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Synchronized oscillations in networks of inhibitory and excitatory coupled bursting neurons are

common in a variety of neural systems from central pattern generators to human brain circuits. One

example of the latter is the subcortical network of the basal ganglia, formed by excitatory and

inhibitory bursters of the subthalamic nucleus and globus pallidus, involved in motor control and

affected in Parkinson’s disease. Recent experiments have demonstrated the intermittent nature of

the phase-locking of neural activity in this network. Here, we explore one potential mechanism to

explain the intermittent phase-locking in a network. We simplify the network to obtain a model of

two inhibitory coupled elements and explore its dynamics. We used geometric analysis and singu-

lar perturbation methods for dynamical systems to reduce the full model to a simpler set of equa-

tions. Mathematical analysis was completed using three slow variables with two different time

scales. Intermittently, synchronous oscillations are generated by overlapped spiking which crucially

depends on the geometry of the slow phase plane and the interplay between slow variables as well

as the strength of synapses. Two slow variables are responsible for the generation of activity pat-

terns with overlapped spiking, and the other slower variable enhances the robustness of an irregular

and intermittent activity pattern. While the analyzed network and the explored mechanism of inter-

mittent synchrony appear to be quite generic, the results of this analysis can be used to trace partic-

ular values of biophysical parameters (synaptic strength and parameters of calcium dynamics),

which are known to be impacted in Parkinson’s disease. VC 2011 American Institute of Physics.

[doi:10.1063/1.3633078]

Synchronized neural oscillations are widespread phe-

nomena with a variety of functional implications and

have been observed in many neural systems. In particu-

lar, synchronized oscillations of bursting neurons are

related to motor symptoms of Parkinson’s disease.

Recent experiments revealed intermittent characteristic

of this synchronized activity, which may have functional

importance. This manuscript explores potential mecha-

nisms underlying this intermittent synchronization. We

reduced large network model
1

to a simpler model of two

coupled bursting neurons and used fast=slow analysis to

explore the mechanisms of intermittent synchronization.

Intermittently, synchronous oscillations are generated by

overlapped spiking which crucially depends on the geom-

etry of slow phase plane and the interaction between slow

variables as well as the strength of coupling between

bursting cells.

I. INTRODUCTION

Synchronized oscillations across various brain areas

have been extensively studied because of their functional

significance for perceptive and cognitive processing2–4 and

for movement preparation and execution.5–7 Thus, it is natu-

ral that disorganization of this oscillatory activity (including

pathologically strong or pathologically weak synchronization

of oscillations) may contribute to a variety of neurological

and psychiatric disorders.8,9 In particular, hypokinetic motor

symptoms of Parkinson’s disease such as slowness and rigid-

ity of voluntary movements are closely related to synchron-

ized oscillatory neuronal activity in the beta frequency band,

loosely speaking, 10–30 Hz.10–12 This kind of synchroniza-

tion is intermittent and has a specific temporal patterning.13

Earlier modeling and experimental studies have investi-

gated the role of two brain nuclei—external globus pallidus

(GPe) and subthalamic nucleus (STN) in the support of this

oscillatory synchronized dynamics in Parkinson’s disease. In

particular, synchronized oscillations have been suggested to

result from rhythmic sequences of recurrent excitation and in-

hibition in pallido-subthalamic networks.14,15 While the role

of other structures in the generation of these synchronized

oscillations cannot be ruled out, our own modeling work sug-

gested that the characteristic temporal structure of oscillatory

activity in the beta-band may be due to intrinsic properties of

the STN-GPe network itself and showed that the correspond-

ing parameter region resides between synchronized and non-

synchronized oscillatory dynamics.1

The transient nature of neural dynamics should not be

surprising.16,17 However, although many network architec-

tures and their activity patterns have been extensively studied,
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biological and dynamical mechanisms underlying synchrony

with irregular desynchronizing events (like those described in

Ref. 13) are not fully understood. In the current study, we

investigated one possible generic mechanism underlying this

intermittent synchrony in networks of inhibitory and excita-

tory bursting neurons. We reduced the excitatory-inhibitory

network formed by STN and GPe to a simple network consist-

ing of two inhibitory cells with self-inhibition. The resulting

simple model is not able to fully capture all the details of the

complex network activity patterns shown in experimental

recordings13 and previous modeling work.1 However, it cap-

tures important characteristics of intermittent synchrony and

provides insights into potential dynamical and biological

mechanisms and their dependence on parameters.

We used geometric dynamical systems and singular per-

turbation methods to reduce the full model to a simpler set of

equations. This approach simplifies the analysis of the dynam-

ics and investigation of the underlying mechanisms. Mathemat-

ical analysis was completed using three slow variables with

two different time scales. We show how two slow variables are

responsible for the competition between two cells by studying

the geometry of slow phase plane. This competition is responsi-

ble for the generation of overlapped spiking. The slowest vari-

able, on the other hand, broadens the range of synaptic

strength, over which irregular and intermittent activity patterns

occur. The results in this study describe how the properties of

the cells and strength of synaptic connections interact to gener-

ate intermittent synchrony and may be used to relate the model

parameter relationship to the properties of real systems.

In Sec. II, a conductance-based model of the STN cell

and network architecture is introduced. In Sec. III, we study

various activity patterns focusing on the intermittent phase-

locking due to overlapped spiking of neurons. In Sec. IV, we

provide a geometric analysis of intermittent synchronization

using fast=slow analysis. Overlapped spiking and regular

bursting solutions are subjected to the analysis based on the

geometry of a two-dimensional bifurcation diagram.

II. NEURAL MODEL AND NETWORK ARCHITECTURE

Experimental results and previous modeling studies

have suggested that the STN-GPe network within the basal

ganglia may form a key network, and their interactions play

a crucial role in the pathophysiology of Parkinson’s dis-

ease.14,15 In the reciprocally connected STN-GPe network,

the excitatory input from STN to GPe is relatively sparse,

whereas the inhibitory input from GPe to STN is relatively

dense.18 The GPe cell also gets an external inhibitory input

from striatum. Previous modeling works1,19,20 considered a

network consisting of 10 STN cells and 10 GPe cells, where

STN cell sends an excitatory input to a GPe cell, and GPe

cell sends an inhibitory input to nearby STN cells (Fig. 1(a)).

Such networks are able to produce realistically rich patterns

of activity. In this study, we will start with this network

architecture and reduce it to a simpler one as follows.

The aforementioned modeling studies have shown that

a transition from an irregular, uncorrelated regime (presum-

ably close to the normal state) to a regular, synchronized re-

gime (presumably extreme pathology) in STN-GPe network

can be accomplished in a biologically realistic manner by

controlling two dopamine-dependent parameters, more

hyperpolarizing current input to GPe and stronger inhibi-

tory synaptic connection from GPe to STN. Under more

hyperpolarizing current, the model GPe cell becomes less

active and spontaneous activity is substantially reduced.

Thus, as we approach a synchronized regime through inter-

mittent synchrony, the GPe cell tends to relay the excitation

from the STN cell faithfully due to its reduced spontaneous

firings. For simplicity of analysis, we assume that the GPe

cell acts as a simple relay cell and reduce the whole net-

work to a network of STN cells. Under this assumption, ac-

tivity of the STN cell is instantaneously delivered to a GPe

cell and that GPe cell faithfully reproduces STN cell activ-

ity, hence, the STN cell and the GPe cell, which gets an

excitatory input from that STN cell, are merged together.

Thus, although real STN cells are excitatory, the resulting

network consists of cells with inhibitory connections. In

particular, the reciprocal inhibition from a GPe cell to an

STN cell becomes self-inhibition. Therefore, we considered

a network consisting of two inhibitory cells with reciprocal

inhibition as well as self-inhibition (Fig. 1(b)). We assumed

that the strength of self-inhibition is 30% of the reciprocal

synaptic strength unless specified otherwise.

We employ the conductance-based single compartment

model of STN cells used in Refs. 1, 19 and 20, which con-

sists of membrane potential (V), three gating variables for

ionic currents (n, h and r), intracellular concentration of

Ca2þ, and synaptic variable (s). The equations are

C � dV=dt ¼ �IL � IK � INa � IT � ICa � IAHP � Isyn þ Iapp;

(1)

dx=dt ¼ /xðx1ðVÞ � xÞ=sxðVÞ for x ¼ n; h; r; (2)

d½Ca�=dt ¼ eð�ICa � IT � kCa½Ca�Þ; (3)

ds=dt ¼ aH1ðVpresyn � hgÞð1� sÞ � bs; (4)

IL ¼ gLðV � VLÞ, IK ¼ gKn4ðV � VKÞ, INa ¼ gNam3
1ðVÞh

ðV � VNaÞ are leak, fast potassium, and sodium currents,

respectively. IT ¼ gTa3
1ðVÞb2

1ðrÞðV � VCaÞ and ICa ¼ gCas2
1

ðVÞðV�VCaÞ are two calcium currents and IAHP ¼ gAHP

ð½Ca�=ð½Ca�þ k1ÞÞðV�VKÞ is an after hyperpolarization cur-

rent. m1, a1, and s1 are instantaneous voltage-dependent

gating variables. Isyn ¼ gsynðV�VsynÞ
P

j sj is synaptic cur-

rent where summation is over s-variables from all neurons

projecting to a given neuron. Sigmoidal function H1 is given

by 1=ð1þ exp½�ðV�HH
g Þ=rH

g �Þ. The parameters are the

same as in Ref. 20, with the minor exception of gT changed

from 0.5 to 0.6.

FIG. 1. Network architecture. (a) Reciprocally connected large STN-GPe net-

work. Arrow indicates excitatory connection and circle indicates inhibitory

connection. (b) Reduced network of two inhibitory cells with self-inhibition.
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In the later part of this study, we will focus on the

dynamics of three slow variables (the gating variable r of IT ,

total synaptic input r, and the calcium concentration [Ca])

with their time scales. The total synaptic input for cell 1, say

r1, is defined as gsynð0:3s1 þ s2Þ where s1 is its own synaptic

variable, and s2 is the synaptic variable of cell 2.

The time constant srðVÞ=/r for r in Eq. (2) is 49.2 over

most of voltage range, 1=b for s in Eq. (4) is 25, and 1=e for

[Ca] in Eq. (3) is 2667, while membrane potential V rises

and falls within few milliseconds when a cell fires. We have

two slow variables r and r, and another extremely slow vari-

able [Ca].

This model was integrated using XPPAUT. Customized

MATLAB codes were used for time-series analysis, which is

described in more detail in Refs. 13 and 21. Delays due to

conductance, synapses, and cell dynamics may influence the

intermittent synchronization properties observed in the ex-

perimental data. However, this simple network is able to

generate patterns, which are qualitatively similar to those

observed in experimental data. Since we are interested in the

generic mechanism underlying such activity patterns, this

network architecture is justified for our study.

The resulting network appears to be relatively typical

for neural systems. Its mutually inhibitory organization

makes it prone to the generation of rhythms, which makes it

somewhat similar to central pattern generator networks.

III. SYNCHRONOUS ACTIVITY PATTERNS IN THE
NETWORK

A. Synchronous activity in dependence on the
coupling strength

We chose gsyn (inhibitory synaptic strength) as a varying

parameter (it is one of the parameters, expected to increase as

the dopamine disappears in Parkinson’s disease22–25) and first

consider activity patterns over various gsyn values. Without

self-coupling, we observed out-of-phase bursting solutions

(phases of bursting in neurons are shifted by p) for sufficiently

large gsyn values due to the post-inhibitory rebound burst of

STN cell.20 With self-coupling, we also observe out-of-phase

bursting solutions where the number of spikes within a burst

of the out-of-phase solution increases monotonically as gsyn

increases. But, there are also intervals of parameters, which

correspond to transitions from one out-of-phase solution to

another. Over such intervals, activity patterns demonstrate a

mixture of the two nearby solutions. The lengths of such inter-

vals become shorter as gsyn increases.

Note that while Ref. 20 studied similar models, it looked

at extremes: clustered regime in the strong coupling case and

irregular regime in the weak coupling case. This study looks

at the intermediate case, when the coupling is intermediate

and the dynamics is neither perfectly clustered nor irregular.

Not only this dynamics is more complex but also it is more

realistic, as we show below. The present study outlines a sce-

nario for a realistically complex dynamics, advancing us

beyond well-studied cases of weak and strong coupling.

To characterize the dynamics of the network, we consider

the correlation between activities of the two cells in a large

range of coupling strength. First, we computed coherence in

the frequency domain using membrane potentials. We down-

sampled 10s-long voltage data to 1 kHz and divided it into 8

sections with 50% overlap. A Welch’s averaged, modified

periodogram method was used to compute the coherence esti-

mate over frequencies. Fig. 2(a) shows the coherence values

averaged over [0,100] Hz (black) and [10, 30] Hz (gray)

frequency bands. We observe an overall increase of average

coherence in both cases as gsyn increases because network

activity patterns are controlled by stronger inhibitory

connection.

FIG. 2. (a) Averaged coherence over

0–100 Hz band (black) and 10–30 Hz

band (gray) between voltages of two

cells. Coupling strength gsyn varies from

0.1 to 2 with 0.1 stepsize. (b) Phase-

locking index c in dependence on gsyn.

Different lines denote different strength

of self-coupling; default value is 30%

(black solid) and two other strengths,

25% (dotted) and 35% (gray) are also

shown for comparison. (c) Activity pat-

terns with irregular sequence of burstings

with overlapped spikes when gsyn ¼ 0:9.
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This network can generate complex activity patterns over

a significant interval of parameter values due to reciprocal in-

hibitory input. One example is for gsyn around 0.9 (see Fig.

2(a)), where the average coherence over 10–30Hz frequency

band shows a dip. Interestingly, solutions over this interval

demonstrate substantial power in 10–30 Hz frequency band.

Fig. 2(c) illustrates activity patterns when gsyn ¼ 0:9. This so-

lution “lies between” 2-spike and 3-spike out-of-phase burst-

ing solutions and shows alternation of bursts, the number of

spikes within each cycle tends to change irregularly. To quan-

tify this imperfect synchrony, we computed the degree of

phase-locking between two cells using the synchronization

index c. We first band-pass filtered the signal within 10–30 Hz

band and constructed phase variables using Hilbert trans-

form. The synchronization index is defined as

cNðtkÞ ¼ k1
N

Pk
j¼k�Nþ1 ei/jk2

, where /j is the difference of

phases and N is the number of data points over a window of

some fixed length. We used 1s long non-overlapping win-

dows and averaged the resulting synchronization indices to

get an averaged synchronization index. Fig. 2(b) shows the

averaged synchronization index over some gsyn values and

different self-coupling strengths. If the self-coupling strength

is 30%, we have 1-spike or 2-spike out-of-phase bursting so-

lution for gsyn < 0.9 and 3-spike out-of-phase bursting solu-

tion for gsyn > 0.9. Over these two ranges of gsyn values, we

have relatively strong phase locking between the two cells.

This secure phase locking is reduced when gsyn is between

0.9 and 0.92, where an irregular sequence of burstings with

overlapped spikes dominates. Different values of self-

coupling preserve this characteristic feature of phase-locking

over a range of gsyn values, while the gsyn value which shows

the most significant drop of phase-locking decreases as the

strength of self-coupling increases.

B. Irregular dynamics

Now, let us explore whether the activity pattern shown

in Fig. 2(b) is really chaotic. To do it numerically, we com-

pute maximal Lyapunov exponents (MLEs); in general, a

positive maximal Lyapunov exponent indicates exponential

growth of small perturbations and chaotic dynamics if the

solutions are bounded. Instead of using whole time series,

we may use one-dimensional map data obtained through

Poincare section. We chose the gating variable r of IT (Eq.

(1)) in one of the cells for Lyapunov exponent computation.

IT is essential for the generation of a rebound burst after re-

moval of prolonged hyperpolarization, which, in turn, is im-

portant for generating irregular activity patterns. We

recorded values of r of cell 1 whenever it is released from in-

hibition to get frng. We say that cell 1 is released from inhi-

bition when total synaptic input r1 of cell 1 begins to

decrease after cell 2 fires its last spike of a burst. Fig. 3(a)

shows return maps, rnþ1 vs. rn, for several different gsyn val-

ues from 0.86 through 0.96. For gsyn � 0:89 or gsyn � 0:93,

the return map has only one single point, black square

(circle, triangle, and diamond) for gsyn ¼ 0:86 (0.88, 0.94,

and 0.96, respectively). A single point (a tight cluster of

points) on rnþ1 ¼ rn line implies an almost regular and peri-

odic solution. In this case, the black square and circle are

2-spike bursting solutions, the triangle and diamond are

3-spike bursting solutions. Between these two cases, we

have more complicated return maps when gsyn ¼ 0:9 (Fig.

3(b)) and 0.92 (Fig. 3(a), gray dots). The complex appear-

ance of the return map in Fig. 3(b) may suggest chaotic

dynamics. And indeed, the maximal Lyapunov exponent is

0.5292 when gsyn ¼ 0:9, hence, activity patterns are really

irregular. gsyn ¼ 0:92 case (Fig. 3(a)) also has positive maxi-

mal Lyapunov exponent 0.3613. Fig. 3(c) shows the maximal

Lyapunov exponents over other gsyn values from 0.894 to

0.924. The values of maximal Lyapunov exponents show

complex dependence on gsyn and are relatively large for gsyn

between 0.9 and 0.91. Maximal Lyapunov exponents were

computed with TISEAN package.26

C. Escaping and intermittent phase synchronization

The characteristic irregular sequence of burstings shown

in Fig. 2(b) may be attributed to the competition between the

two cells, which is evidenced by frequent occurrences of

FIG. 3. Return map rnþ1 vs. rn for different values of the synaptic strength parameter gsyn (a) presents five different values of gsyn: 0.86(square), 0.88(circle),

0.94(triangle), 0.96(diamond), and 0.92(gray dots). (b) More complex dynamics observed for gsyn ¼ 0:9. (c) Maximal Lyapunov exponents (MLEs) over a

range of refined gsyn values between 0.9 and 0.92. When gsyn lies between 0.9 and 0.91, MLE values are significant as compared with other range of gsyn val-

ues. Over this range of gsyn values, chaotic activity patterns may be robust.
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overlapped spikes. This kind of spike overlapping can be

characterized as “escape.”27 The observed variability of

number of spikes associated with an escape mechanism is re-

sponsible for the reduction of the phase-locking strength.

Fig. 4(a) shows an example of “escape” in detail when

gsyn ¼ 0:9. Two voltage profiles are shown in upper panel

where gray trace is escaping from inhibition of the other cell

and the corresponding phase variables are shown in bottom

panel. We can see that overlapped spikes cause distortions of

the phase relationship between the two cells through delay

and=or advance of phases, which would be almost constant

in case of regular bursting solutions. The competition of the

two cells through escaping redefines the relationship between

them. The accumulated effect of this competition is shown

in Fig. 4(b) through the first-return map for the phase differ-

ence. We recorded the phases of cell 1 whenever the phase

of cell 2 passes upward through some fixed value. In this fig-

ure, we set the check point as �3 for cell 2 and collected

f/ig for cell 1. f/ig was shifted so that the mean is p=2 and

then we plotted /iþ1 vs. /i.

In Fig. 4(b), one big cluster in the first quadrant corre-

sponds to the synchronized activity patterns between two

cells, while two big branches in the second and fourth quad-

rants correspond to desynchronized activity. Deviation from

the cluster is mostly due to the frequent occurrence of over-

lapped spikes and is characterized by a quick return to the

cluster (Fig. 4(c)). Similar first-return maps for the phase dif-

ference and relatively short duration of desynchronizing

events was also observed in the experimental data in parkin-

sonian patients13 and in the model of the large basal ganglia

network.1

Although the origin and the underlying mechanisms of

this spike overlapping and resulting intermittent synchroni-

zation will be discussed in the next part of this paper, one

heuristic explanation can be given. Irregular and frequent

occurrences of overlapping are due to the specific nature of

the given solution itself; in the parameter space, it is situated

in between two stable solution regimes. The solution tends to

be either in 2-spike or 3-spike bursting modes, but this tend-

ency for stability is frequently destroyed by other destabiliz-

ing factors. We would like to stress that this activity pattern,

which is robust in numerical simulations with weak additive

Gaussian white noise, suggests that this mechanism of activ-

ity pattern may be of experimental relevance.

IV. GEOMETRIC ANALYSIS OF INTERMITTENT
SYNCHRONIZATION

A. Slow phase plane construction via fast=slow
analysis

In this section, we will investigate how frequent occur-

rences of overlapped spiking, which result in characteristic

irregular sequence of burstings and intermittent phase syn-

chronization, depend on the strength of synaptic connection,

intrinsic properties of the cells, and the interplay between

slow variables. We will use geometric methods and begin by

considering a STN cell when gsyn ¼ 0:9 (intermittent phase-

locking case illustrated in Figs. 3 and 4). The voltage profile

is shown in the upper panel of Fig. 5(a) and the lower panel

shows three other variables, the gating variable r of IT , the

total synaptic input r, and the calcium concentration [Ca].

Total synaptic input r is the sum of inhibitory input from the

other cell and self-inhibition.

Due to the slowest time scale of [Ca], we may consider it

as a constant and proceed with fast=slow analysis. It seems,

however, that [Ca] plays an important role in the generation

of irregular sequence of burstings with overlapped spiking.

We inspected activity patterns under constant [Ca] ranged

from 0.66 to 0.70 and found that they tend to be periodic.

These periodic solutions are not like simple out-of-phase

2-spike or 3-spike solutions but more complicated patterns

with escaping. For example, when [Ca]¼ 0.67 and gsyn ¼ 0:9,

one period of activity patterns consists of 1) 3-spikes burst be-

ginning with escaping, 2) one alternation of bursts each con-

sisting of 3-spikes and 3) 3-spikes burst ending with escaping.

In some case, we have chaotic-like activity patterns also. The

activity patterns when [Ca]¼ 0.68 and gsyn ¼ 0:9 provide one

example. In this case, long repetition of periodic patterns

stated above is interrupted by intermittent occurrences of other

types of long burst alternation. For other values of gsyn,

FIG. 4. Irregular partially-synchronous dynamics of reduced model when gsyn ¼ 0:9. (a) An example of escaping. Upper panel shows voltage profiles and

lower panel shows corresponding phases for two neurons. (b) Return map for phases /iþ1 vs. /i. (c) Histrogram of durations of desynchronization events.

Black bars come from the experimental data13.
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however, periodic patterns appear again. As a result, the range

of gsyn values over which chaotic patterns appear is signifi-

cantly reduced. In other words, the occurrence of irregular pat-

terns shows sensitivity to [Ca] values. Hence, we include [Ca]

in our fast=slow analysis.

To begin fast=slow analysis, we first regard [Ca] as a

constant ([Ca]¼ 0.7 in the following analysis unless men-

tioned otherwise), while r and r are slow variables. Then,

we can explore the bifurcation diagram of the fast subsys-

tem with parameters r and r. We first fix r and consider r to

be a bifurcation parameter. Fig. 5(b) shows the resulting

bifurcation diagram when r¼ 1. We have Z-shaped curve

of fixed points. For larger values of r, there are three fixed

points; the lower fixed point is stable, the middle is a sad-

dle, and the upper is unstable. As r decreases, lower stable

and middle saddle fixed points merge at a saddle-node

bifurcation (labeled SN). There is also a subcritical Hopf

bifurcation point on the upper branch and fixed points

become stable once passed this point (thick black). A

branch of unstable periodic orbits (thin gray), which turn to

stable orbits (thick black), emanates from the Hopf bifurca-

tion point, and becomes a saddle-node homoclinic orbit

when r¼rSN. In fact, this bifurcation structure persists for

each r on [0, 1].

We trace the saddle-node bifurcation point (SN) in the

bifurcation diagram as r varies to get a two dimensional

bifurcation diagram, which is shown in Fig. 6(a). We call

the resulting curve R-curve (the curve in the (r, r) plane at

Fig. 6(a)). The fast subsystem shows sustained spiking in

the region left to R (spiking region) and quiescence in the

region right R (silent region). Note that if r is sufficiently

small, then, we cannot get an oscillatory solution. Fig. 6(a)

also shows frequency curves (dependence of frequency of

spikes on the total synaptic input r for different values of r)

in the spiking region. Fig. 6(b) provides another view of

these curves. There is a band-like region of lower frequency

along R, visible in the frequency curve when r¼ 0.25. This

band is more prominent along the lower part of R and this

will play an important role in the generation of overlapped

spiking.

FIG. 5. (a) STN cell activity patterns when gsyn ¼ 0:9. Upper panel shows voltage profile and lower panel shows slow variables r (black solid), r (lower gray

solid), and [Ca] (black dotted). Refer to Eqs. (2)–(4). The time course of [Ca] is also plotted with the scale on the right vertical axis (upper gray solid). (b)

Bifurcation diagram of the fast subsystem for r¼ 1 and [Ca]¼ 0.7. There is a saddle-node bifurcation point (SN) at r¼rSN and also a subcritical Hopf bifurca-

tion point on the upper branch where an unstable periodic orbit begins to be turning to a stable periodic orbit. This stable periodic orbit becomes a saddle-node

homoclinic orbit when r¼rSN. Stable (unstable) fixed points and limit cycles are in thick black (thin gray).

FIG. 6. The frequency of firing in de-

pendence on the slow variables r and r.

(a) R-curve (gray line in the (r, r) plane)

divides the space of the slow variables

(r, r) into silent and sustained spiking

regions. Over the sustained spiking

region, the curves of frequencies are

plotted for various r (0.25, 0.3, 0.35, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, and 1, left to right).

(b) Another view of frequency curves

from the part (a). For larger values of r,

the frequency of the periodic solution

decreases almost linearly as r decreases

and then sharply decreases near R. For

r� 0.5, the frequency curves are almost

identical.
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B. Regular out-of-phase bursting solutions in the
phase plane of slow variables and linear stability
under constant calcium level

Fig. 7 shows the two parameter bifurcation diagram

with the projection of regular 2-spike out-of-phase bursting

solution when gsyn ¼ 0:86. Without loss of generality, let’s

assume that active cell is cell 2 and silent cell is cell 1. We

will follow trajectories of both cells from the moment when

cell 2 fires its second spike. Upper filled circle in Fig. 7

denotes (r1, r1) of cell 1 and lower filled circle denotes (r2,

r2) of cell 2 at this moment.

First note that synaptic variable s of a cell rises once

membrane potential rises, passes certain threshold (hg), and

stays above it; s decreases otherwise (Eq. (4)). More precisely,

if membrane potential is larger than hg, then s quickly

approaches a=ðaþ bÞ, and if it is less than hg, then s slowly

approaches 0 (Eq. 4). Hence, s repeats up and down when a

cell fires a series of action potentials, while it decreases monot-

onically when a cell is silent. We also note that total synaptic

input r is a weighted sum of synaptic variables multiplied by

synaptic strength. For example, r1¼ gsyn (0.3 s1þ s2).

Therefore, even though a cell is in active phase, corresponding

total synaptic input r shows wiggles with reduced amplitude

due to self-inhibition (Fig. 5(a)).

Now let’s return to the trajectories in Fig. 7. When cell 2

fires its second spike, s2 approaches a=ðaþ bÞ quickly, but

s1 is small (around 0.1) and keeps decreasing, hence, the in-

crement of r1 is near gsyna=ðaþ bÞ, while the increment of

r2 is near 30% of gsyna=ðaþ bÞ. Due to this large increment

in r1, (r1, r1) is shifted to the silent phase (open circle),

while (r2, r2) is slightly shifted to the right. Once membrane

potential drops below hg, both s1 and s2 begin to decrease

and so do both r1 and r2.

To understand dynamics of r when cell 2 fires its second

spike, we need to consider the governing equation of r
(Eq. 2). For the clarity of explanation, we rewrite it here as

dr

dt
¼ /r

r1ðVÞ � r

srðVÞ
:

The dynamics of r is driven by two factors: r1ðVÞ and the

time constant srðVÞ=/r . For example, suppose that membrane

potential V is fixed at some value V0. Then r approaches

r1ðV0Þ over time. How fast or slowly r approaches r1ðV0Þ is

determined by the time constant srðV0Þ=/r. The smaller the

time constant is, the faster r approaches r1ðV0Þ. As was stated

before, srðVÞ=/r is 49.2 over reasonable range of voltage V.

Thus, the dynamics of r is mainly driven by the values of

r1ðVÞ. Value of r1ðVÞ is close to zero if membrane potential

V is sufficiently large and is close to one if V is sufficiently

small. There is a monotonic transition between these two states

over intermediate values of V. When a cell fires an action

potential, membrane potential goes through three stages: (1)

fast up and down of voltage, (2) after hyperpolarization period,

and (3) recovery period. Accordingly, r1ðVÞ takes small val-

ues close to zero during up=down strokes, large values close to

one during afterhyperpolarization period, and then intermedi-

ate values over recovery period. This explains the behavior of

r2 in Fig. 7, where r2 decreases initially, increases for a while,

and then decreases again. The dynamics of r1 is more simple.

When cell 2 fires its second spike, r1 first increases due to the

hyperpolarization caused by inhibitory input from cell 2 and

then decreases as the inhibition wears off.

Let us consider how far r1 can go under hyperpolariza-

tion. It is an important issue in the current study because

larger value of r may result in longer duration of post-

inhibitory rebound burst20,28 when a cell is released from in-

hibition and enters spiking region (Fig. 8). The increment of

r1 under hyperpolarization depends on the following two fac-

tors: degree of hyperpolarization and duration of hyperpolar-

ization. Degree of hyperpolarization is a function of synaptic

strength (gsyn) because gsyn determines how much the mem-

brane potential V can be lowered by inhibitory input from

the other cell. Admitting that the dynamics of r is driven by

r1ðVÞ and r1ðVÞ takes values close to 1 over sufficiently

small V, gsyn controls the maximum level that r may reach

during hyperpolarization. In other words, the degree of hy-

perpolarization which is modulated by gsyn controls the max-

imum level of r1. On the other hand, if the duration of

hyperpolarization is not sufficient, then r1 may not reach the

maximum set up by gsyn.

After some time past R in the (r, r) plane, cell 1 finally

fires its first spike (upper square, Fig. 7). We denote the time

needed for cell 1 to fire its first spike after it is released from

inhibition (from upper open circle to upper square in Fig. 7)

by T1. It is not clear here, whether cell 2 was able to fire

another spike or not if it was not interrupted by cell 1. If cell

2 was able to fire another spike, then the inter-spike interval

FIG. 7. Two-parameter bifurcation diagram with projection of 2-spike out-

of-phase bursting solution. The close-to-vertical curve in the middle of the

figure is the R-curve shown in Fig. 6 when [Ca]¼ 0.7. The moment when

active cell fires its last spike is denoted by lower circle and upper circle

denotes (r, r) of silent cell at that moment. Open circle denotes the moment

that silent cell is released from inhibition. The moment when the silent cell

fires its first spike is denoted by upper square and lower square denotes (r, r)

of active cell at that moment. T1 is the time needed for silent cell to fire its

first spike after it is released from inhibition (from open circle to upper

square) and T2 is inter-spike interval between first and second spike. Black

line is the trajectory of active cell from its first spike until the moment that it

gets inhibition to leave the spiking region. The counterpart of silent cell is

denoted by gray trajectory.
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between its second and third spikes should be greater than T1

of cell 1. If not, then cell 2 would get a chance to fire its third

spike and cell 1 be inhibited again. In fact, the lower fre-

quency band along R make this scenario possible because

cell 2 traverses near the lower frequency band along R after

its second spike and this results in longer inter-spike interval

between second and third spikes of cell 2. It is also possible

that cell 2 simply leaves the active region after its second

spike.

Once cell 1 fires its first spike, due to the self-inhibition,

(r1, r1) is also pushed to the right very quickly and then begins

to move to the left slowly to enter the spiking region again to

fire its next spike, while (r2, r2) traverses mostly silent region.

Because the inter-spike interval between first and second spikes

of cell 1 is smaller than the time needed for cell 2 to enter the

spiking region and fire its first spike, cell 1 fires its second

spike. This comprises the half cycle of the regular 2-spike

bursting solution in the (r, r) plane of slow variables.

To get some insight into the stability of 2-spike regular

out-of-phase bursting solution, we simplify the dynamics of

r by averaging its governing equation. Recall that overall

level of r is increasing in silent region and decreasing in

spiking region although it shows up and down fluctuations.

Let rS
1 (rA

1) be the averaged value of r1ðVÞ over silent

(active) phase in the governing equation of r (Eq. 2). Here,

we say that a cell is in the silent phase if it is in the silent

region (right of the R) and is in the active phase if it is in the

spiking region. We also assume that srðVÞ is constant, say sr ,

because srðVÞ is almost constant over a physiologically rele-

vant range of V. Then the averaged equation is given by

r0 ¼ kð�r1 � rÞ, where k ¼ /r=sr and �r1 is either rS
1 or rA

1
with general solution r ¼ �r1 þ ðr0 � �r1Þe�kt for some ini-

tial condition r0. In this averaged framework, r is monotoni-

cally increasing (decreasing) over silent (active) phase.

We define TI as the time from the point when silent cell

is released from inhibition to the point when (r, r) reaches R
and enters spiking region. We also define TA as the time

from R to its second spike. As compared with T1 and T2 in

Fig. 7, TI is smaller than T1 and TA is bigger than T2. We

may assume that silent cell fires its first spike when (r, r)

reaches R and enters spiking region as in Ref. 20. Now, it

takes TI for silent cell to enter spiking region and fire its first

spike. Then silent cell becomes active cell and it takes TA to

fire its second spike. After its second spike, active cell

spends TI in the spiking region before it gets inhibition from

the other cell. Now, active cell becomes silent cell and it

spends TA until it is released from inhibition.

TI and TA are functions of the values of (r, r) when

silent cell is released from inhibition (e.g., at the open circle

in Fig. 7). Recall that synaptic variable of active cell

approaches a=ðaþ bÞ quickly when it fires its second spike,

while synaptic variable of silent cell is small and keeps

decreasing. Near the regular 2-spike out-of-phase solution,

the values of synaptic variable of active cell are similar in

magnitude. In addition, synaptic variable of silent cell is

multiplied by 0.3* gsyn, where gsyn is 0.86. Thus, r of silent

cell when it is released from inhibition is dominated by

gsyna=ðaþ bÞ. In fact it takes almost identical values with

negligible differences near the regular 2-spike out-of-phase

solution. By letting r being fixed when silent cell is released

from inhibition, we may regard TI and TA as functions of r.

We will now trace values of r when silent cell is

released from inhibition and construct a map for it. If fixed

point of this map is stable, then we may conclude that 2-

spike regular out-of-phase bursting solution is also stable.

Let ru
� be the value of r when silent cell is released from inhi-

bition and rl
� the value of r when active cell fires its second

spike. Now, we trace r1 from ru
� along the simplified trajec-

tory of regular 2-spike bursting solution. When cell 1 fires its

first spike, r1 is given by r1
1 ¼ rS

1 þ ðr� � rS
1Þe�kTIðru

�Þ. In the

active region, it fires its second spike after TAðru
�Þ and spends

TIðru
�Þ until it gets inhibition. At this time, r1 is

r2
1 ¼ rA

1 þ ðr1
1 � rA

1Þe�kðTAþTIÞ. After TI, r1 becomes ru
� ,

where ru
� ¼ rS

1 þ ðr2
1 � rS

1Þe�kTI . Combining these three

equations, we have an implicit equation for ru
�

ru
� ¼

C3 þ C2e�kTA þ C1e�kðTIþ2TAÞ

1� e�2kðTIþTAÞ
(5)

FIG. 8. Spike firing for different values of r and [Ca]. (a) The number of spikes that a cell fires depends on the level of r when the cell is released from inhibition.

The vertical line (r¼ 0.927) is divided into three intervals according to number of spikes, 2, 3, and 4. Boundaries between these intervals are marked by two dots

(r¼ 0.45 and 0.58). Three exemplary cases for each number of spikes are presented for r is 0.4 (2 spikes, dotted), 0.5 (3 spikes, black solid), and 0.6 (4 spikes,

gray solid). (b) Plot of T1 (left black solid), T2 (left gray solid), T3 (right gray solid) and T4 (right black solid) as a function of r. The dotted lines are Tk curves for

k¼ 1, 2, 3, and 4 when [Ca] is slow variable. (C) R-curves for several [Ca] levels from 0.4 to 0.8 with stepsize 0.1 (left to right). Values of r and r are also plotted

when a cell fires its first spike for various initial values of r, from 0.35 to 0.7 with the stepsize 0.05 (from bottom to top). Synaptic strength gsyn ¼ 0:9.
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where C1 ¼ rS
1ð1� e�kTI Þ, C2 ¼ rA

1ð1� e�kðTIþTAÞÞ, and

C3 ¼ rS
1ð1� e�kTAÞ. Now, let r0

1 (r0
2) be a value of r1 (r2)

near ru
� (rl

�) when cell 2 fires its second spike and we trace

them in the slow phase plane. Note that TI and TA are func-

tions of r0
1 during the first half cycle. After TIðr0

1Þ, we have

r0
u

r0
l

 !
7!

rS
1 þ ðr0

u � rS
1Þe�kTI

rA
1 þ ðr0

l � rA
1Þe�kTI

 !
¼let r1

u

r1
l

 !
: (6)

Again, after TAðr0
1Þ, we have

r1
u

r1
l

 !
7!

rA
1þfrS

1þðr0
u � rS

1Þe�kTI � rA
1ge�kTA

rS
1þfrA

1þðr0
l � rA

1Þe�kTI � rS
1ge�kTA

 !
¼let r2

u

r2
l

 !
:

(7)

We let

F1ðxÞ ¼ rA
1 þ frS

1 þ ðx� rS
1Þe�kTIðxÞ � rA

1ge�kTAðxÞ

F2ðx; yÞ ¼ rS
1 þ frA

1 þ ðy� rA
1Þe�kTIðxÞ � rS

1ge�kTAðxÞ
:

(8)

Then Eq. (7) becomes

r2
u

r2
l

 !
¼

F1ðr0
uÞ

F2ðr0
u; r

0
l Þ

 !
: (9)

Similarly, over the remaining half cycle,

r2
l

r2
u

 !
7!

F1ðr2
l Þ

F2ðr2
l ; r

2
uÞ

 !
¼

F1ðF2ðr0
u; r

0
l ÞÞ

F2ðF2ðr0
u; r

0
l Þ;F1ðr0

uÞÞ

 !
; (10)

where TI and TA are functions of r2
l .

Combining these, we have the following map:

r0
u

r0
l

 !
7!

F2ðF2ðr0
u; r

0
l Þ;F1ðr0

uÞÞ
F1ðF2ðr0

u; r
0
l ÞÞ

 !
: (11)

If we linearize this map at (ru
� , rl

�), we have the following

Jacobian matrix

@F2

@x

@F2

@y
@F1

@x

@F1

@x

2
64

3
75

2

; (12)

where

@F1

@x
¼ ðrS

1 � rA
1Þe�kTAðru

�Þð�kT0Aðru
�ÞÞ þ e�kðTAðru

�ÞþTIðru
�ÞÞ

þ ðru
� � rS

1Þe�kðTAðru
�ÞþTIðru

�ÞÞð�kðT0Iðru
�Þ þ T0Aðru

�ÞÞÞ
@F1

@y
¼ 0

@F2

@x
¼ ðrA

1 � rS
1Þe�kTAðru

�Þð�kT0Aðru
�ÞÞ

þ ðrl
� � rA

1Þe�kðTAðru
�ÞþTIðru

�ÞÞð�kðT0Iðru
�Þ þ T0Aðru

�ÞÞÞ;
@F2

@y
¼ e�kðTAðru

�ÞþTIðru
�ÞÞ

In the current example, we have rA
1 ¼ 0:3106, rS

1 ¼ 0:6606,

ru
� ¼ 0:45, rl

� ¼ 0:39, TI ¼ 13, and TA ¼ 41. Numerically

computed dTI=drðru
�Þ ¼ �16 and dTA=drðru

�Þ ¼ �27. Using

these values, we found the eigenvalues of linearized map as

0.142 and 0.099, which implies that 2-spike solution is

stable.

C. Dependence of number of spikes in a burst on the
slow variables r and [Ca]

To analyze the dynamics that underlies the irregular

sequence of burstings with overlapped spiking, we first

checked how many spikes of a cell is able to fire when it is

released from inhibition and inter-spike intervals between

these spikes. If a cell fires a series of action potentials after

release from inhibition, a cell is said to have post-inhibitory

rebound (PIR) burst property and STN cell has this prop-

erty.19,28 Duration of PIR burst, patterns of action potentials

within PIR burst, and, in turn, number of spikes per burst

depend on intrinsic properties of cell and network.

First, we note that T-type current is responsible for a

PIR property of STN cell. In terms of slow variables, PIR

property depends on gating variable r of T-type current,

which determines the level of availability of T-type current.

In the plane of slow variables (r, r), larger value of r means

the possibility of longer stay in spiking region when a cell is

released from inhibition, hence, a larger number of spikes

within a burst is implicated.

To have larger r, sufficient level and duration of hyper-

polarization are required. As was explained above, the maxi-

mal level r can reach under inhibition is governed by r1ðVÞ.
If a cell is sufficiently hyperpolarized (hence, the overall

level of membrane potential during inhibition is sufficiently

low), then r1ðVÞ becomes close to one. Recall that degree of

hyperpolarization is modulated by gsyn. Thus, if gsyn is suffi-

ciently large, then, we may assume that r1ðVÞ ¼ 1. In fact,

this was assumed and used in the analysis of cluster solution

in Ref. 20. Over the range of gsyn values considered in the

current study, however, we have only intermediate level of

r1ðVÞ. For example, rS
1 was 0.6606 when gsyn ¼ 0:86 as we

saw in Sec. IV B.

To reach the maximum level set up by gsyn, say aver-

aged r1ðVÞ, a cell also needs to be inhibited sufficiently

long by a sequence of action potentials with short inter-

spike intervals. The requirement of sufficiently long inhibi-

tion is obvious because it takes some time for r to converge

to the averaged r1ðVÞ due to the slow time scale of the pro-

cess. On the other hand, firing rate of action potentials

within a PIR burst should be sufficiently high. If the inter-

spike interval between inhibitory inputs is large, then, cell

may be depolarized and r begins to decrease. This may

result in the lowering of overall level of r even though a

cell gets sufficiently long hyperpolarization. For example,

in Sec. IV B, the maximum level set up by gsyn is

rS
1 ¼ 0:6606, while the level of r when a cell is released

from inhibition is ru
� ¼ 0:45 and the following maximum

value of r is 0.521 (Fig. 7). This may be due to the insuffi-

cient duration of inhibition (just 2 spikes) and relatively

larger inter-spike intervals.
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Second, decay rates of r and r and their ratio also play

an important role in the generation of spikes within PIR burst

because trajectory of (r, r) in the slow phase plane is modu-

lated by them after release from inhibition. For example,

suppose that r decays fast and r decays slowly. Then, (r, r)

moves leftward almost horizontally in the slow phase plane.

Hence, it quickly passes through the low frequency band

along with R, approaches the high frequency region and

spends most of its time there. Thus, we expect larger number

of spikes per burst. On the other hand, if the decay rate of r
is much faster than that of r, then (r, r) moves leftward

almost vertically. In this case, (r, r) would enter the spiking

region, traverse the band of low frequencies and then exit

without spikes or with just one spike. The “worst” scenario

is that (r, r) is not even able to enter the spiking region.

Third, the number of spikes within PIR burst is also lim-

ited by self-inhibition because (r, r) in the slow phase plane

is pushed to the right when a cell fires. This would result in

longer inter-spike intervals due to the geometry of frequency

curves over the slow phase plane (Fig. 6). In addition, for

current values of gsyn, self-inhibition would force the trajec-

tory of (r, r) to stay mostly in the band of low frequencies.

In some cases, (r, r) even has to re-enter the spiking region

as seen in Figure 7. Therefore, we would expect not a large

number of spikes but 2- or 3-spikes solutions with long inter-

spike intervals.

Fig. 8(a) illustrates how the number of spikes changes

with r at the moment that a cell is released from inhibition. In

this figure, [Ca] is fixed at 0.7. Recall that r for cell 1 is given

by gsynð0:3s1 þ s2Þ where s1 is its own the synaptic variable

and s2 is the synaptic variable of cell 2. Upon firing of cell 2,

s2 approaches a value near 1, while s1 is about 0.1. In this

example, r1 approaches 0.927. Hence, we chose 0.927 as an

initial condition for r and the corresponding vertical line in

the slow phase plane is plotted at Fig. 8(a). Due to the exis-

tence of low frequency region along R, a cell doesn’t fire im-

mediately once past R. As expected, number of spikes

increases from 2 to 4 as r increases. In each case, after the last

spike, the trajectories traverse the low frequency band and

leave the spiking region without additional spike.

Fig. 8(b) plots inter-spike intervals of trajectories shown

in Fig. 8(a). As before, we let T1 be the time from the moment

that a silent cell is released from inhibition to the point that it

fires its first spike. We define T2 as the first inter-spike inter-

val, T3 as the second, T4 as the third, and so on. As implicated

in Fig. 8(a), Tkðk ¼ 1; 2; 3; :::Þ is a function of (r0, r0) at the

moment a cell is released from inhibition. Since r0 takes

almost fixed values under fixed synaptic strength (for exam-

ple, r � 0.927 when gsyn ¼ 0:9), Tkðk ¼ 1; 2; 3; :::Þ is mainly

a function of r0. In general, Tkðk ¼ 1; 2; 3; :::Þ decreases as r0

increases because a trajectory in the (r, r) plane, originating at

larger r0, gets more chances to traverse higher frequency

region, that is, upper left corner of the (r, r) plane. In addition,

Tkðk ¼ 1; 2; 3; :::Þ, especially, T1, tends to be leveled off for

sufficiently large r0. This happens because of the geometries

of R curve and spiking region, especially, the low frequency

band along R. R curve is almost vertical (Fig. 8(a)) and the

frequency curves are almost identical (Fig. 6) for sufficiently

large values of r. Thus, trajectories in the (r, r) plane, origi-

nating at sufficiently large r0, pass through qualitatively simi-

lar spiking region and their corresponding Tkðk ¼ 1; 2; 3; :::Þ
becomes similar.

We now check the effect of calcium concentration on R
(Fig. 8(c)). As calcium concentration increases from 0.4 to

0.8, R moves leftward. Fig. 8(c) also presents values of r and

r when a cell fires its first spike after release from inhibition.

These values also transition to the left along with their corre-

sponding R curves. For lower calcium levels, R curves don’t

cross the x-axis. In this low [Ca] case, once a cell is released

from inhibition, a trajectory in the (r and r) plane converges

to the origin and the corresponding cell activity pattern is

continuous firing with very low frequency. On the other

hand, R crosses the y-axis for larger calcium levels as shown

in Fig. 8(a). In this case, a trajectory in the (r and r) plane

eventually escapes the spiking region and cell stops firing.

Now consider a trajectory that begins at (r0 and r0) when a

cell is released from inhibition. Because the path of this tra-

jectory is determined by (r0 and r0), increase of [Ca] does

not change this trajectory but shift the spiking region to the

left in the (r and r) plane. As a result, this trajectory becomes

closer to the low frequency band left to R curve and we can

expect that Tkðk ¼ 1; 2; 3; :::Þ increases as [Ca] increases

(Fig. 9(c)). Fig. 8(b) also shows Tk curves (dotted lines)

when [Ca] is not a constant but a dynamic variable. Changes

in Tk curves are not significant because the magnitude of

[Ca] fluctuations is small.

D. The “escape” mechanism and overlapped spiking

Now, we consider the mechanism underlying escape in

detail using slow variables, especially r and [Ca]. Fig. 9

demonstrates one example of escaping for gsyn ¼ 0:9. In this

example, active cell (gray) fires three spikes and Fig. 9(a)

shows only last two spikes. When active cell fires its last

spike, silent cell (black) also fires. Fig. 9(b) shows the corre-

sponding trajectories in the slow phase plane of (r, r). Black

dots denote time t¼ 0 ms and squares t¼ 40 ms in Fig. 9(a).

Small increment of r of active cell in the middle of trajectory

followed by large increment at the end of trajectory means

that active cell first fired its last spike and then was inhibited

by silent cell. Although active cell first fired and thus the

silent cell got inhibition, silent cell was also able to fire

because the membrane potential of silent cell crossed the

spike threshold when it was inhibited (Fig. 9(a)).

We may interpret this as the competition between Tk of

active cell for some k and T1 of silent cell. Whenever active

cell fires, silent cell seeks a chance to enter the spiking

region. If Tk of active cell becomes comparable to T1 of

silent cell, the possibility of escaping arises. The example

shown in Fig. 2(b) illustrates the competition between T3 of

active cell and T1 of silent cell, which facilitates the genera-

tion of escape. We note that a stable 3-spike bursting solu-

tion satisfies the following condition:

T3 < T1 < T4; (13)

that is, before active cell fires its 4th spike, silent cell enters

the bursting region and fires. Here, T3 and T4 are inter-spike

intervals of active cell and T1 is of silent cell. In the bursting

033125-10 C. Park and L. L. Rubchinsky Chaos 21, 033125 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



solution, however, there is no distinction between Tk’s

because the values of r, r, and [Ca] when silent cell is lastly

released from inhibition are fixed and these values determine

Tk’s. This relationship between Tk’s is satisfied for

gsyn ¼ 0:94 and 0.96. Similarly, we have

T2 < T1 < T3; (14)

for gsyn ¼ 0:86 and 0.88 over which stable 2-spike bursting

solutions exist. In escaping case, these relationships between

Tk’s are disrupted due to the comparability between T1 and

T3.

Fig. 9(c) shows curves of T1 and T3 when gsyn ¼ 0:9,

[Ca]¼ 0.66 (black), and 0.7 (gray). Here, [Ca] is not a con-

stant, but a variable and the above values are initial values of

[Ca] when silent cell is lastly released from inhibition. We

define rf to be the value of r0 such that if r0 ¼ rf , then

T1 ¼ T3 and if r0 < rf (r0 > rf ), then T1 < T3 (T1 > T3).

Naturally, rf is a function of [Ca] and Fig. 9(c) demonstrates

that rf exists when [Ca]¼ 0.66 and 0.7. When gsyn ¼ 0:9,

numerically computed rf is 0.474 (0.476, 0.480, and 0.483,

respectively) when [Ca] is 0.64 (0.66, 0.68, and 0.70, respec-

tively). rf increases as [Ca] increases.

Figure 10 shows rf values (middle gray lines with star

marks) over a range of [Ca] and gsyn values. Except for

smaller values of gsyn, rf show monotonic increase as [Ca]

increases. These rf values form a band from the upper-left

corner to the lower-right corner, which separates 2-spike and

3-spike regular bursting solutions. Figure 10 also shows

numerically calculated r� values of 2-spike (lower left four

circles) and 3-spike (upper right four squares) regular burst-

ing solutions. These two groups of rf values are extrapolated,

respectively, using quadratic polynomials to the gsyn values

of interest, from 0.9 to 0.92. The resulting extrapolated r�
values are also plotted in the same figure.

Figure 10 demonstrates the proximity between extrapo-

lated r� values and rf values for gsyn from 0.9 to 0.92, over

which escaping activity patterns are prominent. Especially,

the extrapolated values of r� fall within the band when gsyn is

0.91. We cannot use this result directly because rf values

were obtained from the comparison between inter-spike

intervals of the same cell, while we need to compare T3 of

active cell and T1 of silent cell. However, the closeness of rf

and r� may suggest a heuristic explanation on the mechanism

underlying escaping. A trajectory starting at some initial

conditions near those of 2-spike bursting solution tends to

approach the regular bursting solution after some time.

While doing so, due to the proximity between r� and rf , T1

of silent cell becomes comparable to T3 of active cell, which

renders the possibility of escaping. Once escaping happens,

both cells fall into 3-spike bursting regime. However, due to

the instability of 3-spike bursting solution, both cells are

pushed into 2-spike bursting solution regime again and this

process repeated.

FIG. 9. An example of “escaping” for gsyn ¼ 0:9; one cell fires three spikes and during the firing of its last spike, the other cell also fires. (a) Voltage traces of

both cells (only last two spikes are shown in this figure, black line is escaping cell). (b) The corresponding trajectory in the phase space of slow variables.

Black dots (squares) correspond to time t¼ 0 (t¼ 40) in part (a). (c) T1 (solid) and T3 (dotted) curves as a function of r when [Ca] is variable. Initial conditions

for [Ca] are 0.66 (black) and 0.7 (gray).

FIG. 10. r� and rf values for the range of gsyn and different values of [Ca].

The lower four circles and upper four squares are numerically computed r�’s
for 2-spike and 3-spike regular bursting solutions. The middle three circles

and squares are obtained by quadratic extrapolation. Numerically computed

rf ’s for different [Ca] levels are also shown (gray stars and lines, [Ca] level

increases from 0.6, bottom on the right, to 0.7, top on the right, with the

stepsize of 0.02).
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Now, we look at escaping more closely in the (r, [Ca])

plane. Figure 11(a) shows the trajectories of active cell and

silent cell from the time when the active cell is released from

inhibition to escaping in the (r, [Ca]) plane. Triangles denote

starting points of trajectories. At the first star, silent cell fires

its last spike and active cell is released from inhibition. For

the active cell, these values of r and [Ca] determine inter-

spike intervals, which will be compared with T1 of silent

cell. Whenever the active cell fires, T1 is determined by r
and [Ca] values of the active cell at that moment. At the

moment of the second spike of the active cell, the trajectory

of the silent cell lies close to the open square, the extrapo-

lated 2-spike bursting solution point. As shown in this figure,

the trajectories tend to approach the extrapolated 2-spike

bursting solution point. Figure 11(b) illustrates how the

closeness of the square to the right vertical line causes escap-

ing. As expected in Fig. 11(a), T3 value of the active cell is

close to T1 value of silent cell, which facilitates escaping.

In summary, escaping may result from the closeness

between r� and rf . In (r, [Ca]) plane, each trajectory

approaches the extrapolated values of r and [Ca] in regular

2-spike bursting solution over time. Due to the proximity of

r� and rf , T1 becomes comparable to T3 and this provides

good ingredient for escaping. Once escaping occurs, r values

of both cells reach larger values due to the combinations of

self-inhibition and inhibition from other cell (Fig. 9(b)).

Because of this increased amount of r, it requires longer

time for the escaping cell to enter the spiking region to fire

an additional spike. This extended depolarizing period

results in a larger value of r and may enable the escaping

cell to fire additional two spikes depending on the availabil-

ity of T-type current. If the escaping cell fires additional two

spikes, then the other cell would fire three spikes when it is

released due to the extended duration of inhibition. Hence,

we have 3-spike alternating bursting patterns. In (r, [Ca])

plane, this means that (r, [Ca]) of silent cell when it is

released from inhibition lies on the right side of rf line where

T1 > T3. But after some time, due to the insufficient hyper-

polarization, trajectories of two cells come back into 2-spike

region and this process repeats.

While the results in this section may provide a scenario

for switching between 2- and 3- spike burstings with escap-

ing, as stated in Sec. IV A, numerical study shows that the

slow fluctuation of [Ca] appears to be responsible for the

irregularity of the generation of escaping. Because the possi-

bility of escaping is very sensitive to the relative timing of

the suppressed and active cells, small differences of [Ca]

may determine whether the suppressed cell can escape or

not. Further studies may be needed to explain how the slow

fluctuations of [Ca] enhance the robustness of the irregular-

ity of the activity patterns over the synaptic strength.

V. DISCUSSION

In the present work, we considered a reciprocally con-

nected inhibitory network with self-inhibition consisting of

two cells. There are intervals of coupling parameters over

which activity patterns exhibit an irregular bursting

sequence. This characteristic irregular bursting sequence

may be attributed to the frequent occurrence of overlapped

spiking (“escape”) due to the competition of the two cells.

We show that the irregularity of overlapping and the result-

ing variability in the number of spikes within a burst signifi-

cantly reduces the degree of a phase-locking between the

two cells. In this case, the fine temporal structure of phase-

locking between two cells is characterized by intermittent

occurrences of relatively short deviations from the phase-

locked state, which is similar to what was observed in the ex-

perimental data in the brains of parkinsonian patients.13

To investigate the mechanism underlying this intermit-

tent occurrence of escaping and the resulting bursting pat-

terns, we considered the dynamics of slow variables and

used geometric methods for analysis. For the fast=slow anal-

ysis, we chose three slow variables, the gating variable r of

FIG. 11. Escaping revisited. (a) An escaping example in the (r, [Ca]) plane. Close to vertical lines divide the plane according to the number of spikes when a

cell is released from inhibition (Fig. 8). Left to the dotted line is 1-spike region and right 2-spike region. Similarly, right to the dashed line is 3-spike region.

Solid line is the line of rf in the 3-spike region. Four circles between middle and right vertical lines denote the values of r and [Ca] when silent cell is lastly

inhibited in a regular 2-spike bursting solution. From bottom to top, gsyn values are from 0.86 to 0.89. Square at the top of this array of circles denotes the ex-

trapolated values of r and [Ca] when gsyn is 0.9. Lower trajectory is active cell and upper trajectory is silent cell and triangles denote starting points of each tra-

jectory. Stars denote the moments when cells get inhibition either from itself or from other cell. (b) Three gray solid lines are Tk curves using the calcium level

when the active cell is lastly inhibited. Dots on these curves denote T2 and T3 of active cell computed from the value of r when the active cell is released. Black

curve is T1 of silent cell when it gets second inhibition and square denotes actual T1 value at that moment.

033125-12 C. Park and L. L. Rubchinsky Chaos 21, 033125 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



T-type current, the total synaptic input r, and calcium con-

centration [Ca]. We constructed a two-dimensional bifurca-

tion diagram using r and r for constant [Ca] to find the

R-curve, which divides the slow phase plane into silent and

sustained spiking regions. Slow variation of [Ca] moves this

curve horizontally. The sustained spiking region is roughly

divided into two sub-regions according to frequencies, a low

frequency band along R and a high frequency region. Since

the activity patterns of the cells can be qualitatively

described on the slow phase plane (r, r) along the trajectory

of the system, the geometry of the slow phase plane

including the R-curve is an important determiner of the

dynamics.

Our results demonstrate that an irregular sequence of

burstings results from the complex interplay between net-

work architecture, decay rates of the synaptic variable and

the gating variable of T- type current, and other intrinsic

properties of cells, which are responsible for the geometry

of the slow phase plane, especially, structure of R and low

frequency band along it. Overlapped spiking, the main

cause of the irregular sequence of burstings, is the result of

competition between two cells; the suppressed cell may

enter the bursting region, while the active cell fires addi-

tional spike. In more technical terms, in the system consid-

ered in this study, this overlapped spiking happens due to

the competition between T1 of silent cell and T3 of active

cell, where the former is the time from the moment when

the suppressed cell is released from inhibition to its first

spike and the latter is the time between second and third

spikes. Over the stable bursting solution regime, the value

of r when a cell is released from inhibition, say r0, con-

verges to a stable fixed point r� (Eq. (5)), and there is a

fixed relationship between interspike intervals. For exam-

ple, T2 < T1 < T3 for 2-spike solution and T3 < T1 < T4

for 3-spike solution. As gsyn increases from 2-spike burst-

ing regime to 3-spike bursting regime, r� increases to

approach rf where T1 equals T3. Due to this proximity, r0

approaches rf during the repeated burstings. As a result, T1

of silent cell and T3 of active cell become comparable. In

the 2-spike bursting region, this proximity also allows a

cell to fire an additional spike so that the other cell may be

pushed into the 3-spike bursting region. In summary, the

closeness of r�’s and rf acts as a driving force which pushes

the solution from 3-spike bursting region into 2-spike

region and vice versa. While the switching between 2- and

3-spike burstings with escaping results from the proximity

of r� and rf , the robustness of irregularity in overlapping of

spikes seems to come from the slow fluctuation of [Ca].

This may be due to the fact that the possibility of escaping

depends on the small difference between the phases of two

cells. Although the amount of change of [Ca] is small, its

effect is significant for the described activity patterns to be

robust as to the synaptic strength, the dopamine-dependent

variable.

This proximity of r� and rf depends on the several fac-

tors. An appropriate level of the synaptic coupling strength

gsyn pushes r high enough under inhibition. Comparable

decay rates of the synaptic variable r and the gating variable

r along with the self-inhibition architecture and the bending

part of R let the system stay mostly in the low frequency

region in the plane of the slow variables (r, r).

Current study is partially based on the results of previ-

ous studies of STN-GPe network,20,29 in which sufficiently

strong or weak coupling strengths made a rather complete

mathematical analysis possible. In the current study, the in-

termediate level of synaptic strength along with self-

coupling network architecture makes activity patterns more

realistic; however, the dynamics and its analysis are much

more complex. It would be desirable to obtain one or two

dimensional maps to explain the existence of chaotic behav-

ior or the route to chaos as some physiologically relevant pa-

rameters change as in Refs. 20 and 29. However, the chaotic

dynamics observed in this study shows sensitivity to the

small difference between values of slow variables, hence,

analysis using averaged equations doesn’t work. To trace the

trajectories is challenging due to the following limitations:

intermediate level of synaptic strength, the geometry and

low frequency band of R curve, and network architecture

with self-inhibition. Instead, the present study outlines a sce-

nario for a realistically complex dynamics, advancing us

beyond the extreme cases of weak and strong coupling stud-

ied earlier.

The considered mechanism of generation of intermit-

tent synchronous patterns requires some tuning of the pa-

rameters of neurons and synapses, which leads to the

appropriate timing of spikes. Thus, the question of the over-

all robustness of this mechanism remains open. However,

in numerical experiments, this tuning does not appear to be

very fine and allows for some variation of the parameters

characterizing the timings of synapses and ionic channels.

Moreover, real living neuronal networks with larger num-

bers of neurons and some degree of inhomogeneity may

loosen the requirements for tuning as the variation of pa-

rameters in the network may make the necessary similarity

of the time-scales easier to achieve. In addition, robustness

to noise further supports the robustness and generic nature

of the considered phenomenon.

This suggests that the considered mechanism is relevant

to the experimentally observed cases of intermittent dynam-

ics. As we described in the Introduction, transient nature of

dynamics in neural systems may be quite general in the nerv-

ous system.16,17 In particular, the networks of the basal gan-

glia, which inspired the model considered here, exhibit

intermittent phase locking, similar to that considered here.13

Our recent modeling studies of larger and more realistic net-

works showed that the parameter region for realistic inter-

mittent synchrony is located in the boundary between

synchronized (presumably extreme pathological) and non-

synchronized (presumably normal) dynamics.1 It was conjec-

tured there that closeness to the synchrony regime would

yield easy formation and dissociation of synchronized neuro-

nal assemblies.1 The present study provides one possible

generic mechanism for irregular escaping events which

could be responsible for intermittent disruptions of phase-

locking between two cells.

This modeling also gives consistent results in that

dopamine-dependent synaptic coupling strength gsyn controls

various activity patterns and the transitions between them. As
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we showed above, an intermediate level of synaptic strength is

crucial in the generation of overlapped spiking in conjunction

with the geometry of R. Under the loss of dopamine, STN cell

becomes sensitive to the inputs from GPe.22–25 Hence, the loss

of dopaminergic cells in Parkinson’s disease may result in an

increase of sensitivity of the STN cell and of gsyn. These exper-

imental results are consistent with our current study: up to

some level of gsyn, the network exhibits low-correlation activ-

ity patterns, which correspond to the normal state of the basal

ganglia. But for intermediate value of gsyn, the network shows

more synchronized activity, which is interrupted by

desynchronized events such as overlapped spiking. This fits

very well with the comparison of the larger model network

with the experimental data,1 which suggests that parkinsonian

state is characterized by intermediate (rather than large) values

of synaptic strength gsyn and other related parameters.

The mutual inhibition of bursting neurons (direct or

through excitatory cells) in our network may be a fairly generic

cellular and network set-up. Thus, we think that the considered

mechanisms of intermittent phase-locking have implications

for neural systems beyond the basal ganglia, including subcort-

ical areas or, possibly, central pattern generators.
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