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Dysregulation of Temporal Dynamics of Synchronous Neural Activity
in Adolescents on Autism Spectrum
Evie A. Malaia , Sungwoo Ahn , and Leonid L. Rubchinsky

Autism spectrum disorder is increasingly understood to be based on atypical signal transfer among multiple inter-
connected networks in the brain. Relative temporal patterns of neural activity have been shown to underlie both the
altered neurophysiology and the altered behaviors in a variety of neurogenic disorders. We assessed brain network
dynamics variability in autism spectrum disorders (ASD) using measures of synchronization (phase-locking) strength,
and timing of synchronization and desynchronization of neural activity (desynchronization ratio) across frequency
bands of resting-state electroencephalography (EEG). Our analysis indicated that frontoparietal synchronization is higher
in ASD but with more short periods of desynchronization. It also indicates that the relationship between the properties
of neural synchronization and behavior is different in ASD and typically developing populations. Recent theoretical stud-
ies suggest that neural networks with a high desynchronization ratio have increased sensitivity to inputs. Our results
point to the potential significance of this phenomenon to the autistic brain. This sensitivity may disrupt the production
of an appropriate neural and behavioral responses to external stimuli. Cognitive processes dependent on the integration
of activity from multiple networks maybe, as a result, particularly vulnerable to disruption. Autism Res 2020, 13: 24–31.
© 2019 International Society for Autism Research, Wiley Periodicals, Inc.

Lay Summary: Parts of the brain can work together by synchronizing the activity of the neurons. We recorded the electri-
cal activity of the brain in adolescents with autism spectrum disorder and then compared the recording to that of their
peers without the diagnosis. We found that in participants with autism, there were a lot of very short time periods of
non-synchronized activity between frontal and parietal parts of the brain. Mathematical models show that the brain sys-
tem with this kind of activity is very sensitive to external events.

Keywords: autism spectrum disorder; resting state; neural oscillations; neural synchronization; functional connectivity;
phase synchrony; developmental cognitive neuroscience

Introduction

Human behavior in health and disease is undergirded by
temporal synchronization of distributed networks, which
allows for information processing [e.g., Buzsaki, 2006;
Harris & Gordon, 2015]. The difficulty in understanding
the temporal regulation of brain networks is partially due
to the disparity of temporal scales for different types of
neural data (e.g., between millisecond scale of brain-
activity-driven EEG and second-to-minute scale of blood-
flow-based fMRI).
Experimental data from different modalities, such as

EEG, MEG, and fMRI, indicate that a better understanding
of temporal dynamics of brain activity may help elucidate
mechanisms of brain network organization in the ASD
population. During rest, ASD participants show increased
coherence (or, static overconnectivity) in long-range brain
networks [Buckley et al., 2015]. However, the increase in

coherence coincides with longer dwell times in a globally
disconnected state [Rashid et al., 2018], and increased vari-
ability in connectivity over time [Mash et al., 2019]. Ana-
lyses of EEG and MEG recordings, which provide higher
temporal resolution, indicate long-range functional under-
connectivity [O’Reilly, Lewis, & Elsabbagh, 2017], and
decreased synchrony in short- and medium-range connec-
tions in ASD participants [Schwartz, Kessler, Gaughan, &
Buckley, 2017], particularly in higher frequency bands.
EEG data also point to changes in brain network organiza-
tion developmentally, for example, between 3 and
11 years of age decreased synchronization among brain
regions persists, but in addition to it, increases in within-
regional synchronization are observed [Han et al., 2017;
Kang, Chen, Li, & Li, 2019]. The power of the signal in
ASD participants appears to be enhanced in both low- and
high-frequency bands (what Wang et al., 2013 called a U-
shaped function), particularly in the left hemisphere. The
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mixed conclusions provided by the earlier results highlight
the necessity of applying dynamic approaches to under-
stand the nuanced transient patterns of oscillatory brain
activity in ASD.

Short-term patterns of brain activity can contribute to
long-term connection strengthening, and, as a result,
changing the anatomical organization of brain networks
[Chu et al., 2012]. The effects of temporal patterns of syn-
chronization versus averaged temporal dynamics on
long-term brain network organization have not yet been
investigated.

Research in the neurobiological bases of ASD has indi-
cated that the severity of ASD-associated behaviors is cor-
related with large-scale connectivity abnormalities in
brain networks [Di Martino et al., 2009]. An accurate
understanding of fine-grained temporal organization is
needed to resolve conflicting findings of anatomical
hypo-and hyper-connectivity in ASD participants. In the
present analysis, we investigate resting-state activity in
adolescents with ASD using two different measures of
EEG synchronization. One is the average synchronization
strength between two recorded signals. The other takes
into account the temporal structure of synchronization,
comparing the relative duration of synchronized and
non-synchronized time intervals. The two measures are
conceptually different and can vary independently of
each other: it is possible to have the same synchroniza-
tion strength either with few long desynchronizations or
with many short desynchronizations; these two opposites
would lead to different behavior.

The present analysis assesses the relationship between
temporal parameters of the resting state EEG, comparing
adolescents on the autism scale, and their neurotypical
peers. The resting-state activity of the brain reflects typi-
cal patterns of neural organization by activating networks
that are salient for everyday existence. Characterizing
temporal variability of synchronizations across brain net-
works provides a more faithful measure of neural activity
than average synchrony strength as the latter provides
only an averaged measure missing potential temporal var-
iability. Temporal variability in synchronization can help
us infer underlying changes in circuit activity [Park,
Worth, & Rubchinsky, 2010; Ahn, Rubchinsky, & Lapish,
2014]. The purpose of this study is to investigate brain
network dynamics in ASD, using measures of synchroni-
zation (γ, phase-locking strength averaged over time) and
desynchronization (DR, desynchronization ratio) of neu-
ral activity. In particular, we are focusing on the dynamic
variability of neural activity. A smaller DR means longer
periods of desynchronization between the source elec-
trodes. The question of difference between the strength
of neural synchronization (averaged over time), and the
temporal patterning of this synchronization is key to
understanding information transfer in neural circuits
[Lowet, Roberts, Bonizzi, Karel, & De Weerd, 2016].

Methods
Participants

Fourteen adolescents (2 F) with diagnoses of Asperger
syndrome or high-functioning ASD were recruited from a
special-need school. Ten typically developing (TD) age-
matched participants (4 F) were recruited from the
schools of Arlington School District, TX (see Table 1 for
demographics; although every effort was made to match
the ages of participants in the two groups, we do not
assume that developmental trajectories prior to the exper-
iment were similar between groups). The study was
approved and conducted in accordance with the ethical
standards of the University of Texas at Arlington IRB, and
of the Declaration of Helsinki. All parents and children
provided their written informed consent/assent. The Test
of Pragmatic Language-2 (TOPL-2, Phelps-Terasaki &
Phelps-Gunn, 2007) was administered to each participant
(TOPL evaluates social communication in context, indi-
cating how well participants can choose appropriate con-
tent, express feelings, and handle other aspects of
pragmatic language; average score on the test is 10; scores
between 7 and 10 are considered low average, scores in
the range of 10–13 are considered high average). Students
in the ASD group were relatively high-functioning adoles-
cents who, based on IQ > 80, qualified for admission to a
special education program for those on the autism spec-
trum, which required ADOS or ADI-R score as assessed by
a certified clinically reliable health professional.

Procedure

During the EEG session, the participants were seated
comfortably in a sound-attenuating booth and were
asked to relax with their eyes closed. Scalp EEG was
recorded from Ag/AgCl electrodes mounted in an elec-
trode cap (Wavegard, ANT Inc.) and positioned according
to the 10–20 system. Electrode impedances were
maintained below 10 kΩ, consistent with the manufac-
turer’s instructions. The average recordings lasted for
97�22 sec (ASD) and 99�33 sec (TD). Synchronization
analysis was performed on bilateral anterior and parietal
electrodes (F3/4, P3/4), as several investigations impli-
cated frontal and parietal networks in resting-state

Table 1. Mean Age and TOPL-2 Scores as a Function of
Diagnosis

Participant characteristics

Mean age (SD) Age range TOPL-2 score (SD)

ASD (n = 14) 13.8 (2.19) 10–17 9.7 (3.83)
TD (n = 10) 13.4 (1.88) 10–17 13.5 (2.10)

TOPL-2 scores differed significantly between groups [t(23) = −3.148,
P = 0.002].
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abnormalities in ASD [Ghanbari et al., 2015; Kitzbichler
et al., 2015; Shou, Mosconi, Ethridge, Sweeney, & Ding,
2018]. Selected electrodes preserved hemispheric asym-
metry and were substantially remote from each other to
minimize a cross talk between signals needed to analyze
the temporal patterns of synchronization.

Data Analysis

EEG data were sampled at 512 Hz, bandpass filtered
(using zero-phase filtering to avoid phase distortions) at
0.1–512 Hz, and referenced to the average of mastoids.
The synchronization analysis methods used here were
described previously in detail [Park et al., 2010; Ahn &
Rubchinsky, 2013; Ahn et al., 2014]. Briefly, signals were
Kaiser windowed and digitally filtered using a finite
impulse response filter in four bands: theta (4–7 Hz),
alpha (8–12 Hz), beta (13–30 Hz), and low gamma
(31–59 Hz). Hilbert transform was used to reconstruct
phases of oscillations. To detect oscillatory episodes we
used the signal-to-noise ratio criterion as described in
Park et al. [2010]. The reconstructed phases were used to
estimate the phase-locking strength computed in a con-
ventional way:

γ =
1
N

XN

j=1
eiθ t jð Þ

����

����
2

,

where θ is the difference of the phases of oscillations.
This index varies from 0 to 1 (perfect phase synchroniza-
tion) [Pikovsky, Rosenblum, & Kurths, 2001; Hurtado,
Rubchinsky, & Sigvardt, 2004].

The phase-locking index γ characterizes the synchroni-
zation strength averaged over the analysis window. If the
oscillations are synchronized on the average, then it is
possible to check whether oscillations are in the synchro-
nized state at a specific cycle of oscillations. The recent
developments in this area allowed researchers to describe
the temporal patterning of neural synchronization on
very short temporal scales [Park et al., 2010; Ahn, Park, &
Rubchinsky, 2011; Ahn et al., 2014; Ahn & Rubchinsky,
2013]. Following these studies, we characterize the tem-
poral patterning of synchronization using the distribu-
tion of desynchronization durations. This approach
extracts intervals during which the phase difference is
close to the preferred value, as well as intervals during
which the phase difference substantially deviates from
the preferred value (desynchronizations). We briefly out-
line this analysis and refer to the aforementioned studies
for the detailed description. Whenever the phase of one
signal crosses zero level from negative to positive values,
we record the phase of the other signal, generating a set
of consecutive values {ϕi}, i = 1,…, N. These ϕi represent
the phase difference between two signals (Fig. 1C). After
determining the most frequent value of ϕi, all the phases
are shifted accordingly (for different episodes under con-
sideration) so that averaging across different episodes
(with potentially different phase-shifts) is possible. Thus,
this approach is not concerned with the value of the
phase shift between signals, but rather with the mainte-
nance of the constant phase-shift (phase-locking). Tem-
poral dynamics are considered to be desynchronized if
the phase difference deviates from the preferred phase
difference by more than π/2 as in the earlier studies. The
duration of the desynchronized episodes is measured in

Figure 1. (A) and (B) are examples of the raw (gray line) and filtered (black line) EEG signals recorded from F3 and F4 electrodes,
respectively. (C) The sines of the phases of both filtered signals. The symbols ϕi represent the values of the phase of one signal, when
the phase of the other crosses the zero from negative to positive value. The desynchronization (relative to the most common phase lag)
happens around ϕ6. (D) The distributions of desynchronization durations for F3 and F4 for all patients measured in the number of cycles
of oscillations (mean � SEM was plotted).
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cycles of the oscillations. For example, if the phase differ-
ence deviates from the preferred phase difference by more
than π/2 once, then the duration of the desynchronized
episodes is one (Fig. 1C at ϕ6). If it deviates twice, then
the duration is two, and so forth. This approach considers
the maintenance of the phase difference in time and dis-
tinguishes between many short desynchronizations, few
long desynchronizations, and possibilities in between
even if they yield the same average synchrony strength.

Following Ahn et al. [2014] and Ahn, Zauber, Witt,
Worth, and Rubchinsky [2018], we evaluate DR: the ratio
of the relative frequencies of the desynchronizations last-
ing for one cycle to longer than 4 cycles of oscillations
(Fig. 1D). A smaller value of DR identifies a bias toward
longer desynchronizations while a larger value of
DR identifies a bias toward short desynchronizations.
Importantly, the average synchronization strength can
vary independently of DR [Ahn et al., 2014; Ahn &
Rubchinsky, 2017]: γ characterizes the average synchrony
while DR describes its temporal variation. Measuring the
duration of desynchronizations in cycles of oscillations
(instead of actual time unit) allows for comparison of
temporal patterns of synchronization between different
brain rhythms.

We would like to note that DR can be considered as a
measure of the dynamic variability of neural activity (spe-
cifically focused on the synchronized dynamics). Other
measures of dynamics variability of neural activity

(methods based on the different types of entropy of the
time-series) have been applied to EEG signals yielding dif-
ferences between ASD and TD subjects [Kang et al.,
2019]. In that respect, DR is focused on the dynamical
aspects of variability of specific (oscillatory) mechanisms of
neural activity, not just general differences in complexity.

Pairwise γ and DR were computed between anterior
(F3, F4) and parietal (P3, P4) sites.

The values of γ and DR were averaged over 30 sec non-
overlapping windows. All comparisons were first sub-
jected to a mixed-design analysis of variance (ANOVA)
followed by a two-sample two-sided t-test with signifi-
cance α = 0.0125 (Bonferroni correction).

We further computed Pearson correlations between
TOPL-2 scores and the synchrony measures (γ and DR) of
individual participants for ASD and TD groups. Fisher’s
r to z transformation was applied after conducting Pear-
son correlation analysis between synchrony measures
and TOPL-2 scores to access whether the correlations
between groups differed significantly.

Results

EEG data of ASD participants manifested altered coordina-
tion of activity in frontal and parietal regions in multiple
frequency bands; moreover, temporal dynamics of this
coordination was also altered (Fig. 2). To investigate the

Figure 2. Synchronization strength γ in upper panels (A–D) and desynchronization ratio DR in middle panels (E–H) calculated pairwise
across F3, F4, P3, and P4 electrodes and frequency bands in resting-state EEG. Mean �SEM was plotted. Asterisks represent a paired
two-sided t-test (*P < 0.0125; **P < 0.00125). Lower panels (I–L) calculated Pearson correlations between synchronization measures (γ
and desynchronization ratio) and TOPL-2 scores. (I–L) demonstrated that the correlations between synchrony measures and TOPL-2
scores at the given frequency and location significantly differed between TD and ASD groups.
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difference of synchronization strength between ASD and
TD, we performed a mixed-design ANOVA (between-
subject factor as group, and within-subject factors as fre-
quency and location). There were significant main effects
of group [F(1, 66) = 7.85, P = 6.66e − 3], frequency [F
(3, 198) = 1.99e + 2, P < 1.0e − 16], and location [F
(3, 198) = 6.58e + 1, P < 1.0e − 16]. There were also signifi-
cant interactions in frequency × location [F
(9, 594) = 3.36e + 1, P < 1.0e − 16] and group × frequency
× location [F(9, 594) = 2.90, P = 2.28e − 3], but no interac-
tions in group × frequency [F(3, 198) = 1.77e − 1, P > 0.05]
and group × location [F(3, 198) = 5.12e − 1, P > 0.05]. We
performed further analyses at each frequency band and
location to compare the difference of synchronization
strengths between groups. Synchronization strength in
frontoparietal sites was altered in ASD in several locations
at alpha band [P3−P4, t(66) = 3.45, P = 9.87e − 4], beta
band [F3−P3, t(66) = 4.57, P = 2.22e − 5; F4−P4, t
(66) = 3.20, P = 2.08e − 3], low gamma band [F3−F4, t
(66) = 2.98, P = 3.99e − 3] while other electrode pairs did
not exhibit significant difference. We observed that the
synchrony strength of F3−P3 in ASD at theta band was
marginally different [t(66) = 2.15, P = 3.55e − 2] compared
to TD participants. In general, this alteration was in the
direction of higher synchrony in ASD compared to TD
participants.
Temporal patterning of synchronization of neural activ-

ity was found to be altered in ASD too. To investigate the
difference of DRs between ASD and TD, a mixed-design
ANOVA was performed. There were significant main
effects of group [F(1, 66) = 8.48, P = 4.90e − 3], frequency
[F(3, 198) = 6.19e + 1, P < 1.0e-16], and location [F
(3, 198) = 2.38e + 1, P = 3.37e − 13]. There were also signif-
icant interactions in group × frequency [F(3, 198) = 4.28,
P = 5.94e − 3], frequency × location [F(9, 594) = 1.22e + 1,
P < 1.0e − 16], but no interactions in group × location [F
(3, 198) = 6.76e − 1, P > 0.05] and group × frequency ×
location [F(9, 594) = 7.82e − 1, P > 0.05]. We performed
further analyses at each frequency band and location to
compare the difference of DRs between groups. In particu-
lar, there was a trend for more numerous short des-
ynchronizations in ASD subjects as detected by DR at
alpha band [F3-P3, t(66) = 4.39, P = 4.14e − 5; P3-P4, t
(66) = 2.89, P = 5.18e − 3] and beta band [F3-P3, t
(66) = 2.97, P = 4.18e − 3] while other electrode pairs did
not exhibit significant difference. We also observed that
DR of F3-F4 at low gamma band in ASD subjects was mar-
ginally different [t(66) = 2.34, P = 2.88e − 2] compared to
TD participants. This alteration was in the direction of
more numerous short desynchronizations in ASD subjects.
To compare the difference of correlations between

TOPL-2 scores and the synchrony measures (γ and DR)
for ASD and TD groups, we performed Fisher’s r to
z transformation (see Data Analysis for detail). Difference
of correlations analysis indicated that sign of correlation

between posterior interhemispheric (P3-P4) DR in the
beta range and TOPL-2 scores significantly differed
between TD and ASD groups [significant negative correla-
tion for TD, nonsignificant positive correlation for ASD,
z-score = 2.30, P = 2.17e − 2]. As illustrated by Figure 2, in
the low gamma range, the sign of correlation between left
hemisphere (F3-P3) DR and TOPL-2 scores also signifi-
cantly differed between groups [significant positive corre-
lation for TD, nonsignificant negative correlation for
ASD, z-score = 2.33, P = 1.98e − 2]. Correlation analysis
between synchrony strength in the frontal inter-
hemispheric (F3-F4) and TOPL-2 scores also revealed the
difference between groups at beta range [significant nega-
tive correlation for TD, nonsignificant positive correla-
tion for ASD, z-score = 2.11, P = 3.52e − 2]. Finally, the
type of correlation between the left hemisphere (F3-P3)
synchrony strength at the low gamma band and TOPL-2
scores differed between groups [marginal positive correla-
tion for TD, nonsignificant negative correlation for ASD,
z-score = 2.11, P = 3.52e − 2]. While the difference in
how synchronization metrics and TOPL-2 are correlated
does not exhibit very large statistical significance, it
points to intriguing differences in several brain networks
and spectral bands. These results in Figure 2 indicate how
the relationship between properties of neural synchroni-
zation and behavior may differ in TD and ASD.

Discussion

Understanding the neurobiological processes that underlie
brain activity abnormalities in ASD is critical for diagnos-
tics and the development of targeted interventions. In ASD
adolescents, stable cross-frequency networks during resting
state have been shown to endure for a longer period of
time in comparison with the neurotypical peers [Malaia,
Bates, Seitzman, & Coppess, 2016]. The present analysis
extends the findings to the temporal aspect of synchroniza-
tion: we demonstrate that average frontoparietal synchro-
nization is higher in ASD, but with more short periods of
desynchronization. Research on neuroanatomical structure
changes in ASD has previously connected the difficulty of
modulating executive control in high-functioning adoles-
cents on the autism spectrum to failure of frontoparietal
regions to function as integrative hubs within the brain’s
network architecture [Lynch et al., 2017; Malaia,
Cockerham, & Rublein, 2017]. Although the relationships
between behavior and oscillatory activity were not tested
directly in the present study, some relationships might be
hypothesized from prior work, where decreased theta and
alpha coherence were shown to lead to impairment in
working memory and between-network binding (particu-
larly as related to executive processing, inhibition, and con-
scious attention), while beta frequency synchrony has
been related to successful higher-order cognitive processing
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(cf. Schwartz et al., 2017). Additionally, atypical pattern of
synchronization in the left hemisphere might be related
to left-lateralized microstructural abnormalities in ASD
[Peterson, Mahajan, Crocetti, Mejia, & Mostofsky, 2015]

Our analysis of frontoparietal temporal dysregulation
suggests a possible underlying mechanism whereby normal
functional organization of brain networks in ASD fails to
emerge. Mathematical modeling [Ahn & Rubchinsky, 2017]
suggests that networks with high DR have increased sensi-
tivity to inputs; this sensitivity may disrupt the production
of adequate neural and behavioral responses to external
stimuli. Cognitive processes dependent on the integration
of activity from multiple networks may be, as a result, par-
ticularly vulnerable to disruption. With regard to the func-
tion of connectivity between frontal and parietal regions,
Velazquez et al. [2009] note that disruption in phase syn-
chronization between frontal and parietal regions in ASD
participants is correlated with impaired executive function
in tasks. Murias, Webb, Greenson, and Dawson [2007] also
noted reduced coherence between frontal and other regions
in the alpha band of resting-state EEG in ASD participants,
while Coben, Clarke, Hudspeth, and Barry [2008] indicated
reduced long-range within-hemispheric coherence in beta,
theta, and delta ranges.

The situation observed here (some spectral bands
exhibit the difference between TD and ASD in synchrony
strength, some in synchrony patterning, and some in
both) should not be viewed as an anomaly (cf. Ahn et al.,
2018), as alterations of synchrony patterning and syn-
chrony strength characterize different aspects of synchro-
nized activity and do not necessarily follow each other.
DR and synchronization strength characterize different
aspects of neural synchrony. Thus, the results of the com-
parison of TD and ASD synchrony indicate multiple func-
tional differences in brain networks of TD and ASD
subjects. Computational modeling suggests that higher
DR leads to higher sensitivity to inputs. In a model of a
small network of coupled neurons, which are subjected to
common synaptic input, a higher DR (even with the same
average synchrony strength) leads to a situation where a
weaker synaptic input is needed to reach any (preselected)
level of synchrony. Our understanding of these modeling
results is that a higher DR means the network is switching
between synchronized and desynchronized states more
frequently (this parameter is not necessarily related to the
overall synchrony strength, as the durations of synch and
desynch intervals may be different). Using the language of
dynamical systems theory, the system with a higher DR
brings itself to the vicinity of synchronous state on its
own (although synchronous state is unstable, and the sys-
tem cannot stay there for a long time). Thus, in a system
with high DR, synchrony does not need to be created de
novo in the phase space, but rather it needs to be stabi-
lized for some time, which is possible to do with weak
input—thus there is more sensitivity in the system.

Finally, we note that our results showed that the TD
group had relatively lower synchrony strengths and lower
DRs with a stronger correlation with TOPL-2 scores as
compared to the ASD group. On the other hand, the cor-
relations between neurophysiology and behavior in ASD
subjects were weak and moved toward the opposite direc-
tions of those in TD subjects. This may suggest that mul-
tiple mechanisms may be involved in neural processing
in ASD so that the same change in synchrony strength or
patterning may lead to different behavioral changes in
ASD and control participants. For example, greater beta
synchrony strength across frontal regions seemed detri-
mental to language scores in TD participants, but not
ASD participants. The stronger correlation between the
synchrony measures and participant’s language scores in
the TD group may suggests that regulation of the neural
oscillations in the normal brain may be effectively trans-
lated to the behavioral domain. However, this is not the
case for the abnormally elevated and abnormally pat-
terned synchronization in ASD. These findings call for a
deeper future exploration of the functional significance
of oscillatory patterns in different clinical populations.

The relatively small number of participants and their
relatively high functioning status make for a limiting fac-
tor; however, they also mean that the differences
between the groups found here are quite likely to be more
emphasized in larger populations with large functioning
differences. Yet, the small number of participants coupled
with a relatively large number of statistical tests indicates
that conclusions of this brief report are hypotheses,
which should eventually be explored in more detail.
Another limitation was the lack of individual information
on psychiatric comorbidities, medication, and IQ.

This study is the first, to our knowledge, to show that tem-
poral aspects of dynamics of neural synchronization on very
short time-scales may be essential for understanding the
organization of functional neural networks in ASD. Not only
the average synchrony strength, but also the way how the
synchronization is distributed in time is different between
TD and ASD in a specific way to brain areas and spectral
bands. These findings also offer a novel perspective on neu-
ral information processing control in atypical neural systems,
suggesting future directions of research into information
processing across not only spatial but also temporal scales in
ASD. Specifically, group differences in alpha and theta fre-
quency bands may imply possible relationships with behav-
ioral features of ASDs, such as differences in higher-order
cognitive processing, including language. Exploring mea-
sures of synchrony that fluctuate over time can help deter-
mine how these measures relate to behavioral differences.
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