,i+1 =

Fig. 5 The diagram of the first-return map of the phases
{ϕspikes,i}, i = 1, . . . ,N . The arrows describe all possible transi-
tions between four regions of the phase space. The expressions
next to the arrows are the rates for each particular type of transi-
tions between the regions. The regions are numbered in a clock-
wise manner, because the dynamics in the (ϕspikes,i , ϕspikes,i+1)

space mostly follows a clockwise pattern

ϕspikes,i . Completely uncorrelated phases of the sig-
nals would result in (ϕspikes,i , ϕspikes,i+1) space homo-
geneously filled with the dots. A tendency for predom-
inantly phase-locked dynamics will appear as a clus-
ter of points, centered near the diagonal ϕspikes,i+1 =
ϕspikes,i . As was already mentioned above, we apply
this analysis only to data with some degree of syn-
chrony to ensure this cluster is present. To allow for
uniformity of the analysis, one may determine the cen-
ter of this cluster and then shift all values of the phases
to position the center of the cluster at a point with the
coordinates (π/2,π/2)—the center of the first quad-
rant. This will eliminate the phase lag value from con-
sideration, but if needed, this value can be recorded
and analyzed separately.

To study the temporal dynamics of phase-locking
in this framework is to study the dynamics of the first-
return map. Consider partitioning of the phase space
of the map into four equal regions. Then it is possi-
ble to consider and quantify the transitions between
these regions (see Fig. 5 for the diagram of the phase
space). This partitioning of the phase space implies
that a synchronized state is the whole first region. In
other words, if the phases of the signals do not devi-
ate from each other by more than π/2, the signals are
considered phase-locked. The evolution outside of the
first region represents a desynchronization event. Fol-
lowing [65], to illustrate what it means for the real data
we use a short piece of experimentally recorded data,
filtered signals and resulting map in Fig. 6.

The value of π/2 is a compromise value, not too
large to exclude large phase deviations, not too small
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Fig. 6 An example of a short piece of an episode of syn-
chronous LFP and spiking activity in Parkinsonian basal gan-
glia. (A) The upper and the lower panels contain raw and fil-
tered data. The upper panel contains the spikes (gray line) and
the spiking signal band-pass filtered to beta-band (black line),
the lower panel contains raw LFP signal (gray line), and LFP
filtered in the same way (black dotted line). The middle panel
has the value of the sine of the phases of filtered spiking and
LFP signals. There is clearly visible, but not perfect phase syn-

chrony. Star is placed to mark the phase of the filtered spik-
ing signal, when the filtered LFP signal phase crosses zero from
below. These marked phases generate the sequence {ϕspikes,i},
i = 1, . . . ,N used to construct the first-return map shown in
part B. (B) The first-return map (ϕspikes,i , ϕspikes,i+1) generated
from the data at the part A. All points are within the first region
of the phase space, which corresponds to the phase-locked state.
This phase-locking is not perfect, but the phase difference be-
tween signals is not changed much during the observation time

either to allow for some substantial fluctuations in the
system. The choice of how much tolerance for the
phase difference is acceptable ideally should be de-
fined by the function of the considered time-series.
One may also perform robustness and sensitivity anal-
ysis. The partition into four equal regions has the
strong advantage of being symmetric and simple. An
extension of these ideas to different partitions is pos-
sible, but may be technically challenging. However,
even if the partition is too coarse-grained in a func-
tional sense (i.e., the phase-locking should be more
precise to perform certain functions), the quantifica-
tion of the transitions between the regions is still in-
formative and descriptive of the dynamics.

To quantify the dynamics of the map, one can con-
sider four transition rates defined as the number of
points in a region, from which the system leaves the
region to another specific region, divided by the total
number of points in that region. For example, r1 is the
ratio of the number of trajectories escaping the first re-
gion for the second region to the number of all points
in the first region. While the time-averaged measures
of synchrony can characterize whether the synchro-
nization is strong or weak overall, utilization of these

rates lets us explore the dynamics of the phase-locking
as a function of time.

The phase space (ϕspikes,i , ϕspikes,i+1) represents
current phase vs. future phase. Therefore, some transi-
tions between quadrants are not possible. For exam-
ple, there is no transition from the fourth region to
itself, because the points in the fourth region are the
points with low current phase and high future phase
and the future phase is the current phase on the next
cycle. Thus the current phase for the next cycle should
be high, which limits the transitions to only second
and first region. The arrows at Fig. 5 indicate all pos-
sible transitions, thus the considered rates ri provide a
fairly complete characterization of how phase-locking
breaks down and emerges again in time within this
framework.

The rates, besides being a quantitative measure of
the dynamics, are related to the durations of the syn-
chronization and desynchronization events. The rate r1

is related to the average duration of the phase-locked
episode (laminar phase in the terminology of inter-
mittency), and thus characterizes the property of the
phase-locked state. The average duration of the syn-
chronized phase 〈l〉 (for an intermittency of differ-
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ent types, this quantity scales in a manner specific to
each intermittency type) is inversely proportional to
r1 : 〈l〉 ∼ 1/r1. They are equal to each other if 〈l〉
is measured in the number of iterations of the map
(number of cycles of oscillations). The closer r1 is
to 1, the more frequently the synchronized dynamics
is interrupted. The transition rates r2,3,4 are related to
the durations of desynchronizations. Higher values of
r2,3,4 indicate quicker return to synchronized state and
shorter desynchronization episodes, while their low
values indicate long desynchronization events.

To further explore the properties of the dynamics
in the space (ϕspikes,i , ϕspikes,i+1), one may compute
the relative frequencies of desynchronization events of
different durations. In this framework the duration of
a desynchronization event is the number of time-steps
that system spends away from the first region minus
one (because, the point on the map has two coordi-
nates, one of which is a future phase). The desynchro-
nization will always start at the second region. The
shortest duration of the desynchronization event corre-
sponds to the shortest path 2-4-1. Since one iteration of
the map is usually equals to one cycle of oscillations,
this will correspond to the desynchronization length of
one cycle of oscillations (in two cycles the phases are
back in a locked state). Desynchronization event with
duration of two cycles will correspond to the path 2-
3-4-1. Longer desynchronization events will have sev-
eral different paths leading to the same duration.

If transitions between the regions are random and
independent of each other, than each new transition
will happen with the probability of ri and the his-
togram of durations of desynchronization events can
be estimated by multiplying the corresponding rates
of the transitions for different paths. Thus, to estimate
the probability of a desynchronization event of the du-
ration equal to one cycle of oscillations, one needs to
consider the shortest path 2-4-1 and the correspond-
ing probability is the product of transition rates r2r4

along the path. Duration of two cycles is possible with
2-3-4-1, the corresponding probability is r2r3r4. Two
different paths are possible for three-cycle duration:
2-4-2-4-1 and 2-3-3-4-1; the corresponding probabil-
ity is r2 · (1 − r4) · r2 · r4 + (1 − r2) · (1 − r3) · r3 · r4.
Clearly, these probabilities can be computed for any
duration. In the case of Parkinsonian data, the tran-
sitions are close to independent, so that such estima-
tion of durations gives results close to the one obtained
from the map directly [65]. In general, while some sys-

tems may allow for such an approximation, some lack
this property [69].

We would like to note that although we use this ap-
proach to study neural synchronization in the Parkin-
sonian brain, it may be applicable to different models
and real systems and data [69]. It provides a quanti-
tative description of how synchrony develops in time
and thus may be relevant in many biological and med-
ical applications. Living systems are highly adaptable
to the changes in the environment and thus are ex-
pected to be variable to be controllable. Therefore syn-
chronization phenomena in many living systems may
be expected to be variable and synchronization if aver-
aged over long-time intervals may be quite weak. Thus
some traditional measures of synchrony, like indices of
phase-coherence (in the time-series analysis approach)
and stability properties/Lyapunov exponent of the syn-
chronized state (in the phase-space approach) do not
necessarily tell much about weakly synchronized dy-
namics (the system spends most of the time in the
phase space away from the synchronized state). The
analysis of the fine temporal structure of the phase-
locking described above may be very useful in the
analysis of this type of variable dynamics. It also has
the potential to assist in studies of how such important
factors as noise, type of oscillators and strength and
topology of network connectivity affect not only the
average synchrony, but its dynamics as well.

5 Fine temporal structure of intermittent
synchronization in Parkinsonian brain

Since we study the episodes of oscillatory activity
with a tendency for phase-locking, the first-return map
should have a cluster of points centered near the diag-
onal. This is clearly visible in the example presented in
Fig. 7. A piece of an oscillatory synchronous episode
of data recorded in a patient was processed as dis-
cussed in the previous sections. The cluster has a rel-
atively large size, which means the synchrony is not
perfect. Most of the time the difference between the
phases of LFP and spikes does not experience very
large variations, yet it is not perfectly constant either.
The same relationship is expected for the cellular and
synaptic activity underlying extracellular spiking and
LFP signals, respectively.

It is important to properly characterize the dynam-
ics and understand the mechanisms of this kind of ac-
tivity. The dynamics of the maps like those on Fig. 7
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Fig. 7 First return map obtained from experimentally recorded
extracellular units and LFPs from the subthalamic nucleus of
a Parkinsonian patient. The dynamics is not perfectly syn-
chronous, as evidenced by a scatter of points, however, the ten-
dency for phase-locking is visible: there is a higher density of
points in the first (synchronized) region

can be quantified as in the previous section. The tran-
sition rates and durations of desynchronization events
not only describe the fine temporal structure of the dy-
namics, but also provide quantitative characteristics of
the organization of the phase space to be used in com-
parison with modeling studies, as we will discuss in
the next section.

Average values for transition rates for a population
of Parkinsonian patients have being computed in [65]
(and are presented at Fig. 8). The transition rate r1 is
of the order of 0.3–0.4. This means the phase-locking
in the basal ganglia is interrupted by desynchronized
dynamics every three periods of oscillations on aver-
age. The rates r2, r3, and r4 are of the order of 0.6–0.7.
Relatively high values of these three transition rates
indicate the tendency for a quick return to the phase-
locked state. Different data inclusion criteria and dif-
ferent averaging methods yield similar results. Thus
the transition rates appear to be relatively robust char-
acteristics of synchronization/desynchronization dy-
namics.

The computation of the histogram of durations
of desynchronization events (Fig. 9) naturally agrees
with these observations of rates (Fig. 8). The most
dominant duration of desynchronization is the shortest
one. It is more frequent than the next two frequent by

Fig. 8 The transition rates r1, r2, r3, r4 obtained from data
recorded in a sample of Parkinsonian patients. Average and stan-
dard deviation are shown. Four different bars for each tran-
sition rate are the values of that rate computed in different
ways. Different selection criteria of synchronized episodes (dif-
ferent length of duration of the running window to compute
the phase-locking index) are represented by black/dark gray
and light gray/white bars. Different averaging procedures (arith-
metic mean value and weighted mean computed with weights
proportional to the length of each individual episode of the data)
are represented by black/light gray and dark gray/white bars.
The rates obtained with different methods are only slightly dif-
ferent from each other. Overall, the rates are not very sensitive
to the data selection criteria and averaging technique

a factor of 3 or so. The distribution of durations tends
to decrease with the increase of duration length. Sim-
ilarly to the case with the rates, the results do not de-
pend on the kind of averaging procedure qualitatively.
A particular value of the rate depends on many factors,
however the overall robustness of the rates and his-
togram of durations suggest that the dominance of the
short desynchronization does not depend on the par-
ticular details of how the fine temporal structure of the
phase-locking is studied.

Calculation of durations from the rates under the
assumption of independent transitions yields very sim-
ilar, although not identical results [65]. Therefore the
transitions between different parts of the phase space
weakly depend on the past dynamics.

In general the same level of synchrony can be
supported by different details of synchronization/de-
synchronization dynamics. In two extremes, the mod-
erate phase-locking strength may be achieved by a rel-
atively large number of short desynchronization events
or by a moderate number of long desynchronization
events. The discussed work shows that basal ganglia
networks in Parkinson’s disease are apparently closer
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Fig. 9 The histogram of the durations of desynchronization
events. The light bars correspond to computing the frequencies
of duration within each data episode and averaging them across
the episode (this corresponds to the arithmetical mean rates in
Fig. 8). The dark bars correspond to the averaging the frequen-
cies of desynchronization event durations for all episodes to-
gether (this corresponds to the weighted average rates in Fig. 8,
each data episode makes an impact proportional to its length).
All durations of six cycles of oscillations and longer are pulled
together in “>5” group. Similar to the rates (Fig. 8), differ-
ent averaging techniques give values, which are different only
slightly; overall tendency for the largest first bin of the his-
togram is preserved

to the former extreme. The signals go out of phase for
just one cycle of oscillations more often than for two or
a larger number of cycles. The predominance of short,
yet relatively frequent desynchronization events may
have certain implications for the functional aspects of
basal ganglia physiology in PD, which we discuss in
the Sect. 7.

6 Modeling intermittent synchrony in basal
ganglia circuits

6.1 Modeling approach

Quite a lot is known about the biophysical proper-
ties of cells in basal ganglia nuclei [34, 35]. Cellu-
lar physiology of different basal ganglia nuclei has
been studied using a variety of techniques from volt-
age clamp studies to in vivo recordings of neural ac-
tivity and its responses to various stimulations (electri-
cal or chemical). One of the prominent models of the
basal ganglia circuitry is the conductance-based model
of subthalamo-pallidal circuits of basal ganglia devel-
oped by Terman and colleagues [70]. While the model

is clearly limited to these local circuits, there are vari-
ous indications that the model captures the rich reper-
toire of Parkinsonian rhythmicity, recorded in these
circuits in Parkinsonian patients and animals. In ad-
dition, this kind of approach appears to adequately
reproduce the experimentally studied mechanisms of
this rhythmicity resulting from sequences of recurrent
excitation and inhibition in subthalamo-pallidal net-
works [33, 71].

The individual GPe and STN neurons in this model
are described by single-compartment conductance-
based models. Both model STN and GPe neurons in-
volve the same currents; they exhibit different firing
properties due to their parameters (reflecting the prop-
erties of membrane currents and degree to which they
are expressed in the membranes). The model has stan-
dard sodium, potassium and leak currents, low thresh-
old T-type Ca2+-current, high-threshold Ca2+ current,
and Ca2+-activated voltage-independent afterhyper-
polarization K+-current, which are responsible for the
oscillatory properties of the cells. The equation for the
membrane potential is

C
dV

dt
= −IL −IK −INa −IT −ICa −IAHP−Isyn +Iapp,

where leak current is IL = gL(V − VL), fast potas-
sium and sodium currents are IK = gKn4(V −VK) and
INa = gNam

3∞(V )h(V − VNa), calcium currents are
IT = gTa3∞(V )b2∞(r)(V − VCa) and ICa =
gCas

2∞(V )(V − VCa), and “afterhyperpolarization”
current is IAHP = gAHP([Ca]/([Ca] + k1))(V − VK).
[Ca] is concentration of intracellular Ca2+ ions, and
the equation of the calcium balance is

d[Ca]/dt = ε(−ICa − IT − kCa[Ca]).
n,h and r are gating variables described by first-order
kinetic equations of this type:

dx/dt = (x∞(V ) − x)/τ(V ),

and m∞, a∞ and s∞ are instantaneous voltage-
dependent gating variables. Thus each model neuron
is a five-dimensional nonlinear dynamical system.

Synaptic input from other cells is represented
by Isyn. The model consists of a chain of STN neu-
rons and chain of GPe neurons. In the case of the
modeling studies considered here, each STN neuron
projects to a corresponding GPe neuron, each GPe
neuron projects to the corresponding STN neuron and
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both of its two nearest neighbors. Applied current to
GPe neurons is a constant current, which, in particu-
lar, takes into account striatal inhibitory input to ex-
ternal pallidum (we will explain below, why variation
of this parameter in the model is reflective of the nor-
mal/Parkinsonian transition). Overall, the architecture
of the network is in realistic correspondence with the
anatomy of STN-GP circuits [72–74], although some
finer details of the connectivity are either not repre-
sented in the model or not known at all. The synaptic
connections (excitatory glutamatergic and inhibitory
GABAergic synapses) are modeled by 1st-order ki-
netic equations for the fraction of activated synaptic
channels:

ds

dt
= αH∞(Vpresyn − θg)(1 − s) − βs,

where H∞ is a sigmoidal function. The synaptic cur-
rent is given by Isyn = gsyn(V − Vsyn)

∑
j sj , where

summation is over s-variables from all neurons pro-
jecting to a given neuron. The model does not explic-
itly consider rhythmic inputs to pallido-subthalamic
circuits from cortex and other structures. These inputs
may play some role in the dynamics. However, even
if the pathological rhythmicity also comes from out-
side, the circuit still should have relevant oscillatory
properties to be engaged in interaction with inputs.

Experimentally recorded extracellular spikes in
STN can be modeled by the spikes obtained from the
model transmembrane potential V (t). However, LFP
are not explicitly represented in the model. LFP are
primarily generated by synaptic potentials and thus re-
flect incoming and local processing activity [75, 76].
Similarly to the cortex, LFP recorded in different parts
of basal ganglia are of synaptic origin and are rela-
tively locally generated [27, 29, 53]. LFP are not as
local as the extracellular spikes signal [29], but they
are generated in a vicinity of the recording electrode.
The existence of local connections within STN is very
unlikely [77]. Thus the model STN LFP should have
its origin in pallido-subthalamic synaptic transmission
that is defined by the activity of the synapses from GPe
to STN cells.

Model LFP can be computed as the weighted sum
of synaptic activity in a relatively small area of the
model network. Synaptic input to the ith STN neuron
is I i

GS = gGS(V i −Vsyn)
∑i+1

j=i−1 sj . Then model STN
LFP at this location is

LFPi = I i
GS + w∗(I i−1

GS + I i+1
GS

)
,

where w is the weight representing the impact of
more remote synaptic activity on the voltage of LFP
at a given location. Inclusion of an additional term,
(I i−2

GS + I i+2
GS ), with small weight sw will incorporate

a larger area into LFP computation. However, in the
numerical studies considered below this term did not
substantially change the outcome of the synchroniza-
tion analysis.

This kind of model allows one to easily vary any
parameter, independently of other factors to study the
model dynamics and its mechanisms. Experimental
approaches appear to be quite limited here. In vitro
experiments would unavoidably damage the networks,
while in vivo experiments would be hampered by a
restricted set of dopaminergic states and other limita-
tions. Modeling allows one to avoid these constraints.

6.2 Model dynamics

Basal ganglia synapses are modulated by dopamine
and hence, the dopaminergic degeneration in Parkin-
son’s disease leads to the modulation of synaptic
strength. For many basal ganglia synapses this results
in an increase of the strength of synaptic connections,
because dopamine tends to suppress them. Dopamine
is known to act on presynaptic D2 receptors at striato-
pallidal synapses reducing GABA release in GPe [78–
80]. In perhaps a similar manner, dopaminergic ac-
tion in STN inhibits GABA release, in particular, from
synapses from neurons originating in GPe [81–86].
These experimental results are reflected by altered
values [87] of two parameters of the model pallido-
subthalamic network: synaptic strength of inhibitory
GPe-STN projections, gsyn, and the applied current
term in the GPe model neuron, Iapp, which represents
effect of inhibitory striatopallidal synapses.

For moderately large values of these parameters
the model generates dynamics which shares a lot of
similarity with the experimentally observed dynamics.
The dependence of the phase-locking index computed
over short time windows exhibits substantial varia-
tions (Fig. 10) as the experimentally computed com-
puter index does (Fig. 4). The first-return maps for
the phase differences in the model for some parame-
ter values (Fig. 11) are similar to the maps obtained
from experimental data (Fig. 7). Similar to the exper-
iment, the model dynamics spends most of the time
in the first region, making numerous short excursions
from it. Importantly, this is not only visual similarity
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Fig. 10 Dynamics of model’s synchronous activity in time. The phase-locking index γ is computed for model spiking and LFP in the
same way as it was computed for the real data in Fig. 4. The duration of the time-window used for computation of γ is 1 s (A) and
1.5 s (B). The gray line is the 95% significance level estimate, obtained from surrogate data

of pictures. The comparison of the rates r1, r2, r3, r4

obtained from the model, indicate that all four approx-
imate the experimental rates very well [87]. Therefore,
not only does the synchrony fluctuate in the same way
in the model and the experiment, but the phase space
of the model and of the real network is organized in a
quantitatively similar manner. The distributions of du-
rations of desynchronization events in the model and
in the experiment are similar too. Thus, the mecha-
nisms and assumptions of the model network are suf-
ficient to generate the intermittency of synchrony ob-
served in the experiments.

In [87] the model parameters were varied to ex-
plore the dynamics in the parameter space (gsyn, Iapp)

and to determine if there exists a parameter domain
where the model dynamics exhibit intermittent phase-
locking similar to that observed in experiment. As we
discussed above, the use of an average phase-locking
index is not sufficiently constraining. However, if tran-
sition rates r1, r2, r3, r4 are used to compare the dy-
namics, not only the average synchrony, but also the
organization of the phase space will be compared. This
ensures greater equivalency of the model and the real
system. Of course, there are many characteristics of
dynamics which might be used for comparison. The
rates r1, r2, r3, r4 appear to be advantageous because
they characterize features of the dynamics which are
relevant to the symptoms of the disease. This similar-
ity of the rates will also lead to similarity of the dis-
tribution of durations of desynchronization events, be-

Fig. 11 First return map obtained from the model-generated
spiking and LFP signals. Compare with the Fig. 7

cause, as we discussed, they are relatively closely re-
lated for this Parkinsonian data.

The results of this comparison are presented in
Fig. 12. This is (gsyn, Iapp) parameter space. The cir-
cles indicate the number of principle components,
computed in the principle component analysis (PCA),
needed to capture 80% variation of the observed dy-
namics. Thus these circles indicate the overall coher-
ence in the model network. The right lower corner of
this diagram (higher gsyn and lower Iapp) corresponds
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Fig. 12 The comparison of the model with experimental dy-
namics in (gsyn, Iapp) parameter space (follows [87]). The cir-
cles indicate the number of principle components capturing the
dynamics computed from for the slow variable r of all model
STN cells (r is the slow variable, and thus it is more appro-
priate for the study of synchrony in the slow bursting beta–fre-
quency band, rather than fast variables related to spikes). The
lines represent the contours of the parameter domains, where all
four model rates ri are within 0.7 SD of the experimental rates.
Solid, dotted, and dashed lines correspond to different values of
the weights used to compute model LFP. Note that Iapp is pos-
itive in the model (as it was originally developed in [70]), thus
the increase of inhibition of GPe by striatum, induced by the
lack of dopamine, is represented by a decrease in Iapp

to lower dopamine levels (extreme Parkinsonian state)
while the higher dopamine levels (more healthy state)
are closer to the upper left corner. The right lower cor-
ner of the parameter plane is a region of highly cor-
related activity (there are a small number of principle
components) while the left upper corner exhibits un-
correlated dynamics. This is, perhaps, not a surpris-
ing outcome, as the stronger coupling is expected to
lead to more synchronous dynamics. However, given
the experimental data available, one can match them
with the modeling output to see where the region with
realistic dynamics is located (if it exists at all) and how
large it is.

This region where the model activity is “dynam-
ically” similar to the activity in Parkinson’s disease
is situated in between the extreme cases of incoher-
ent and very synchronous dynamics. Its exact loca-
tion and form depend on how strong the similarity re-
quirements are and on model parameters. In particu-
lar, it depends on how the model LFPs are computed,
but qualitatively these do not change its location. The
weights w used in the model LFP computation are not

exactly known. However even if they are varied in a
relatively broad range, the results are not much differ-
ent qualitatively (Fig. 12). Therefore the location of
the region of realistic Parkinsonian synchrony is ro-
bust and is on the boundary between synchronized and
nonsynchronized dynamics in the network.

There are many more dopamine-modulated param-
eters in the basal ganglia than we consider here. For
example, excitatory projections from STN to GPe are
suppressed by dopaminergic action both presynapti-
cally through D2-like receptors and postsynaptically
through D4-like receptors [88]. Dopamine also has a
tendency to depolarize STN cells [89, 90], which may
increase responsiveness of STN cells to synaptic in-
put, which, in turn, facilitates a more connected net-
work. Overall, dopamine depletion seems to make the
elements of the basal ganglia circuitry more function-
ally connected (e.g., [35]). However, if the lack of
dopamine leads to even stronger functional connec-
tions, we would not expect the results to change much.
The important message of the numerical studies de-
scribed here is that there is a broad region of realistic
dynamics which exists for moderate values of connec-
tion strengths in the basal ganglia network.

The modeling considered above is one of the ways
to study the mechanisms behind the observed inter-
mittent dynamics from the nonlinear dynamics per-
spective. So far the modeling signifies the role of ap-
propriate coupling strength. The complex interactions
of the slow dynamical variables (slow, calcium-driven
dynamics) may also play a significant role [91]. How-
ever the question of what defines the nature of the ob-
served intermittency is still open and the problem is
very challenging, in particular because the structure
of the desynchronized events is defined by the orga-
nization of the phase space beyond the synchroniza-
tion manifold and thus is not universal (see [69] for a
discussion of this issue).

The model network considered here cannot cap-
ture all the brain networks with beta-band oscillations.
However, in general the lack of dopamine in basal gan-
glia circuits apparently promotes the strength and syn-
chrony of these oscillations (see multiple references in
Sect. 2). So, if the dynamics of oscillations in differ-
ent parts of cortico-basal ganglia-thalamic networks in
response to dopamine is consistent, the results of the
study of intermittent beta-band synchronous oscilla-
tion in one node of these networks (such as STN) may
be quite typical for these networks as a whole.
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7 Dynamical state of Parkinsonian brain

Time-series analysis has revealed the intermittent na-
ture of brain activity in Parkinson’s disease and specif-
ically the fine temporal structure of beta oscillations.
The modeling studies suggest what may induce this
variability of synchrony. In general, several factors
might contribute to the variability, including short-
term plasticity in basal ganglia networks, noise and
fluctuating inputs from other parts of the nervous sys-
tem. However, the modeling suggests that this vari-
ability may arise intrinsically in the basal ganglia net-
works due to a moderate increase in connectivity be-
tween network elements (an increase which is ex-
pected to result from the dopaminergic degeneration).

We conjecture that this may be a generic situa-
tion. There are experimental examples of transient
synchrony in the brain, needed for physiologically sig-
nificant events (e.g. [6, 7, 10]) and transient dynamics
would be very reasonable from theoretical standpoint
[92, 93]. In these examples transient synchrony is re-
cruited to achieve a particular physiological effect. In
our case, in Parkinson’s disease even at rest the syn-
chrony is easy to form. This may be the result of the
fact that synchronized oscillations have some healthy
function too. It is known that synchronous oscillations
in the beta band are related to the preparation of a
new movement or to maintenance of the current mo-
tor set [55].

Taking this into account together with the model-
ing results, one may suggest that moving further away
from the boundary of the synchronization region into
the region of nonsynchronized dynamics, the network
may enter a more healthy state [87]. In that state syn-
chrony may be possible only if other parts of neu-
ral system (transiently) bring it close to the boundary.
Thus healthy networks may exist functionally close to
the boundary area too, so that synchrony of beta-band
oscillations may be generated when needed (to prepare
for a new movement or to maintain motor status quo).
In a pathological state, the coupling in the network is
stronger due to the lack of dopamine. This moves the
network towards the more synchronized state and the
transient synchronous patterns become more prevalent
and harder to break, which would prevent the execu-
tion of the new movement.

In other words, the intermittent synchrony which
we observe in the Parkinsonian state may be a result
of a propensity of basal ganglia circuits to be engaged

in the brief synchronized episodes of activity needed
for movement control. The low-dopamine state with
stronger coupling and stronger common input may re-
sult in a partial suppression of this very transient (and
hard-to-detect) character of neuronal dynamics, favor-
ing only short desynchronization events, which inter-
rupt mostly synchronous episodes [65].

In connection with this consideration, it will be in-
teresting to see if another prominent type of patholog-
ical synchronous oscillation in Parkinson’s disease—
tremor oscillations—are pathologically augmented
traces of some kind of normal oscillatory function.
Parkinsonian tremor also presents intermittent syn-
chronous dynamics [66, 67, 94], so their origin re-
mains to be investigated.

Overall, operation on the boundary of synchroniza-
tion may potentially have some important advantages
as we have discussed in [87]. Very robust, perfectly
synchronous oscillations may be hard to modulate,
therefore they may be less efficient in transmitting in-
formation which is the major function of nervous sys-
tem. Operation at the edge of synchrony would yield
the creation and disappearance of unstable synchro-
nized clusters possible without much expense, allow-
ing for easy formation and dissolution of transient neu-
ronal assemblies. In turn, this would either directly
contribute to a fluid and timely sequence of move-
ments or facilitate information transmission through
the oscillations. Thus pathological and healthy oscil-
lations may be related.

The intermittent nature of the synchronous dynam-
ics in Parkinsonian basal ganglia may also have some
important ramifications for Parkinson’s disease treat-
ment. At the present time there is no cure for Parkin-
son’s disease and pharmacological treatment of symp-
toms usually leads to substantial side-effects in the
long run. Thus there is a substantial interest in basal
ganglia DBS in Parkinson’s disease. STN DBS is the
most frequent surgical procedure in Parkinson’s dis-
ease. This “classical” DBS requires delivering large
amplitude high-frequency pulses, which are proba-
bly so strong that they simply override the patholog-
ical beta-band synchronized oscillations. This is sub-
optimal procedure and it has multiple side effects. This
leads to interest in effective adaptive control strategies
to suppress the pathological rhythmicity. Therefore it
is important to understand the nature of the dynamics
one wishes to suppress, that is the dynamical nature on
these synchronized oscillations. The approach consid-
ered here may provide a way to this understanding.
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Previous modeling studies have presented exam-
ples of how delayed nonlinear feedback may destabi-
lize synchronous oscillations [95–97]. However, cur-
rently we still await an experimental realization of
these adaptive DBS techniques. One of the problems
may be the complex nature of intermittent partially
synchronous beta-band oscillations in Parkinson’s dis-
ease. As we see the real pathological state is not one
of perfect synchrony, but rather exhibits a compli-
cated weakly synchronized and highly intermittent dy-
namics. While we can characterize it and can gener-
ate it in the model, its mechanisms in a mathematical
sense are still far from being understood. These mech-
anisms must define how the presumably desynchroniz-
ing stimulation will act on a dynamics which is not
fully synchronous to begin with. The models consid-
ered here may assist in the study of this problem.
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