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a b s t r a c t

By optimizing index functions against different outcomes, we propose a multivariate
single-index model (SIM) for development of medical indices that simultaneously work
with multiple outcomes. Fitting of a multivariate SIM is not fundamentally different from
fitting a univariate SIM, as the former can be written as a sum of multiple univariate
SIMs with appropriate indicator functions. What have not been carefully studied are the
theoretical properties of the parameter estimators. Because of the lack of asymptotic
results, no formal inference procedure has been made available for multivariate SIMs.
In this paper, we examine the asymptotic properties of the multivariate SIM parameter
estimators.We show that, undermild regularity conditions, estimators for themultivariate
SIM parameters are indeed

√
n-consistent and asymptotically normal. We conduct a simu-

lation study to investigate the finite-sample performance of the corresponding estimation
and inference procedures. To illustrate its use in practice, we construct an index measure
of urine electrolyte markers for assessing the risk of hypertension in individual subjects.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Composite indices are frequently used in medical research to quantify latent characteristics of study subjects. In most
situations, indices are constructed as simple aggregations of factors observed in individual subjects. By combining multiple
factors into a composite measure, the index provides a single-valued summary of specific health risks in individual patients.
For example, the commonly used body mass index (BMI) aggregates the height and weight information into a composite
measure that quantifies the ‘‘fatness’’ of an individual, without actually measuring the person’s body composition.

In practice, the construction of indices has always been heuristic, and the derivation is usually based on ‘‘insights’’ from
content experts. The acceptance of an index, however, depends on the strength of associations between the index measure
and health outcomes that the index predicts. In the case of BMI, ample evidence affirms that the formulationWeight/Height2
indeed correlates well with many adiposity-related adverse outcomes, although there is no assurance that this particular
formulation is the best functional form. In modeling practice, analysts often want to know how to find an optimal scalar
function η satisfying E(Y |X) = η(α⊤X) for outcome Y and a given set of risk factors X. Single-indexmodel (SIM) provides the
necessary tools for estimating η and thus directly meeting this need. But indices that work with only one outcome usually
have limited appeal. To remedy, Wu and Tu [32] put forward a multivariate SIM that allows the estimation of η for multiple
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pre-selected outcomes Y , which could be used in the development of multi-purpose index measures. The ability to predict
multiple health outcomes is considered a hallmark of generally applicable indices, as in the case of BMI.

Using SIM for index development is a relatively recent practice [31,32]. In the early literature of SIM, the method is
primarily used as a dimension reduction tool, and the existing literature has largely focused on the estimation of η andα; see,
e.g., [3,7,9,13]. Along that vein, a number of authors have investigated the algorithmic efficiency [2,10,14], and asymptotic
properties of univariate SIMs [2,23,33–35,37,39–41].

What has not been well developed is the theory of multivariate SIM. For the proposed model, an asymptotic theory
is essential for the purpose of statistical inference. Extending the theoretical results from univariate to multivariate SIM,
however, is no trivial task. In this paperwepresent amultivariate SIMwith partially linear effects and heterogeneous random
errors. Along this line, we also incorporate a working covariance matrix to improve the estimation efficiency and to account
for data heterogeneity.We demonstrate in the present article that the proposedmultivariate SIM inherits the nice theoretical
properties possessed by the univariate SIMs,while offering enhancedmodeling flexibility for heterogeneous errors, aswell as
for deriving indices thatwork formultiple outcomes. The theoretical development extends the results of Yu and Ruppert [37]
and Tian et al. [23] to a multivariate modeling setting, under more relaxed conditions.

The article is organized as follows. In Section 2, we introduce the multivariate partially linear single-index model, give
the parameter estimation, and present the theoretical results. We then present a simulation study in Section 3. We illustrate
the use of the method in a real data application in Section 4. We provide a discussion in Section 5. Details of the proofs of
main theoretical results are provided in the Appendix.

2. The model and theoretical results

In this section, we first introduce the model and the related parameter estimation method. We then present the
theoretical results.

2.1. Multivariate single-index models

2.1.1. The basic model
We consider a situation in which there are multiple outcomes of interest. Let Yℓ,i be the ℓth outcome for the ith subject,

for ℓ ∈ {1, . . . , L} and i ∈ {1, . . . , n}. Let xi be a d-dimensional non-random vector of independent variables from the ith
subject. The multivariate SIM can be written, for all ℓ ∈ {1, . . . , L} and i ∈ {1, . . . , n}, as

Yℓ,i = fℓ(α⊤xi) + ϵℓ,i, (1)

where α ∈ Rd is an index parameter vector, ϵℓ,i is a random error, and each fℓ is assumed to be an unknown smooth scalar
function that is twice continuously differentiable with bounded first two moments. Such an assumption assures that the
unknown link function is arbitrarily well approximated by spline models. We note that most of the SIMs in the existing
literature have been expressed in such a form [17,28,36,37,39,41]. The main task is therefore to approximate each fℓ with
a spline function and to estimate the spline coefficients. Here we let the index functions be outcome-specific for maximal
flexibility. In most applications, however, it suffices to use a common index function f for all outcomes. Here we use a
common set of index coefficients α so that the basic composition of the resultant index itself does not vary across outcomes.

Following the standard SIM, we assume ∥α∥ = 1 with its first component α1 > 0 so that α is fully identifiable. Let
f = (f1, . . . , fL)⊤ be the vector of link functions. For u = (u1, . . . , uL)⊤, we define the Hadamard product operator ◦ on f as

f◦(u) = f ◦ u = (f1(u1), . . . , fL(uL))⊤.

Let Xi = (xi, . . . , xi)⊤ be the L × d covariate matrix on the ith individual, yi = (Y1,i, . . . , YL,i)⊤ be the ith outcome vector,
and ϵi = (ϵ1,i, . . . , ϵL,i)⊤ be the ith random error vector.We then rewrite (1) in a vector form, by setting, for all i ∈ {1, . . . , n},

yi = f◦(Xiα) + ϵi.

We further express the multivariate SIM as a sum of univariate SIM with indicators 1(j = ℓ) of j = ℓ. To do so, we let
e1, . . . , eL be the usual orthonormal basis ofRL. Using these,model (1) can bewritten, for all ℓ ∈ {1, . . . , L} and i ∈ {1, . . . , n},
as

Yℓ,i = f⊤
◦
(Xiα)eℓ + ϵℓ,i.

In practice, different smoothing methods have been used in SIMs, including kernel smoothing, local linear methods, and
average derivatives methods [3,9,21]. In this research, we chose to model the unknown link functions fℓ as a pth order
polynomial spline with K knots κℓ,k [18,37], so that for all v ∈ R and ℓ ∈ {1, . . . , L},

fℓ(v) =

p∑
q=0

βℓ,qv
q
+

K∑
k=1

βℓ,p+k(v − κℓ,k)
p
+, (2)

where v+ = max(0, v). For simplicity, we assume that the knots are fixed and p is a constant with p ≥ 3. For the remainder
of the paper, we operate under the assumption that for some p, fℓ is well approximated by a pth-order spline function with
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knots κℓ,k. Such polynomial splines are mathematically simple and computationally efficient. Such an assumption results
in a finite-dimensional linear space, within which we derive the theoretical results. In most applications, the assumption is
not unreasonable because the order of splines and the number and location of knots are typically determined by the analyst
based on the degree of smoothness needed. We note, however, that several authors have investigated situations where
numbers of knots depend on sample sizes [5,29].

Let gℓ(v) = (1, v, . . . , vp, (v − κℓ,1)
p
+, . . . , (v − κℓ,K )

p
+)⊤ be the spline bases with K knots κℓ,k, and βℓ = (βℓ,0, . . . , βℓ,p,

βℓ,p+1, . . . , βℓ,p+K )⊤ be the corresponding coefficients. Using the splines, we express fℓ in (2) as

fℓ(v) = β⊤

ℓ gℓ(v)

for all v ∈ R and ℓ ∈ {1, . . . , L}. Let bℓ(v) = gℓ(v) ⊗ eℓ and mℓ(v; β) = β⊤bℓ(v), where β = (β⊤

1 , . . . ,β⊤

L )
⊤ and ⊗ is the

Kronecker product operator. Letting θ = (α⊤, β⊤)⊤, we write the mean function for the ℓth outcome in the ith individual as

E(Yℓ,i) = mℓ,i(θ) = mℓ(x⊤

i α; β) = β⊤bℓ(x⊤

i α), (3)

where ℓ ∈ {1, . . . , L} and i ∈ {1, . . . , n}.
Instead of (1), the multivariate single index model can be expressed, for all ℓ ∈ {1, . . . , L} and i ∈ {1, . . . , n}, as

Yℓ,i = β⊤bℓ(x⊤

i α) + ϵℓ,i. (4)

Note that the optimization of the penalized least squares with respect to β and α in (4) is subject to the constraint
∥α∥ = 1 with its first component being positive. For convenience, we use the ‘‘delete-one-component" to re-parameterize
α [28,37,41]. Let φ be a (d − 1)-dimensional parameter vector with ∥φ∥ ≤ 1 and

α(φ) = (
√
1 − ∥φ∥2, φ⊤)⊤.

It then follows that α(φ) is d-dimensional and satisfies the identifiability conditions ∥α(φ)∥ = 1with the first component
being positive. With the re-parameterization, optimization of the restricted penalized least squares now becomes an
unrestricted optimization problem for (4) with respect to β and φ.

We assume that the true parameter vector φ0 satisfies the constraint ∥φ0∥ < 1 so that α(φ) is infinitely differentiable in
a neighborhood of φ0. We write θφ = (φ⊤, β⊤)⊤. Obviously θφ is one dimension lower than θα = (α⊤, β⊤)⊤. In terms of the
new parameter φ, the mean function (3) can now be written, for all ℓ ∈ {1, . . . , L} and i ∈ {1, . . . , n}, as

mℓ,i(θφ) = mℓ{x⊤

i α(φ); β} = β⊤bℓ{x⊤

i α(φ)}.

Let B = (b1, . . . , bL)⊤. Similar to the Hadamard notation introduced above, we define the Hadamard product operator ◦

on a matrix function B by letting, for u = (u1, . . . , uL)⊤,

B◦(u) = (b1(u1), . . . , bL(uL))⊤.

With such a notation, the penalized spline approximation to themultivariate SIM (4) can bewritten, for all i ∈ {1, . . . , n},
as

yi = B◦{Xiα(φ)}β + ϵi. (5)

Letmi = (m1,i, . . . ,mL,i)⊤ be the vector of the mean functions for the ith individual. We have, for all i ∈ {1, . . . , n},

mi(β, φ) = B◦ {Xiα(φ)}β.

2.1.2. Partially linear multivariate SIMs
In regression analysis, testing of linear effects remains one of the mainstay inference practices. To this end, we add

linear effects to the proposed single-index model. The concept has been described previously in [31,32,37]. In the context of
multivariate single-index model, we write the extended model, for all ℓ ∈ {1, . . . , L} and i ∈ {1, . . . , n}, as

Yℓ,i = fℓ(α⊤xi) + γ⊤

ℓ zi + ϵℓ,i, (6)

where zi ∈ Rdγ are fixed observed covariate vectors, and each γℓ ∈ Rdγ is an unknown linear parameter vector for ℓth
outcome.

If we define a fixed covariate design matrix Zi = z⊤

i ⊗ ι⊤L and corresponding linear parameter vector γ = (γ⊤

1 , . . . , γ⊤

L )
⊤,

where ιL is a vector of 1s of length L, and if we further define Bz{Xiα(φ)} = (B◦{Xiα(φ)}, Zi) and βz = (β⊤, γ⊤)⊤, we can
express multivariate partially linear single-index model (6), for each i ∈ {1, . . . , n}, as

yi = Bz{Xiα(φ)}βz + ϵi,

which is similar to the multivariate SIM (5).
It is important to note that the addition of the linear terms does not fundamentally change the estimation of the index

function, nor does it alter the theoretical properties of the index parameters. Therefore, without loss of generality, we
consider the model (5) in the parameter estimation and theoretical development. The same proof remains valid for partially
linear single-index models when we replace B◦{Xiα(φ)} by Bz{Xiα(φ)} and β by βz.
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2.2. Parameter estimation

For parameter estimation, we write the working covariance matrix for the ith subject as Wi, which is an L × L positive-
definite matrix. The diagonal elements of Wi are σ 2

ϵℓ
, where for each ℓ ∈ {2, . . . , L}, σ 2

ϵℓ
is expressed as product of a

common variance component σ 2
ϵ and outcome-specific scale parameters δℓ, i.e., σ 2

ϵℓ
= δℓσ

2
ϵ . The off-diagonal elements

are ρstσϵsσϵt , where, ρst is the correlation of the paired outcomes Ys,i and Yt,i, whereas σ 2
ϵs

and σ 2
ϵt

are the corresponding
variance components.

Let the objective quadratic function be

Qn(θφ) = Qn(φ, β) =
1
n

n∑
i=1

{yi − mi(φ, β)}⊤W−1
i {yi − mi(φ, β)}. (7)

The penalized objective function is

Qn,λ(θφ) = Qn,λ(φ, β) = Qn(φ, β) +

L∑
ℓ=1

λℓβ
⊤

ℓ Dℓβℓ, (8)

where each Dℓ is an appropriate positive semi-definite symmetric matrix, and λ = (λ1, . . . , λL)⊤ is a vector of nonnegative
penalty parameters.

For the penalized splines considered in the current paper, we choose Dℓ to be a diagonal matrix with the last K
diagonal elements equal to 1 and the rest equal to 0, so that it penalizes the sum of squares of the parameters to the pth
order [20]. Solving the estimating equations, we have a weighted penalized spline least square estimator θ̂n = (φ̂

⊤

n , β̂
⊤

n )
⊤ of

θφ = (φ⊤, β⊤)⊤. Parameters in the covariance matrix Wi are estimated along with the spline smoothing parameters (also
treated as regular variance component parameters) within the linearmixed effectmodel framework [15,32]. Finally, we note
that all parameters can be estimated explicitly by minimizing Qn,λ(θφ) via the nonlinear least squares, and the selection of
λℓ can be obtained by using the generalized cross validation (GCV), and the model written in the form of a mixed model and
fitted through commonly used statistical software [20,32].

2.3. Theoretical results

In this section,we lay out the conditionswithwhich the estimators of themultivariate SIMachieve the desired asymptotic
properties. Sketches of the proofs of Theorems 1 and 3 are presented in the Appendix.

Let [A1 : A2] be a column-binding matrix of A1, A2 of compatible dimension. Suppose φ is in a neighborhood of φ0 such
that ∥φ∥ < 1. The gradient of the dim(θα)-dimensional mean function is then given by

ṁℓ,i(θφ) =

(
β⊤ḃℓ{x⊤

i α(φ)}[−(1 − ∥φ∥
2)−1/2φ : Id−1]xi

bℓ{x⊤

i α(φ)}

)
,

where Id−1 is the (d − 1) × (d − 1) identity matrix, and ḃℓ is the first gradient of bℓ.
The dim(θα) × {dim(θα) − 1} Jacobian matrix of the mapping θφ → θα is

J(φ) =
∂

∂θ⊤

φ

θα =

⎛⎝ −(1 − ∥φ∥
2)−1/2φ⊤ 0

Id−1 0
0 I(p+K+1)×L

⎞⎠ . (9)

For narrative convenience, we simplify the notation for the rest of the paper. We drop φ and write θ = θφ unless
otherwise specified, while keeping the subscript in θα to emphasize its relation to the original parameters. Similarly, we
let θ0 = (φ⊤

0 , β⊤

0 )
⊤ be the true values of parameters, while θα0 and θφ0 are used to remind the true parameter values in Rd

and Rd−1, respectively. We suppress the subscript n and write θ̂ = θ̂n, when there is no confusion.
We derive the asymptotics under the following conditions.

Condition 1. There exist constants r > 0 and c0 > 0 such that

sup
n

max
i∈{1,...,n}

max
ℓ∈{1,...,L}

E|ϵℓ,i|
2+r

≤ c0 < ∞.

Condition 2. Matrices Σi = E(ϵiϵ⊤

i ) and Wi are positive definite with eigenvalues bounded away from zero and infinity
uniformly in i ∈ {1, . . . , n} such that, for some τ ∈ (0, ∞),

lim
n→∞

1
n

n∑
i=1

tr(W−1
i Σi) = τ .

Here, ϵi = (ϵ1,i, . . . , ϵL,i) for each i ∈ {1, . . . , n}, and ϵ1, . . . , ϵn are mutually independent with mean zero.
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Condition 3. There exists a matrix function S(φ, φ∗) on a compact subspace Φ of Rd−1 such that

1
n

n∑
i=1

B⊤

◦
{Xiα(φ)}W−1

i B◦{Xiα(φ∗)} → S(φ, φ∗) (10)

uniformly in φ, φ∗
∈ Φ , that S(φ, φ) is positive definite on Φ , and that T(φ) = S(φ0, φ0) − S(φ0, φ)S−1(φ, φ)S(φ, φ0) has a

unique zero solution at φ = φ0.

Condition 4. There exists a neighborhood of θ0 such that each ṁi(θ) = (ṁ1,i(θ), . . . , ṁL,i(θ))⊤ is of full rank,

∆n,1(θ) =
1
n

n∑
i=1

ṁ⊤

i (θ)W
−1
i ṁi(θ), ∆n,2(θ) =

1
n

n∑
i=1

ṁ⊤

i (θ)W
−1
i ΣiW−1

i ṁi(θ), (11)

where ∆1(θ0) = limn→∞ ∆n,1(θ0) is non-singular and ∆2(θ0) = limn→∞ ∆n,2(θ0), and for all s, t ∈ {1, . . . , dim(θ)},

1
n

n∑
i=1

L∑
ℓ=1

{
∂2

∂θs∂θt
mℓ,i(θ)

}2

(12)

converges uniformly in θ over the neighborhood of θ0.

Remark 1. As the order p of the spline is such that p ≥ 3, the vector mean function m = (m1, . . . ,mn)⊤ has Lipschitz
continuous second order partial derivatives since the second derivative (x3

+
)′′ = 6x+ is Lipschitz continuous in view of the

inequality |y+ − x+| ≤ |y − x| for all x, y ∈ R. This factwill be applied in the proof of LemmaAwithout explicitlymentioning.

The following condition is shown to be sufficient for Condition 3 in the Appendix.

Remark 2. Suppose that maxi ∥Xi∥ ≤ M0 < ∞ and that the eigenvalues of Wi have a common lower bound m0 > 0
for constants M0 and m0. Suppose Φ is compact and is contained in a ball centered at the origin with radius r0 for some
r0 ∈ (0, 1). Then the point-wise convergence in (10) over Φ implies the uniform convergence.

We write λn,ℓ = λℓ for all ℓ ∈ {1, . . . , L} to emphasize the parameter’s dependence on the sample size n. We now state
the main theorems.

Theorem 1 (Strong Consistency). Suppose Conditions 1–3 hold. If λn,ℓ = o(1) for all ℓ ∈ {1, . . . , L} as n → ∞, then there exists
a sequence of weighted penalized spline least squares estimators θ̂n of θ0 that are strongly consistent, i.e., Pr(θ̂n → θ0) = 1 as
n → ∞.

Remark 3. Theorem 1 states a result that includes Theorem 1 of [37] and Theorem 1′ of [38] as special cases. It extends
the results of the two theorems from scalar responses and independent and identically distributed (iid) random errors to
vector responses and independent but not identically distributed errors. Additionally, working covariances are used in the
estimating procedure. In particular, this generalizes the previously published results from scalar responses with iid random
errors to scalar responses with independent heterogeneous random errors. Such extensions are important practically as
heterogeneity is common in real life data.

Remark 4. For the proof of consistency, Yu and Ruppert [37] assumed that the all parameters, i.e., both the linear and spline
coefficients, resided in a compact space. We show that consistency in Theorem 1 can be achieved under Condition 3. In
other words, we only require a compactness assumption for the subspace that contains the reparameterized single-index
parameters. Since the partially linear coefficients and spline coefficients lie within a general Euclidean space, they can be
handled separately through linear ridge regression analysis. Therefore, the compactness assumption of the parameter space
that Yu and Ruppert [37] used is no longer necessary. For details, see [39] and our proof of Theorem 1.

We note that Conditions 1–2 are only used to prove Lemma A. If we relax the conditions with the following Condition 2′,
we can prove that the result of Lemma A still holds by applying Theorem 5.4.2 of [4].

Condition 2′. The random errors ϵ1, . . . , ϵn are mutually independent and identically distributed with zero mean and
(component-wise) finite positive definite covariance matrix Σ = E(ϵiϵ⊤

i ). Furthermore, the working covariance matrices satisfy
W1 = · · · = Wn = W for some positive definite matrixW.

Under this altered condition, we have the following Theorem 2.

Theorem 2 (Strong Consistency). Suppose Conditions 2′ and 3 hold. If λn,ℓ = o(1) for all ℓ ∈ {1, . . . , L}, then the result in
Theorem 1 holds.
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Theorem 3 (Asymptotic Normality). Suppose that Conditions 1–4 hold. If λn,ℓ = o(n−1/2) for all ℓ ∈ {1, . . . , L}, then
√
n (θ̂n − θ0) ⇝ N [0, ∆

−1
1 (θ0)∆2(θ0)∆−1

1 (θ0)]

as n → ∞, where ∆1(θ0) and ∆2(θ0) are given in Condition 4.

Recall that in our notation, θ̂n = (φ̂
⊤

, β̂
⊤

)⊤ is an estimator of θφ = (φ⊤, β⊤)⊤. We can estimate the original parameter
θα = (α⊤, β⊤)⊤ with the plug-in estimator θ̂α̂ = (α⊤(φ̂), β̂

⊤

)⊤, where α(φ) = (
√
1 − ∥φ∥2, φ⊤)⊤. Asymptotic normality

can be easily derived by combining Theorems 1 and 3 and by using the multivariate Delta method. This is stated below.

Theorem 4. Suppose the Conditions in Theorem 3 hold. Then there exists a sequence of generalized weighted penalized spline
least squares estimators θ̂α̂ = (α̂⊤

, β̂
⊤

)with ∥α̂∥ = 1 and positive first component that are strongly consistent and asymptotically
normal, i.e., as n → ∞, θ̂α̂ → θα0 a.s. and

√
n (θ̂α̂ − θα0 ) ⇝ N [0, J(φ0)∆

−1
1 (θ0)∆2(θ0)∆−1

1 (θ0)J(φ0)
⊤
],

where J is given in (9).

Theorem 5 (Asymptotic Normality). Suppose Conditions 2′ and 3–4 hold. If λn,ℓ = o(n−1/2) for all ℓ ∈ {1, . . . , L}, then the result
in Theorem 3 holds.

Theorem 6. Suppose Conditions in Theorem 5 hold. If λn,ℓ = o(n−1/2) for all ℓ ∈ {1, . . . , L}, then the result in Theorem 4 holds.

Remark 5. In the proofs, we considered the asymptotic properties of the estimators for a fixed number of knots. The
theoretical results presented in the current paper directly correspond to models specified in Eqs. (2)–(5). This type of the
asymptotic theory, as argued in [39], is more useful than that of an increasing number of knots for the purpose of statistical
inference. Clearly, too few knots do not provide a satisfactory fit, and too many knots tend to reduce the efficiency of the
model fitting. Ruppert [18] compared the minimization of the average mean squared errors for different selections of knots
and recommended default fixed numbers of knots for all sample sizes, as long as the smooth regression functions do not
oscillate excessively. We note, however, that a number of authors have studied the theory of changing the numbers of knots.
For example, Huang [8] gave the rates of convergence for the case of a growing number of knots. We take the view that the
asymptotic theory for a fixed number of knots provides a sufficiently sound basis for practical statistical inference.

Remark6. In Theorems3 and4, the asymptotic variance–covariancematrices are unknown, as inmost cases in practice. They
can be estimated with the usual plug-in estimates ∆1,n(θ̂),∆2,n(θ̂) and J(φ̂). These affect the estimation of the smoothing
parameters; see e.g., [26,27]. If the variance–covariance matrix is known, we can easily modify the existing results to obtain
themore simplified results. For example, ifW = Σ, then the asymptotic variance–covariancematrix in Theorem 3 becomes
∆

−1
1 (θ0) and, as a result, the one in Theorem 4 changes to J(φ0)∆

−1
1 (φ0)J(φ0)⊤.

Remark 7. While the penalized spline approach for fittingmultivariate SIMs has yielded promising analytical and theoretical
results, a generalization of the method to situations of high dimensions remains uncertain. Theoretical issues aside,
computational burden could be overwhelming. For example, the number of the basis functions can easily become larger
than the number of observations, rendering the algorithms unusable. To analyze larger datasets, we suggest to use the
penalty approach as it downplays the number and location of knots, whereas the use of a low-rank smoother mitigates
the computational problems better than other available approaches; see e.g., [6].

We provided proofs of Theorems 1 and 3 in the Appendix.

3. A simulation study

3.1. Data generation

We conducted a simulation study to evaluate the numerical characteristics of the proposed method. We chose L = 2 and
let the two index functions be f1(v) = v2 sin(v) and f2(v) = vev . We generated two correlated response outcomes y1, y2
from the following model. For each i ∈ {1, . . . , n},{

y1,i = (α1x1,i + α2x2,i + α3x3,i)2 sin(α1x1,i + α2x2,i + α3x3i) + β1zi + ϵ1i,

y2,i = (α1x1,i + α2x2,i + α3x3,i) exp(α1x1,i + α2x2,i + α3x3i) + β2zi + ϵ2,i,

where the independent variables within the index functions, x1,i, x2,i and x3,i, are assumed to be independent and following
a uniform distribution U(0, π ). We generated a binary variable zi from a Bernoulli distribution with Pr(zi = 1) = 0.3.

The random errors ϵi = (ϵ1,i, ϵ2,i)⊤ ∼ N (0,Σ), where the correlation coefficient between the two outcomes was ρ, and
σ 2
1 and σ 2

2 = δσ 2
1 , which represented a heteroscedasticity in the two outcomes.
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Table 1
Summary of parameter estimates over 200 simulation runs: true parameters (α1, α2, α3) = 1/

√
14 (2, −1, 3) =

(0.5345, −0.2673, 0.8018), β1 = 10, β2 = −30, ρ = 0.50, δ = 0.9, σ = 2.
Parameter n Mean SE Bias MSE

α1 50 0.5369 0.0005 2.3635e−03 5.8726e−06
100 0.5349 0.0004 3.4925e−04 2.5836e−07
200 0.5344 0.0003 −1.7117e−04 9.6444e−08
500 0.5344 0.0002 −8.8799e−05 4.1073e−08

α2 50 −0.2696 0.0005 −2.3795e−03 5.9286e−06
100 −0.2657 0.0005 1.5940e−03 2.8512e−06
200 −0.2679 0.0002 −6.7369e−04 5.1232e−07
500 −0.2679 0.0002 −6.0122e−04 3.8904e−07

α3 50 0.7993 0.0004 −2.4725e−03 6.3077e−06
100 0.8020 0.0003 2.3071e−04 1.3925e−07
200 0.8016 0.0002 −1.5116e−04 4.7859e−08
500 0.8017 0.0001 −1.3019e−04 4.0289e−08

β1 50 9.9404 0.0501 −5.9577e−02 3.9919e−03
100 10.0175 0.0286 1.7495e−02 2.8136e−03
200 9.9847 0.0210 −1.5350e−02 1.0037e−03
500 9.9865 0.0138 −1.3528e−02 4.2729e−04

β2 50 −30.0126 0.0517 −1.2617e−02 2.6680e−03
100 −29.2858 0.0283 1.1419e−02 8.3198e−04
200 −29.9943 0.0224 5.6557e−03 6.6280e−04
500 −30.0002 0.0121 −2.1758e−04 3.4807e−04

ρ 50 0.5177 0.0089 1.7664e−02 3.9054e−04
100 0.5055 0.0055 5.4806e−03 3.6987e−05
200 0.5026 0.0037 2.6031e−03 4.4087e−05
500 0.4988 0.0025 −1.1626e−03 7.8169e−06

δ 50 0.9630 0.0099 6.2954e−02 3.9967e−03
100 0.9614 0.0058 6.1426e−02 3.7872e−03
200 0.9538 0.0038 5.3801e−02 3.7872e−03
500 0.9522 0.0026 5.2163e−02 2.9938e−03

σ 50 1.9703 0.0147 −2.9682e−02 7.6571e−04
100 1.9766 0.0103 −2.3439e−02 9.8797e−04
200 1.9810 0.0073 −1.8969e−02 4.1309e−04
500 1.9966 0.0046 −3.3625e−03 3.2598e−05

Point estimates for the regression parameters and variance components were averaged over 200 simulation runs.
Claeskens et al. [5] studied the class of penalized spline estimates, and showed that penalized splines using truncated
polynomial basis functions leads to the optimal rate of convergence independent of the assumption made on the number
of knots, even though their main theoretical results are derived under the assumption that the number of knots tends to
infinity at a rate of o(n) (Assumption 3 in Claeskens et al. [5]).

In this simulation study, we used 20 knots to fit cubic spline models. This number of knots was chosen to ensure the
capture of the basic features of the regression functions [20]. We also conducted a sensitivity analysis to assess the influence
of the numbers of knots to model performance. In each model fit, we used equally spaced interior knots. The smoothing
parameters were chosen by ratio of variance components estimated from restricted maximum likelihood (REML) [12,20].

3.2. Simulation results

Simulation results were presented for the case where α = 1/
√
14 (2, −1, 3)⊤, β1 = 10, β2 = −30, ρ = 0.5,

σ = 2, δ = 0.9. Four different sample sizes were considered: n ∈ {50, 100, 200, 500}. For evaluation, we compared the
estimated values of parameters against the true values. The parameter estimation results, including the mean values of
the parameter estimates (Mean), standard error (SE), bias and mean squared error (MSE), are summarized in Table 1. The
estimated coefficient values are close to the true values, and the standard errors estimated based on the multivariate model
are consistently smaller. In addition, the empirical standard errors of the estimates of the variance–covariance components
are close to the true values. Clearly, both bias and MSE of each parameter estimates decrease with an increasing number of
subjects.

Fig. 1 depicts the average cubic-spline estimates fit to two correlated outcomeswith 500 subjects based on 200 simulated
datasets, as well as the corresponding 2.5% and 97.5% quantiles. The proposed estimates are well behaved, with a minimal
estimation bias, although the bias is slightly larger in the tails. Meanwhile, both 2.5% and 97.5% quantiles are close to the
true curves, showing very small variation in the estimates.

We also conducted a sensitivity analysis to compare the model performance, when three different numbers of knots, 10,
15 and 20were used. Point estimates for the single index parameters were averaged over 200 simulation runs. A sample size
n = 500 was considered.
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Fig. 1. Curve estimates and confidence bands for the simulated data with bivariate outcomes. The solid curves are the true mean functions; the dashed
curves are the average cubic-spline fit over 200 simulations. The dot-dashed curves are the corresponding 2.5% and 97.5% quantiles.

Table 2
Summary of parameter estimates over 200 simulation runs: true parameters (α1, α2, α3) = 1/

√
14(2, −1, 3) =

(0.5345, −0.2673, 0.8018), ρ = 0.50, δ = 0.9, σ = 2.
Parameter Number of Knots Mean SE Bias MSE

α1 10 0.5344 0.0002 −3.8961e−04 3.3118e−07
15 0.5343 0.0002 −2.0427e−04 7.6622e−08
20 0.5343 0.0002 −5.1607e−05 3.7761e−08

α2 10 −0.2676 0.0002 −3.6114e−04 1.5356e−07
15 −0.2674 0.0002 −1.7599e−04 5.5722e−08
20 −0.2674 0.0002 −1.0535e−04 3.6330e−08

α3 10 0.8016 0.0001 −1.0325e−04 2.6445e−08
15 0.8018 0.0001 6.7844e−05 2.2531e−08
20 0.8018 0.0001 −1.0371e−05 1.7531e−08

Table 2 presentsmean values of the parameter estimates, standard error, bias andmean squared error. The results indicate
that parameter estimates were only slightly impacted when using different knots. Thus, our method is quite robust against
the variation in the number of knots.

A complete estimation algorithm, including sample R code, and more comprehensive simulation studies have been
discussed in detail previously [32].

4. An application

To illustrate the use of the proposed method, we analyzed the data from an observational study of healthy young
adults. The study protocol was described elsewhere [25]. Briefly, healthy young volunteers between 21 and 39 years of age
were recruited for participation in this observational study. Enrolled subjects were followed prospectively with semiannual
assessments, for up to two years. During the course of follow-up, the participants’ blood pressure was recorded; blood and
overnight urine samples were collected at each follow-up visit.

In the current analysis, we evaluated the influence of dietary sodium and potassium intake on systolic and diastolic
blood pressure (SBP and DBP). Here we used the logarithm of the calculated urinary sodium (UNACR) and potassium (UKCR)
excretion rates (adjusted for creatinine) to approximate the dietary intake. The focus of the analysis is to derive an index
measure of urinary sodium and potassium excretion rates for prediction of systolic and diastolic blood pressure. As a result,
we considered the two urinary metrics as the main ingredients of the index measure. Other known correlates of blood
pressure, such as age, sex, race and body mass index, were included in the model as covariates (denoted by Z vector). The
model is as follows:{

SBPi = ηs(α1 ln UNACRi + α2 ln UKCRi) + β⊤

s Zi + ϵs
i ,

DBPi = ηd(α1 ln UNACRi + α2 ln UKCRi) + β⊤

d Zi + ϵd
i .
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Table 3
Summary of linear covariates in the fitted index model.
Response Parameter estimate (95% confidence interval)

Age Male Black BMI

SBP 0.0932 9.2706 −2.0343 0.6242
(−0.2342, 0.4207) (6.6056, 11.9356) (−4.8590, 0.7902) (0.4563, 0.7920)

DBP 0.6570 4.0721 0.0493 0.4546
(0.3649, 0.9490) (−0.6953, 8.4490) (−2.4699, 2.5685) (0.3049, 0.6043)

Fig. 2. Relations between the index and blood pressure.

Our analysis was based on data from 228 study participants. The sample included 109 males and 88 blacks. The mean
age at study entry was 30 years (SD = 4.12 years); average BMI was 29.63 (SD = 8.22). The mean values for urinary sodium
and potassium excretion rates were 0.079 and 0.02 mmol/mg Creatinine, respectively. The estimated index parameters are
0.1156 and −0.9933 for urinary sodium and potassium excretion rates, respectively. Model fitting results for the linear
covariates are presented in Table 3.

Wepresent the relations between the index function value as systolic and diastolic blood pressure in the following figures.
Fig. 2 clearly shows that the index valueswere gradually positively associatedwith both systolic and diastolic blood pressure,
although the relations were not linear. In particular, the non-negative index values were more strongly associated with the
increase of blood pressure.

A more careful examination of the index coefficients revealed that urine sodium is positively associated with blood pres-
sure and that urine potassium is negatively associate with blood pressure. This finding is consistent with the observations
from recent studies that sodium-rich and potassium-poor diet increase the risk of hypertension [1,16]. The finding also
corroborates the results from the latest mechanistic investigations on the roles that potassium plays in kidney reabsorption
of sodium and its impact on blood pressure elevation [24].

5. Discussion

Use of medical indices has been ubiquitous in clinical practice and research investigation. A main motivation for using
index measures is to succinctly quantify the latent characteristics in individual subjects. Towards that end, calculated
values of the indices are linked to patient outcomes for associational or causal interpretations. Despite the popularity of
medical indices, few have carefully examined the methodological issues concerning index development. To the best of our
knowledge, most of the existing medical indices are constructed in a subjective fashion, based primarily on opinions of
clinical experts. The resulting index may or may not perform in ways that its designer had hoped.

In this paper, we described a method for analytical derivation of index measures, through the use of multivariate single-
indexmodel. By linking subject characteristics to a set of pre-specified outcomes, wewere able to derive indexmeasures that
were optimally linked to the outcomes.Wewould like to think that thismultivariate extension of the single-indexmodel has
enhanced the possibility of achieving optimally performing,multi-purpose indexmeasures.We showed that themethodwas
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easily implementable and had a good performance. The simulations suggested that the method could also reliably recover
the true shapes of the nonlinear link functions, which further assured us of its potential.

One implicit assumption used in this research is that the unknown link function is adequately described by a polynomial
spline function, so that the analyst can closely approximate the link function by estimating the spline coefficients. As in all
analyses, the validity of parameter estimation and statistical inference depends to a large extent on the appropriateness of
the underlying model specification. This is true for the proposed multivariate SIM as it is for the simple linear regression,
where the analyst assumes the relationship is adequately depicted by a linear function. But compared to other statistical
models, spline models are less vulnerable to misspecification of the functional relationship, because with appropriately
chosen knots and estimated coefficient from the data, they could accommodate virtually all types and shapes of nonlinear
relationships [19]. Penalized spline estimates can be achieved with expedient computational algorithms [18]. This said, as in
other statistical models, there is always an uncertainty associated with model specification. But all things considered, such
an uncertainty is generally much smaller than those associated with fixed functional forms [37].

Along with the model fitting methods, we describe theoretical properties of the model parameters in this paper. In
principle, the proposed model provides an extension of single-index model from scalar response to multivariate response,
and generalizes homogeneous random errors to heterogeneous errors with working covariance matrices. We showed that
under mild regularity conditions, the parameter estimators were consistent and asymptotically normally distributed. As a
result, large sample inference becomes possible for this class of models. Collectively, these theoretical results have provide
a valid foundation for using the model in index development.

Finally, we note that the ultimate test of an index measure is validation through independent samples. This said, the
proposed method gives a good starting place for constructing a useful measure that is linked to pre-specified outcomes. The
method itself does not preclude the need for independent validation. Notwithstanding this limitation, we contend that this
research has added a more detailed theoretical description of this new index development tool.
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Appendix. Sketches of proofs

We establish two lemmas in preparation for the proof of the main theorems.

LemmaA. If Conditions 1 and 2 hold, then, as n → ∞, (ϵ⊤

1 W
−1
1 ϵ1+· · ·+ϵ⊤

n W−1
n ϵn)/n → τ a.s., where τ is given in Condition 2.

Lemma B. If Conditions 2 and 4 hold, then

1
√
n

n∑
i=1

ṁi(θ0)⊤W−1
i ϵi ⇝ N [0,∆2(θ0)], (A.1)

whereN (µ,Σ) denotes themultivariate normal distributionwithmeanµ and variance–covariancematrixΣ, and∆2(θ0) is given
in Condition 4.

Proof of Lemma A. We approach the proof in a way similar to that of Lemma 4.1 of Tian et al. [23]. First we note that

E(ϵ⊤

i W
−1
i ϵi) = E{tr(W−1

i ϵiϵ
⊤

i )} = tr{W−1
i E(ϵiϵ⊤

i )} = tr(W−1
i Σi).

Let Xi = ϵ⊤

i W
−1
i ϵi − tr(W−1

i Σi). Then X1, . . . , Xn are mutually independent random variables with zero mean. From
Condition 2, there exist constants c1, c2 such that

0 < c1 ≤ min
i∈{1,...,n}

ξ(1)i ≤ max
i∈{1,...,n}

ξ(L)i ≤ c2 < ∞,

0 < c1 ≤ min
i∈{1,...,n}

ζ(1)i ≤ max
i∈{1,...,n}

ζ(L)i ≤ c2 < ∞,

where ξ(1)i, ξ(L)i and ζ(1)i, ζ(L)i are the minimal, maximal eigenvalues of Σi,Wi for i ∈ {1, . . . , n}, respectively. Thus

tr(W−1
i Σi) ≤ L max

i∈{1,...,n}
ξ(L)i/ min

i∈{1,...,n}
ζ(1)i ≤ Lc2/c1,

and, for all i ∈ {1, . . . , n}, 0 ≤ ϵ⊤

i W
−1
i ϵi ≤ ζ−1

(1)iϵ
⊤

i ϵi ≤ c−1
1 ϵ⊤

i ϵi.
Let p = (2 + r)/2 > 1, where r > 0 is given in Condition 1. Using the inequality E{(X + Y )p} ≤ 2p−1

{E(Xp) + E(Y p)} for
X ≥ 0, Y ≥ 0 (see, e.g., Inequality (19) on p. 50 in [4]), we deduce that, for all i ∈ {1, . . . , n},

E{(ϵ⊤

i ϵi)p} = E

(
L∑

ℓ=1

ϵ2
ℓ,i

)p

≤ 2(L−1)(p−1)
L∑

ℓ=1

E(ϵ2p
ℓ,i) ≤ 2(L−1)(p−1)L max

1≤ℓ≤L
E(ϵ2p

ℓ,i) ≤ 2(L−1)(p−1)c0L,
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where c0 is given in Condition 1. Hence, for all i ∈ {1, . . . , n},

E|Xi|
p

≤ 2p−1
{E|ϵ⊤

i W
−1
i ϵi|

p
+ |tr(W−1

i Σi)|
p
} ≤ 2p−1

[ζ
−p
(1)iE{(ϵ

⊤

i ϵi)p} + (Lc2/c1)p]

≤ 2p−1
{c−p

1 2(L−1)(p−1)c0L + (Lc2/c1)p}.

Consequently,
∞∑
i=1

E|Xi|
p/ip < ∞.

By the Strong Law of Large Numbers (see, e.g., the corollary on p. 132 in [4], Theorem 3.1 in [22], and Corollary 8.2 in [11]),
we have, as n → ∞, (X1 + · · · + Xn)/n

a.s.
−→ 0. This yields the desired result in view of Condition 2. □

Proof of Lemma B. Let Zn =
∑n

i=1 ṁi(θ0)⊤W−1
i ϵi/

√
n. As ϵi has mean zero and covariance matrix Σi, one gets

E(Zn) = 0, var(Zn) =
1
n

n∑
i=1

ṁi(θ0)⊤W−1
i ΣiW−1

i ṁi(θ0).

By the Cramér–Wold device, in order to prove (A.1), it suffices to show

u⊤Zn ⇝ N [0,u⊤∆2(θ0)u], (A.2)

for an arbitrary unit vector u. For each i ∈ {1, . . . , n}, let c2i = u⊤ṁi(θ0)⊤W−1
i ΣiW−1

i ṁi(θ0)u. Since ṁi(θ0) has full rank and
Wi,Σi are positive definite, ci > 0, we can write

u⊤Zn = n−1/2
n∑

i=1

ciei

with ei = c−1
i ṁi(θ0)⊤W−1

i ϵi, whence e1, . . . , en aremutually independent with zeromean and unit variance. By Condition 4,
we have

lim
n→∞

1
n

n∑
i=1

c2i = u⊤∆2(θ0)u,

where ∆2(θ) is given in Condition 4. It follows from Lemma 3 of [30] that

max
i∈{1,...,n}

c2i /(c
2
1 + · · · + c2n ) → 0.

This implies the Lindeberg condition. We now invoke the Lindeberg–Feller Central Limit Theorem to claim (A.2). □

Proof of Theorem 1. Our proof is a modification of that of Theorem 1′ of Yu and Ruppert [38]. The main differences
between our Theorem 1 and theirs are (i) we generalize their theory from scalar to multivariate responses; (ii) we relax
the homogeneous random errors; and (iii) we use working matrices. We shall omit the details and only give sketches to
those where exist important differences.

We first show the existence. With known φ, the minimization of (8) becomes a problem of ridge regression, which has
the explicit solution for the penalized least squares estimator β̂, given by

β̂(φ) =

[
1
n

n∑
i=1

B⊤

◦
{Xiα(φ)}W−1

i B◦{Xiα(φ)} + D(λ)

]−1
1
n

n∑
i=1

B⊤

◦
{Xiα(φ)}W−1

i yi, (A.3)

where D(λ) is the diagonal matrix consisting of the diagonal matrices λℓDℓ for ℓ ∈ {1, . . . , L}, i.e., D(λ) = diag(λ1D1,
. . . , λLDL). Using this explicit solution, the minimization problem in (8) with respect to both β ∈ Rdim(β) and φ ∈ Φ boils
down to the following minimization with respect to φ ∈ Φ:

Qn(φ) =
1
n

n∑
i=1

[yi − B◦{Xiα(φ)}β̂(φ)]⊤W−1
i [yi − B◦{Xiα(φ)}β̂(φ)].

It is clear from this explicit formula that the compactness for the regression parameter β is not needed. Meanwhile, the
existence of the least squares estimator φ̂ follows immediately from the usual existence theorem in calculus as the objective
function Qn(φ) is continuous over the compact set Φ .

We now show that φ̂ → φ0 a.s., where Qn(φ̂) = infφ∈Φ Qn(φ). For each i ∈ {1, . . . , n}, let

an,i(φ) = B◦{Xiα(φ0)}β0 − B◦{Xiα(φ)}β̂(φ).
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Simple algebra leads to

Qn(φ) =
1
n

n∑
i=1

ϵ⊤

i W
−1
i ϵi + 2

1
n

n∑
i=1

a⊤

n,i(φ)W
−1
i ϵi +

1
n

n∑
i=1

a⊤

n,i(φ)W
−1
i an,i(φ) = A1 + 2A2(φ) + A3(φ),

say. It follows from Lemma A that A1 → τ a.s. as n → ∞. We show below that, as n → ∞,

A2(φ) → 0, A3(φ) → β⊤

0 T(φ)β0, a.s. (A.4)

uniformly over Φ . Here T(φ) is given in Condition 3 and has the unique zero at φ0. Thus, as n → ∞,

Qn(φ) → β⊤

0 T(φ)β0 + τ a.s.

uniformly in φ ∈ Φ . The rest of the proof for φ̂ → φ0 a.s. is similar to the proof of the theorem of Yu and Ruppert [37].
To compute the first limit in (A.4), we write A2(φ) = A21 + A22(φ), where

A21 = β⊤

0

[
1
n

n∑
i=1

B⊤

◦
{Xiα(φ0)}W

−1
i ϵi

]
, A22(φ) = β̂(φ)⊤

[
1
n

n∑
i=1

B⊤

◦
{Xiα(φ)}W−1

i ϵi

]
.

It can be shown that under Condition 3, as n → ∞,

ξn(φ) =
1
n

n∑
i=1

B⊤

◦
{Xiα(φ)}W−1

i ϵi → 0 a.s. (A.5)

uniformly inφ ∈ Φ . In fact, fixφ ∈ Φ and ε > 0, as n → ∞. Under Condition 3, there exist an eventΩφ with Pr(Ω̄φ) = 0 and
an integer nφ such that ∥ξn(φ)∥ < ε/2 holds over Ωφ for n > nφ , using a proof similar to that of Theorem 5.1.2 of Chung [4].
Let

Ḡn(φ) =
1
n

n∑
i=1

Gi(φ)W−1
i G⊤

i (φ),

where Gi(φ) = B⊤
◦
{Xiα(φ)}. It follows from Condition 3 that Ḡn(ϕ) − Ḡn(φ) → S(ϕ, ϕ) − S(φ, φ) uniformly in ϕ as n → ∞.

Since each Gi is continuous, the uniform convergence in Condition 3 implies that S(ϕ, ϕ) is continuous. As a result, given an
arbitrary ε > 0, there exists a neighborhood Nφ of φ, such that for all ϕ ∈ Nφ , ∥Ḡn(ϕ)− Ḡn(φ)∥ < ε/(4τ ). By Lemma A, there
exist an event Ω0 with P(Ω̄0) = 0 and an integer n0 such that over Ω0, when n > n0,1n

n∑
i=1

ϵ⊤

i W
−1
i ϵi

 ≤ 2τ .

Consequently, for all ϕ ∈ Nφ , over Ω ′

φ = Ω0 ∩ Ωφ with P(Ω̄ ′

φ) = 0, by the Cauchy–Schwarz inequality,

∥ξn(ϕ)∥ ≤ ∥ξn(ϕ) − ξn(φ)∥ + ∥ξn(φ)∥

≤ ∥Ḡn(ϕ) − Ḡn(φ)∥ ×

1n
n∑

i=1

ϵ⊤

i W
−1
i ϵi

+ ∥ξn(φ)∥ < ε/2 + ε/2 = ε,
(A.6)

for n > n′

φ = max(n0, nφ). As {Ω ′

φ} is an open cover of the compact Φ , it follows from the Heine–Borel Theorem that one
can choose a finite subcover Ω ′

φ1
, . . . , Ω ′

φK
. Let Ω ′

= ∩kΩ
′

φk
and n′

= max(n′

φk
). Then Pr(Ω̄ ′) = 0, and for all φ ∈ Φ , when

n > n′, we have ∥ξn(φ)∥ < ε over Ω ′. This shows the almost sure uniform convergence in (A.5).
Recall that the weighted penalized spline least squares estimators depend on the values of λn = (λn,1, . . . , λn,L)⊤. To

simplify the notation, we write the response vector as Yn = (y⊤

1 , . . . , y⊤
n )

⊤ and the error vector as En = (ϵ⊤

1 , . . . , ϵ⊤
n )

⊤. We
then defineWn = diag(W1, . . . ,Wn) and

Bn = Bn(φ) = (B⊤

◦
{X1α(φ)}, . . . ,B⊤

◦
{Xnα(φ)})⊤, Bn,0 = Bn(φ0).

Using a matrix notation and noting Yn = Bn,0β0 + En, we write (A.3) as

β̂(φ) = {B⊤

n (φ)W
−1
n Bn(φ)/n + D(λn)}−1B⊤

n (φ)W
−1
n Yn/n

= {B⊤

n (φ)W
−1
n Bn(φ)/n + D(λn)}−1B⊤

n (φ)W
−1
n Bn,0β0/n

+ {B⊤

n (φ)W
−1
n Bn(φ)/n + D(λn)}−1B⊤

n (φ)W
−1
n En/n.

(A.7)

By Condition 3, one has, for φ, φ0 ∈ Φ , and as n → ∞,

B⊤

n (φ)W
−1
n Bn(φ)/n → S(φ, φ), B⊤

n (φ)W
−1
n Bn(φ0)/n → S(φ, φ0) a.s. (A.8)

By (A.5), one also has, as n → ∞,

B⊤

n (φ)W
−1
n En/n → 0 a.s. (A.9)
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Both (A.8) and (A.9) hold uniformly over Φ . As λn = o(1), it follows that, as n → ∞,

β̂(φ) → S−1(φ, φ)S(φ, φ0)β0 a.s. (A.10)

uniformly in φ ∈ Φ . Thus, A22(φ) → 0, which takes care of the first limit in (A.4).
Using simple algebra, one finds

A3(φ) =
1
n

[
[I − Bn{B⊤

n W
−1
n Bn/n + D(λn)}−1B⊤

n W
−1
n /n]Bn,0β0

−Bn{B⊤

n W
−1
n Bn/n + D(λn)}−1B⊤

n W
−1
n En/n

]⊤
W−1

n

×
[
[I − Bn{B⊤

n W
−1
n Bn/n + D(λn)}−1B⊤

n W
−1
n /n]Bn,0β0

− Bn{B⊤

n W
−1
n Bn/n + D(λn)}−1B⊤

n W
−1
n En/n

]
.

LetHn = Bn(B⊤
n W

−1
n Bn/n)−1B⊤

n . Because the dimensions ofD and λn are fixed (independent of n) and λn = o(1), we have

{B⊤

n W
−1
n Bn/n + D(λn)}−1

= (B⊤

n W
−1
n Bn/n)−1

+ (B⊤

n W
−1
n Bn/n)−1D(λn)(B⊤

n W
−1
n Bn/n)−1

+ (B⊤

n W
−1
n Bn/n)−1D(λn)(B⊤

n W
−1
n Bn/n)−1D(λn)(B⊤

n W
−1
n Bn/n)−1

+ o(∥λn∥
2).

Thus
A3(φ) = β⊤

0 {B⊤

n,0WnBn,0/n − B⊤

n,0WnBn/n(B⊤

n WnBn/n)−1B⊤

n WnBn,0/n}β0

+ E⊤

n W−1
n HnW−1

n HnW−1
n En/n + o(n−1/2) = A31(φ) + A32(φ) + o(n−1/2).

By (A.5), we have E⊤
n W−1

n Bn/n → 0 as n → ∞. By Condition 3, B⊤
n WnBn/n → S(φ, φ) as n → ∞. Both of these limits

hold uniformly almost surely over Φ . Consequently, A32(φ) → 0 as n → ∞, which takes care of the second limit in (A.4).
Finally, we write

β̂(φ̂) − β0 = {β̂(φ̂) − β̂(φ0)} + {β̂(φ0) − β0}.

As in the proof of Theorem 1′ of [38], we argue that the first difference converges to zero almost surely in view of the
uniform convergence in (A.10). To deal with the second difference, we write

β̂(φ0) − β0 = [β̂(φ0) − E{β̂(φ0)}] + [E{β̂(φ0)} − β0].

The second difference is the bias of the ridge regression estimator and tends to zero as λn = o(1), while the first difference
tends to zero almost surely in view of (A.7)–(A.9). Combining the above yields β̂(φ̂) → β0 almost surely. This completes the
proof of Theorem 1. □

Proof of Remark 2. The result can be proved similar to the uniform convergence in (A.5). Let Ti(φ) = Xiα(φ). By assumption,
∥Ti(φ)∥ ≤ ∥Xi∥ ≤ LM0 as ∥α(φ)∥ = 1. As B◦(u) is continuous, there is a constant K1 > 0 such that ∥B◦{Ti(φ)}∥ ≤ K1 for
φ ∈ Φ for all i ∈ {1, . . . , n}. By assumption, (1 − ∥φ∥

2)−1
≥ (1 − r20 )

−1 for φ ∈ Φ . Hence the derivative of Ti(φ), which
contains (1 − ∥φ∥

2)−1, is bounded over Φ for all i ∈ {1, . . . , n}. This implies that the derivative of each entry of B◦{Ti(φ)} is
bounded. Therefore, for all i ∈ {1, . . . , n} and φ, ϕ ∈ Φ ,

∥B◦{Ti(ϕ)} − B◦{Ti(φ)}∥ ≤ K2∥ϕ − φ∥,

for some constant K2 > 0.
Let Sn(φ, φ∗) be the average in (10). Then

∥Sn(ϕ, ϕ∗) − Sn(φ, φ∗)∥ ≤ K2m−1
0 (∥φ − ϕ∥ + ∥φ∗

− ϕ∗
∥), (A.11)

wherem0 is the common lower bound of the eigenvalues ofWi. This implies that S(φ, φ∗) is continuous as

∥S(ϕ, ϕ∗) − S(φ, φ∗)∥ ≤ ∥S(ϕ, ϕ∗) − Sn(ϕ, ϕ∗)∥ + ∥S(φ, φ∗) − Sn(φ, φ∗)∥
+ ∥Sn(ϕ, ϕ∗) − Sn(φ, φ∗)∥ → 0,

with ∥ϕ − φ∥ + ∥ϕ∗
− φ∗

∥ → 0 and n → ∞. Here the above first two terms go to zero by assumption while the third term
goes to zero by (A.11). The uniform convergence in (10) can be proved by applying the Heine–Borel Theorem in a similar
way to the uniform convergence in (A.5) with a similar decomposition to (A.6) as follows:

∥Sn(ϕ, ϕ∗) − S(ϕ, ϕ∗)∥ ≤ ∥Sn(ϕ, ϕ∗) − Sn(φ, φ∗)∥ + ∥Sn(φ, φ∗) − S(φ, φ∗)∥
+ ∥S(φ, φ∗) − S(ϕ, ϕ∗)∥ → 0,

as ∥ϕ − φ∥ + ∥ϕ∗
− φ∗

∥ → 0 and n → ∞. This concludes the proof. □

Proof of Theorem 3. Note first that the consistent estimator θ̂n minimizes (8), i.e.,

Qn,λn (θ) = Qn(θ) +

L∑
ℓ=1

λn,ℓβ
⊤

ℓ Dℓβℓ, (A.12)
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where Qn(θ) is given in (7). Recall our convention θ = θφ = (φ⊤, θ⊤)⊤. Expanding the derivative Q̇n,λn (θ̂n) at θ0 to the first
order, we derive that θ̂n must satisfy

0 = Q̇n,λn (θ̂n) = Q̇n,λn (θ0) + Q̈n,λn (θ̄)(θ̂n − θ0),

where θ̄ is a vector lying between θ̂n and θ0 and Q̈n,λn (θ) denotes the second order partial derivative matrix of Qn,λn (θ).
As usual, we formally get

√
n (θ̂n − θ0) = −Q̈n,λn (θ̄)

−1√n Q̇n,λn (θ0).

By Slusky’s Lemma it suffices to show that, as n → ∞,
√
n Q̇n,λn (θ0) ⇝ N [0, 4∆2(θ0)] (A.13)

and

Q̈n,λn (θ̄)
P

−→ 2∆1(θ0). (A.14)

We first prove (A.13). To this end, taking the partial derivative with respect to θ in (A.12) yields
√
n Q̇n,λn (θ0) =

√
n Q̇n(θ0) + 2

√
n (0⊤

d−1, λn,1(D1β0,1)
⊤, . . . , λn,L(DLβ0,L)

⊤)

= −
2

√
n

n∑
i=1

ṁi(θ0)⊤W−1
i ϵi + 2

√
n (0⊤

d−1, λn,1(D1β0,1)
⊤, . . . , λn,L(DLβ0,L)

⊤)⊤.

The second term on the last line tends to 0dim(θ)−1 as λn,ℓ = o(n−1/2) for all ℓ ∈ {1, . . . , L}, while the first term converges
in distribution to the multivariate normal with mean zero and variance–covariance matrix 4∆2(θ0) under Condition 4. This
proves (A.13).

It remains to show (A.14). Note that

Q̈n,λn (θ̄) = Q̈n(θ̄) + 2Diag(0(d−1)×(d−1), λn,1D1, . . . , λn,LDL).

Again, the second term on the right-hand side of the above equation tends to 0dim(θ)×dim(θ) as each λn,ℓ = o(n−1/2).
We write

Qn(θ) =
1
n

n∑
i=1

{ϵi + mi(θ0) − mi(θ)}⊤W−1
i {ϵi + mi(θ0) − mi(θ)}.

Taking partial derivatives with respect to θ on both sides, we have

Q̈n(θ) =
2
n

n∑
i=1

ṁi(θ)⊤W−1
i ṁi(θ) − 2Bn(θ) − 2Cn(θ),

where B(θ) and C(θ) are dim(θ) × dim(θ) matrices whose (s, t) entry B(θ)s,t and C(θ)s,t are, respectively, given by

Bn(θ)s,t =
1
n

n∑
i=1

∂2mi(θ)⊤

∂θs∂θt
W−1

i ϵi, Cn(θ)s,t =
1
n

n∑
i=1

∂2mi(θ)⊤

∂θs∂θt
W−1

i {mi(θ0) − mi(θ)}.

By the uniform convergence in (11)–(12) and the consistency of the θ̂n in Theorem 1,

Bn(θ̄)s,t
P

−→ 0, Cn(θ̄)s,t
P

−→ 0.

These yield the desired (A.14). This concludes the proof of Theorem 3. □
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