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Abstract

In this article, we propose to estimate the regression parameters in a semiparametric
generalized linear model by moment estimating equations. These estimators are
shown to be consistent and asymptotically normal. We present two estimators of the
nonparametric part, provide conditions for the existence and uniform consistency,
and obtain faster rates of convergence under weaker assumptions.

Key words: Exponential family, Generalized linear model, Kernel estimate,
Moment estimate, Nonparamtric part, Semiparametric regression.

1 Introduction

In a semiparametric generalized linear model(SGLM), the response Y ∈ R

and the covariate vector (X,Z) ∈ [c, d]m× [0, 1] satisfy the structural relation:

E(Y |X,Z) = h(X⊤θ + ρ(Z)), θ ∈ Θ ⊂ R
m, (1)

where Θ is a nonempty and open subset, ρ is an unknown nonparametric
smooth function and h is a link. The density f of Y w.r.t. σ-finite measure ν
belongs to an exponential family of the form

f(y|φ) = exp(φy − b(φ)), y ∈ Y ⊂ R, φ ∈ Φ,
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where Φ is the range of the composite a = µ−1 ◦ h of the inverse µ−1 of
the expectation µ of Y and the link h, assuming that µ is invertible. The
covariate (X,Z) is random and has a joint distribution G. It is worth noting
that the above form of the exponential family is canonical ; other forms can
be transformed to this by reparametrization.

Suppose now that we have independent observations (Yi, Xi, Zi), i = 1, ..., n
from (Y,X,Z). We are interested in estimating the regression parameter θ
in the presence of the nuisance nonparametric parameter ρ. Our method is
based on moment estimating equations(MEEs). Moment estimators in certain
situations have simple structures such as explicit formulas, but they are not
efficient in general. However, they can be improved to attain efficiency by the
method of scoring. See e.g. Bickel, et al., 1993, page 44. For estimating the
Euclidean parameter θ, we have to estimate the nonparametric part ρ. We
shall give two estimators of ρ based on the methods of moment and maximum
likelihood. Severini and Wong(1992) proposed the profile likelihood procedure
for semiparametric models. By this procedure, estimators of the nonparametric
part can be obtained. These estimators and the partial derivatives converge at
certain rates (see (18) below) under smoothness assumptions, involving high
order partial derivatives of the densities. Forrester, et al.(2003) presented their
estimator of the nonparametric part in partially linear model under weaker
smoothness assumptions. Sparked from their work, we propose our estimators
and obtain faster rates under weaker assumptions. See (18) and (23) below.

In the sequel, we shall denote θ the true unknown parameter and ϑ ∈ Θ a
generic parameter. We shall write Eϑ the expectation calculated under the
probability measure Pϑ,ρ for ϑ ∈ Θ, and P = Pθ,ρ and E = Eθ. Throughout we
reserve φ = a(X⊤θ + ρ(Z)). The rest of the article is organized as follows. In
Section 2, we introduce the estimators. Examples are given. Section 3 contains
the main theorems. The technical proofs are given in Section 4.

2 Moment Estimating Equations

In this section, we introduce the estimators and give examples. We assume
throughout that Φ is a convex subset of the interior of the natural parameter
space, consisting of all ϕ having the finite normalizing function

exp(b(ϕ)) =
∫

exp(ϕy) dν(y).

Hence in Φ, all the derivatives of b(ϕ) exist and all moments of Y are finite
and can be computed (see e.g. Brown, 1986, page 34) by the equations:

∫

yk exp(ϕy)) dν(y) = ∂k/∂ϕk exp(b(ϕ)), ϕ ∈ Φ, k = 1, 2, · · · .
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In particular, the expectation and the variance of Y are µ(ϕ) = Eϕ Y = b′(ϕ)
and Σ(ϕ) = Covϕ(Y ) = b′′(ϕ) respectively. In terms of conditional expecta-
tion, these equations can be rewritten as

E(Y k|X,Z) = exp(−b(φ))∂k/∂φk exp(b(φ)), k = 1, 2, · · · . (2)

In particular, for k = 1, the conditional expectation of Y given Z is

E(Y |Z) = E

(

exp(−b(φ))∂/∂φ exp(b(φ))|Z
)

= E(h(X⊤θ + ρ(Z))|Z).

Replacing the above conditional expectation with the ordinary kernel esti-
mator, we estimate the nonparametric part ρ(z) by a moment-type(M-type)
kernel estimator r = ρ̂θ,M(z), the solution to the MEE:

n
∑

i=1

YiK((Zi − z)/hn) =
n

∑

i=1

h(X⊤
i θ + r)K((Zi − z)/hn), z ∈ [0, 1] (3)

where hn > 0 is a bandwidth and K is a kernel satisfying the usual assumption.

Assumption 1 The kernel K is a bounded Lipschitz probability density hav-
ing support [−1, 1].

Taking expectation across (2) gives

E(Y k) = E

(

exp(−b(φ))∂k/∂φk exp(b(φ))
)

, k = 1, 2, · · · .

In order to obtain the moment equations for estimating θ, we shall replace the
ρ(Z) in φ = X⊤θ + ρ(Z) with an estimator ρ̂θ(Z), and replace the moments
with their sample moments in the above equations. To this end, set φn,i(θ) =
a(X⊤

i θ + ρ̂θ(Zi)), where ρ̂θ is an estimator of ρ (it could be ρ̂θ,M , or ρ̂θ,ML

below, or any other estimator). Our proposed estimator θ̂n of θ is then the
solution to the m MEEs:

(1/n)
n

∑

i=1

Yi = (1/n)
n

∑

i=1

b′(φn,i(θ)), (4)

(1/n)
n

∑

i=1

Y 2
i = (1/n)

n
∑

i=1

(

b′
2
(φn,i(θ) + b′′(φn,i(θ))

)

, (5)

· · · · · · · · · · · · · · · · · · · · · · · ·
(1/n)

n
∑

i=1

Y m
i = (1/n)

n
∑

i=1

exp
(

− b(φn,i)
)

∂m/∂φm exp
(

b(φn,i)
)

. (6)

We note that (3) and (4) may be linearly dependent as is the case when h is
a canonical link (so that a is the identity map). In this case, we may simply
replace (4) with an additional MEE:

(1/n)
n

∑

i=1

Y m+1
i = (1/n)

n
∑

i=1

exp
(

− b(φn,i)
)

∂m+1/∂φm+1 exp
(

b(φn,i)
)

. (7)
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Another approach in coping with the linear dependence is to estimate ρ(z) by
a maximum likelihood-type(ML-type) estimator ρ̂ϑ,ML(z). The log likelihood
is a(φ)Y − b(φ), so that r = ρ̂ϑ,ML(z) is the solution to the equation:

1

nhn

n
∑

i=1

a′(X⊤
i θ + r)

(

Yi − h(X⊤
i θ + r)

)

K((Zi − z)/hn) = 0, z ∈ [0, 1]. (8)

Clearly, this last approach only works provided that a is not an identity map
(the canonical link), otherwise it simplifies to (3) and the same additional
equation (7) may have to be used. Thus, if a is an identity map, we shall re-
sort to MEEs (3), (5)-(7); otherwise (a is not identity map, noncanonical link),
we may use equations (8), (4)-(6). Simplifications such as closed formulas or
convenient equations are possible when the MEEs are judiciously chosen. For
instance, when a is noncanonical and θ is real, one may use equations (3) and
(8). More specifically, it is advantageous to employ (8) as an estimating equa-
tion for ρ from the perspective that such an estimator is a “least favorable
curve”. For more details on this, see e.g. Severini and Wong(1992). It is inter-
esting to note that one has options to choose different combinations of MEEs.
Such an example is the aforementioned two systems of equations. Another two
examples are MEEs (3), (5)-(7) and equations (8), (5)-(7).

Example 1 Consider the canonical link h(ζ) = ζ and b(ϕ) = ϕ2/2, so Y has
the normal distribution N (ϕ, 1). The M-type kernel estimator ρ̂ϑ,M(z) of the
nonparametric part is given by

ρ̂ϑ,M(z) =
n

∑

i=1

Kn,i(z)Yi

/

n
∑

i=1

Kn,i(z) −
(

n
∑

i=1

Kn,i(z)Xi

/

n
∑

i=1

Kn,i(z)

)⊤

ϑ,

where Kn,i(·) = K((Zi − ·)/hn). The ML-type estimator ρ̂ϑ,ML(z; ϑ) has the
same formula. Since the link is canonical, we have to use the equations (5)-(7)
to cope with the linear dependence. The moment estimator θ̂n does not have
an explicit formula but is the solution to the following MEEs:

(1/n)
n

∑

i=1

Y k
i = (1/n)

n
∑

i=1

exp
(

− φ2
n,i(θ)/2)

)

∂k/∂φk exp(φ2
n,i(θ)/2))

for k = 2, · · · ,m + 1, where φn,i(θ) = X⊤
i θ + ρ̂θ(Zi).

Example 2 For the Gamma distribution with mean µ and unit shape param-
eter, the kth moment is k!µk. For link h(η) = eη, the M-type kernel estimator
of the nonparametric part has an explicit formula given by

ρ̂ϑ,M(z) = log
[

∑

j

Kn,j(z)Yj

/

∑

j

Kn,j(z)eX⊤

j
ϑ
]

.
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The moment estimator θ̂n is the solution to the m MEEs:

(1/n)
n

∑

i=1

Y k
i = (1/n)

n
∑

i=1

k! exp(X⊤
i θ + ρ̂θ(Zi)), k = 2, · · · ,m + 1.

Example 3 For the linear Poisson regression with b(ϕ) = exp(ϕ) and the
noncanonical link h(ζ) = exp(ζ), the M-type kernel estimator ρ̂ϑ,M(z) of the
nonparametric part has an explicit formula given by

ρ̂ϑ,M(z) = log
[

∑

i

Kn,i(z)Yi

/

∑

i

Kn,i(z) exp(X⊤
i ϑ)

]

, z ∈ [0, 1].

The ML-type kernel estimator ρ̂ϑ,ML(z) does not have an explicit formula but
is the solution to the nonlinear equations (w.r.t. r):

∑

i

Kn,i(z)Yi/(X
⊤
i ϑ + r) =

∑

i

Kn,i(z), z ∈ [0, 1].

Since we may use ρ̂ϑ,ML(z) as an estimator ρ̂ϑ(z) of ρ, the moment estimator

θ̂n may be taken as the solution to the MEEs (4)-(6). Specifically, it is the
solution to the following MEEs, with φn,i(θ) = X⊤

i θ + ρ̂θ(Zi),

(1/n)
n

∑

i=1

Y k
i = (1/n)

n
∑

i=1

exp(φn,i(θ))
k−2
∑

j=0

(

k − 1

i

)

µi, k = 1, · · · ,m.

where µ0 = 1, µ1 = exp(φn,i(θ)), µ2 = exp(φn,i(θ)) + exp(2φn,i(θ)), and so
forth. Clearly, we may also use ρ̂ϑ,M as an estimator of ρ. In this case we
should use the equations (5)-(7) to avoid the linear dependence.

For convenience, let us focus on the MEEs (5)-(7), while ρ̂θ is an estima-
tor of ρ. Other combinations of MEEs may be analogously considered. Let
A(y) = (y2, · · · , ym+1)⊤ and B(φ) be a m-dimensional vector with compo-
nents B1(φ) = b′2(φ) + b′′(φ), B2(φ) = b′3(φ) + 3b′(φ)b′′(φ) + b

′′′

(φ), · · · , and
Bm(φ) = b′m+1(φ) + · · · + b(m+1)(φ). Then (5)-(7) can be written as:

Λn(θ) ≡ (1/n)
n

∑

i=1

(

A(Yi) − B
(

a(X⊤
i θ + ρ̂θ(Zi))

))

= 0. (9)

Equation (9) may have many solutions as in usual MEEs. We can only prove
asymptotic existence, consistency and normality for a sequence of solutions.
We focus on a compact neighborhood N(θ) of θ in which Λn(ϑ) has at most
one zero point for ϑ ∈ N(θ). Define θ̂n to be such a zero point if it exists
otherwise define it to be an arbitrary number inside N(θ).
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3 Asymptotic Behaviors

In this section, we introduce the conditions for the asymptotic behavior of
the estimators, followed by the main theorem. We then study the asymptotic
behavior of the estimators of the nonparametric part. Write ‖v‖E for the
Euclidean norm of vector v ∈ R

m; denote supϑ for supϑ∈Θ, supz for supz∈[0,1]

and so on if the definitions are clear from the context. For a function k from a
metric space M into the reals R, denote the supremum ‖k‖M = supm∈M

|k(m)|
and write ‖k‖ for ‖k‖M if there is no ambiguity from the context.

Asymptotic Normality of θ̂n. In our mind, ρ̂n is either ρ̂ϑ,M or ρ̂ϑ,ML. But
in what follows, we shall keep ρ̂n in general and introduce conditions that
ensure the asymptotic behavior of the estimator. For ϑ ∈ N(θ) and z ∈ [0, 1],
let ρϑ(z) be the limit of ρ̂ϑ(z) in probability as n tends to infinity, fulfilling
the following assumption.

Assumption 2 For ϑ ∈ N(θ) and z ∈ [0, 1], ρϑ(z) is bounded and the partial
derivatives ρ′

ϑ(z) = (∂/∂ϑ)ρϑ(z) and ρ̂′
ϑ(z) (bounded) exist, are continuous

and G-square integrable, and satisfy

sup
ϑ∈N(θ)

‖ρ̂ϑ − ρϑ‖ = op(1), n → ∞, and (10)

sup
ϑ∈N(θ)

‖ρ̂′
ϑ − ρ′

ϑ‖ = op(1), n → ∞. (11)

The next assumption gives the interchange of differentiation and integration.

Assumption 3 a is twice continuously differentiable satisfying

E sup
‖r‖≤r0

sup
ϑ∈N(θ)

|a′(X⊤ϑ + ρϑ(Z) + r)| < ∞, and (12)

E sup
‖r‖≤r0

sup
ϑ∈N(θ)

|a′′(X⊤ϑ + ρϑ(Z) + r)| < ∞. (13)

Set D(ϑ) = E[(∂B/∂ϑ⊤)(a(X⊤ϑ + ρϑ(Z)))], ϑ ∈ Θ. Then by the chain rule,

D(ϑ) = E[B′(a(X⊤ϑ + ρϑ(Z))a′(X⊤ϑ + ρϑ(Z))(X⊤ + ρ′⊤
ϑ (Z))].

Assumption 4 For ϑ ∈ N(θ), the total derivative (∂B/∂ϑ⊤)(a(X⊤ϑ+ρϑ(Z)))
exists and is continuous, square-integrable, and nonsingular; D(ϑ) is bounded
from below on N(θ): infϑ∈N(θ) ‖D(ϑ)‖E > 0. Further,

E sup
|r|≤r0

sup
ϑ∈N(θ)

‖B′
(

a(X⊤ϑ + ρϑ(Z) + r)
)

‖E < ∞, (14)
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E sup
|r|≤r0

sup
ϑ∈N(θ)

‖B′′
(

a(X⊤ϑ + ρϑ(Z) + r)
)

‖E < ∞. (15)

Theorem 1 Suppose that Assumptions 2 – 4 hold. Then θ̂n is a consistent

estimator of θ, i.e., θ̂n
P→ θ. Further, it is asymptotically normal,

√
n(θ̂n − θ) ⇒ Nm(0, V (θ)),

where Nm(v, V ) denotes the m-dimensional normal distribution with mean
v ∈ R

m and m × m covariance matrix V . Here V (θ) = D−1(θ) E[A(Y ) −
B(a(X⊤θ + ρϑ(Z))]⊗2D−⊤(θ).

Note that Assumptions 3-4 restrict the distribution of the covariates X,Z such
that the (partial) derivatives a′, a′′, B′, B′′ as functions of the semiparametric
part X⊤ϑ + ρϑ(Z) are uniformly integrable.

Estimating Nonparametric Part ρ. We now study conditions that ensure
the existence and uniform weak consistency of the estimator of the nonpara-
metric part, and give the rates of convergence along the line of Severini and
Wong(1992). We assume henceforth that the parameter space Θ is a compact
set of R

m and H is a compact set of R.

For ϑ ∈ Θ, z ∈ [0, 1], let r = ρϑ,M(z) be the unique solution to the equation

E(Y − h(X⊤ϑ + r)|Z = z) = 0. (16)

Let r = ρϑ,ML(z) be the unique solution to the equation

E(a′(X⊤ϑ + r))(Y − h(X⊤ϑ + r))|Z = z) = 0, (17)

if the solution exists; otherwise define it to be an arbitrary number.

Severini and Wong (1992) proposed the profile likelihood procedure, by which
estimators of the nonparametric part can be constructed. They gave the rates
of uniform convergence of the estimators. Specifically, they showed

sup
ϑ

‖ρ̂ϑ,ML − ρϑ,ML‖ = op(n
γ−q/(2q+4)h−(q+4)/(q+2)

n ) (18)

for any γ > 0. Here q ≥ 2 is an integer such that the q-th moments of
certain statistic exist. They also obtained the rates of uniform convergence
for the derivatives of the estimators. Assumption 5 next was employed in
their Lemma 5 to assert preliminary uniform consistency. Let ψ(ϑ, r, z) =

E

(

a(X⊤ϑ + r)Y − b(a(X⊤ϑ + r))|Z = z
)

, and formally write

ψ′(ϑ, r, z) = (∂ψ/∂r)(ϑ, r, z), ψ′′(ϑ, r, z) = (∂2ψ/∂r2)(ϑ, r, z).

Their assumption may be stated as follows.
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Assumption 5 For any ǫ > 0, there exists δ > 0 such that

sup
ϑ

sup
z

|ψ′(ϑ, ρ̄ϑ(z), z)| ≤ δ =⇒ sup
ϑ

sup
z

|ρ̄ϑ(z) − ρϑ(z)| ≤ ǫ.

This assumption together with the uniform convergence (20) in Theorem 4
below is essentially a condition of uniform (weak) consistency of the estimator
of the nonparametric part. The weak consistency is the basis upon which rates
of convergence and asymptotic normality can further be established. Forrester,
et al.(2003) proposed their estimator of the nonparametric part in partially
linear models. We shall follow the idea of the latter to construct our estimator
and give conditions which guarantee the existence and uniform consistence.
We generalize their result in that their result follows from ours when h assumes
the identity link (h(η) = η). We now introduce these conditions. Let

Sϑ(r, y, x) = (y − h(x⊤ϑ + r))a′(x⊤ϑ + r), x ∈ [c, d]m, y ∈ R.

Dϑ(r, z) = E [(∂Sϑ/∂r)(ρϑ(z) + r, Y,X)|Z = z] , ϑ ∈ Θ, r ∈ H.

Assumption 6 (i) Monotonicity: r 7→ Sϑ(r, y, x) is monotone (incr) for ev-
ery ϑ ∈ Θ, x ∈ [c, d]m, y ∈ R. Moreover, ρϑ(z) satisfies

E[Sϑ(ρϑ(z), Y,X)|Z = z] = 0, ϑ ∈ Θ, z ∈ [0, 1].

(ii) Bounded away from zero: infϑ∈Θ inf |r|≤r0
infz∈[0,1] |Dϑ(r, z)| = D0 > 0.

To derive the consistency, we need the following smoothness assumptions.

Assumption 7 (i) The joint density g (w.r.t. Lebesgue measure) of the co-
variate (X,Z) is Lipschitz in z:

|g(x, z1) − g(x, z2)| ≤ Lg|z1 − z2|, x ∈ [c, d]m, z1, z2 ∈ [0, 1]

for some Lipschitz constant Lg > 0 independent of x.
(ii) The marginal density q of Z (w.r.t. Lebesgue measure) is bounded away
from zero: q(z) > b0 > 0, z ∈ [0, 1] for some constant b0,

Assumption 8 z 7→ ρϑ(z) is Lipschitz:

|ρϑ(z1) − ρϑ(z2)| ≤ Lρ|z1 − z2|, z1, z2 ∈ [0, 1], ϑ ∈ Θ

for some Lipschitz constant Lρ > 0 independent of ϑ.

Assumption 7 (i) and (ii) appeared in Forrester, et al.(2003) and are Condition
A2 (a) and (b) of Bhattacharya and Zhao (1997). Severini and Wong(1992) im-
posed, in Lemma 8, assumptions on high order differentiability of the marginal
density of Z and the conditional density, the uniform boundedness, and high
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order derivatives, see their (c) and (d), page 1787. These assumptions obvi-
ously imply (i) and (ii).

Remark 1 Assumption 7 (i) implies that the marginal density q of Z is Lip-
schitz and therefore is bounded.

Assumption 9 next is an identifiability condition under which the parameter
θ and the nonparametric ρ are discriminative.

Assumption 9 infϑ∈Θ infr∈H infz∈[0,1] |ψ′′(ϑ, r, z)| > 0.

Recall Sϑ(r, Y,X) = (Y − h(X⊤ϑ + r))a′(X⊤ϑ + r). Formally, we write

S
(i,j)
ϑ (r, Y,X) = (∂Si+j

ϑ /∂ϑi∂rj)(r, Y,X), i = 0, · · · , 3, j = 0, · · · , 2.

The following assumption guarantees the differentiability and the passage to
under integrals and uniform integrability.

Assumption 10 The partial derivatives S
(i,j)
ϑ (r, y, x), y ∈ R, x ∈ [c, d]m exist

for i = 0, · · · , 3, j = 0, · · · , 2 and fulfill the following conditions.

(i) sup
ϑ

sup
r,s∈H

∫

S
(i,j)
ϑ (r, y, x)2f(y|a(x⊤ϑ + s)) dν(y)dG(x, z) < ∞, i, j = 0, 1.

(ii) There exists p ≥ 2 such that supr,ϑ E ‖S(i,j)
ϑ (r, Y,X)‖p

E < ∞, i, j = 0, 1.

(iii) E sup
ϑ,r

‖S(i,j)
ϑ (r, Y,X)‖E < ∞, i = 0, · · · , 3, j = 0, · · · , 2.

It follows from the Lebesgue dominated convergence theorem that Assump-
tion 10 (i) and (iii) guarantee the passage of differentiation to under the inte-
gral signs. We will use this fact without referring to it. Since the above (i) is
only used to claim (27) below, we have the following weaker assumption. For
more details, see the proof of Theorem 4.

Remark 2 If z 7→ ρ(z) is differentiable, then Assumption 10 (i) can be re-
placed with the following assumption,

sup
ϑ

sup
r,z

E(S
(i,j)
ϑ (r, Y,X)2|Z = z) < ∞, i, j = 0, 1. (19)

The proof of uniform convergence in Theorem 2 and Theorem 3 below is similar
to Forrester, et al.(2003), their proof is essentially in the spirit of Härdle and
Luckhaus (1984) and Härdle, et al.(1988). We omit the details of the proof.

Theorem 2 Suppose that Assumptions 6, 7, 8, 10 with i = j = 0 hold. Then,
with hn = n−p/(4p+12), we have supϑ∈Θ ‖ρ̂ϑ,ML − ρϑ‖ = OP (hn).
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Theorem 3 Suppose that Assumptions 6, 7, 8, and 10 with i = j = 0 hold
with a being an identity map. Then supϑ∈Θ ‖ρ̂ϑ,M − ρϑ‖ = OP (n−p/(4p+12)).

Theorem 4 next is an analog of Lemma 8 of Severini and Wong(1992). They
imposed on the assumptions on the densities and the high order partial deriva-
tives; in their notations, on fθ(y|x) and f(x) and the high order partial deriva-
tives, where fθ(y|x) is the conditional density of the statistic Tθ(Y ) given X
and f(x) is the density of X, which is independent of the parameter θ. What
were used in their proof are the assumptions on the densities fθ(x|y) and fθ(y)
and the high order partial derivatives, where fθ(x|y) is the conditional density
of X given the statistic Tθ(Y ) and fθ(y) is the density of Tθ(Y ), which is de-
pendent of the parameter θ. Though the equality fθ(y|x)f(x) = fθ(x|y)fθ(y)
may be used, additional assumptions seem required. We give Theorem 4 below,
with the proof in the last section.

Theorem 4 Suppose that Assumptions 7 and 10 hold. Assume Assumption 8
holds with ϑ = θ. Then, with τn = n−p/(2p+4)h−(p+4)/(p+2)

n , we have

sup
ϑ,r,z

|ψ̂′
n(ϑ, r, z) − ψ′(ϑ, r, z)| = OP (hn + τn). (20)

sup
ϑ,r,z

‖(∂/∂ϑ)ψ̂′
n(ϑ, r, z) − (∂/∂ϑ)ψ′(ϑ, r, z)‖E = OP (hn + τn). (21)

sup
ϑ,r,z

|ψ̂′′
n(ϑ, r, z) − ψ′′(ϑ, r, z)| = OP (hn + τn). (22)

We now give the convergence of the ML-type estimator and omit the proof.

Theorem 5 Suppose that Assumptions 5, 7, 9, and 10 hold. Assume Assump-
tion 8 holds with ϑ = θ. Then, with τn given in Theorem 4, we have

sup
ϑ∈Θ

‖ρ̂ϑ,ML−ρϑ,ML‖ = OP (hn+τn), sup
ϑ∈Θ

‖ρ̂′
ϑ,ML−ρ′

ϑ,ML‖ = OP (hn+τn). (23)

Theorem 4 and Theorem 5 are analogs of Theorems 8, 5 of Severini and Wong
(1992). Ours are given in vector parameters. Also we relax the smoothness
assumptions of their uniformly boundedness of high order partial derivatives
of the density to be Lipschitz continuity, which thus results in the reduction
of the convergence rate from their OP (h2

n) to our OP (hn). We have obtained
a sharper rate OP (hn + τn), which is their rate when γ = 0 in their γ > 0, see
the rate on the right hand side of (18). We give the following convergence for
the M-type estimator of the nonparametric part with the proof omitted.

Theorem 6 Suppose that Assumptions 5, 7, 9, and 10 hold; Assumption 8
holds with ϑ = θ; and with a being replaced with the identity map. Then

sup
ϑ∈Θ

‖ρ̂ϑ,M − ρϑ,M‖ = OP (hn + τn), sup
ϑ∈Θ

‖ρ̂′
ϑ,M − ρ̂′

ϑ,M‖ = OP (hn + τn).
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4 Proofs of Theorem 1 and Theorem 4.

Proof of Theorem 1: By definition, θ̂n is the only element in N(θ) such that
Λn(θ̂n) = 0. We expand Λn(θ̂n) at the true parameter value θ, so that

θ̂n − θ = −
(

Λ′
n(θ∗n)

)−1
Λn(θ) (24)

for some θ∗n in between θ̂n and θ on an event that Λ′
n(θ∗n) is invertible. For

ϑ ∈ Θ, write Λn(ϑ) = Λn,1(ϑ) + Λn,2(ϑ), where

Λn,1(ϑ) = (1/n)
n

∑

i=1

(

A(Yi) − B
(

a(X⊤
i ϑ + ρϑ(Zi))

)

)

,

Λn,2(ϑ) = (1/n)
n

∑

i=1

(

B
(

a(X⊤
i ϑ + ρϑ(Zi))

)

− B
(

a(X⊤
i ϑ + ρ̂ϑ(Zi))

)

)

.

By the weak law of large numbers and the central limit theorem, we have

Λn,1(θ) = op(1),
√

nΛn,1(θ) =⇒ N
(

0, E
(

A(Y ) − B
(

a(X⊤θ + ρθ(Z))
)⊗2)

.

An application of the mean value theorem yields

Λn,2(θ) = (1/n)
n

∑

i=1

B′
(

a(η∗
n,i)

)

a′(η∗
n,i)(ρ̂θ(Zi) − ρθ(Zi)),

where η∗
n,i = X⊤

i θ + ρθ(Zi) + u(ρ̂θ(Zi) − ρθ(Zi)) for some u ∈ [0, 1]. It follows

from (10),(12) and (14) that Λn,2(θ) = op(n
−1/2) and hence

Λn(θ) = op(1),
√

nΛn(θ) =⇒ N
(

0, E
(

A(Y )−B
(

a(X⊤θ +ρθ(Z))
)⊗2)

(25)

By the chain rule of vector functions, we have Λ′
n(ϑ) = Λ′

n,1(ϑ) + Λ′
n,2(ϑ) with

Λ′
n,1(ϑ) =−(1/n)

n
∑

i=1

B′
(

a(X⊤
i ϑ + ρϑ(Zi))

)

a′(X⊤
i ϑ + ρϑ(Zi))(X

⊤
i + ρ′

ϑ(Zi)),

Λ′
n,2(ϑ) = (1/n)

n
∑

i=1

(

B′
(

a(X⊤
i ϑ + ρϑ(Zi)

)

a′(X⊤
i ϑ + ρϑ(Zi))(X

⊤
i + ρ′

ϑ(Zi))

−B′
(

a(X⊤
i ϑ + ρ̂ϑ(Zi)

)

a′(X⊤
i ϑ + ρ̂ϑ(Zi))(X

⊤
i + ρ̂′

ϑ(Zi)
)

.

By the dominance assumptions in (14), Assumption 2, (12), and the usual
uniform strong law of large numbers(e.g. Ferguson, 1996, Page 108), we have

lim
n→∞

sup
ϑ∈N(θ)

‖Λ′
n,1(ϑ) − D(ϑ)‖ = 0, a.s. (26)

11



Analogously by (10)-(11), (12)-(13) and (14)-(15), one could show Λ′
n,2(θ

∗
n) =

op(n
−1/2). This, (26) and the fact that D(ϑ) is bounded away from below show

that Λ′
n(θ∗n) = D(θ) + op(n

−1/2). Thus in view of the first equality of (25), the

expansion (24) gives θ̂n
P→ θ. This, (26), and the second equality of (25) yield

the desired asymptotic normality. 2

For convenience we write ρ̂ϑ,ML = ρ̂ϑ. Recall Sϑ(r, y, x) = (y − h(x⊤ϑ +
r))a′(x⊤ϑ+r). The proof of Theorem 4 is in the spirit of the proof of Lemma 8
of Severini and Wong(1992), though their proof used erroneous assumptions.
Proof of Theorem 4. Let Ψn(ϑ, r, z) = (1/nhn)

∑n
j=1 Sϑ(r, Yj, Xj)Knj(z).

Then ψ̂′
n(ϑ, r, z) = Ψn(ϑ, r, z)/q̂(z), where q̂(z) = (1/nhn)

∑n
i=1 Kn,i(z) is the

kernel estimator of q(z) for z ∈ [0, 1]. With simple manipulation,

E Ψn(ϑ, r, z) − q(z)h′(ϑ, r, z) =
∫

Sϑ(r, y, x)∆(y, x, u)K(u) ν(dy)dxdu

where ∆(y, x, u) = f(y|φ(z−uhn))g(x, z−uhn)−f(y|φ(z))g(x, z), with φ(t) =
a(x⊤ϑ + ρ(t)). By the Lipschitz continuity in Assumption 8,

|∆(y, x, u)| ≤ cuhn [f(y|φ(z)) + |(y − h(η∗))a′(η∗)|f(y|a(η∗))g(x, z − uhn)] ,

where η∗ = x⊤ϑ + ρ∗ with ρ∗ lying in between ρ(z) and ρ(z − uhn) (clearly if
z 7→ ρ(z) is differentiable, then ρ∗ = ρ(z−u∗hn) for some 0 ≤ u∗ ≤ 1, and thus
Assumption 10 (i) can be replaced with the weaker Assumption 10(ii)), and
c is a constant depending only on the Lipschitz constant of ρ. It follows from
Cauchy inequality, Assumption 10(i) with (i, j) = (0, 0), and the Lebesgue
dominated convergence theorem that

sup
ϑ,r,z

|E Ψn(ϑ, r, z) − q(z)ψ′(ϑ, r, z)| = O(hn). (27)

Let Ψ̄n(ϑ, r, z) = Ψn(ϑ, r, z) − E Ψn(ϑ, r, z). As in Severini and Wong(page
1800) and by Assumption 10(ii) with (i, j) = (0, 0), one has for any ǫ > 0,

P (|Ψ̄n(ϑ, r, z)| > ǫ) ≤ c/(np/2(ǫhn)p). (28)

By Assumption 1 and Assumption 10(iii) with (i, j) = (0, 0),

|Ψ̄n(ϑ, r, z1) − Ψ̄n(ϑ, r, z2)| ≤ c1
|z1 − z2|

h2
n

1

n

n
∑

j=1

A1j

for an integrable sequence {A1j} independent of z1, z2. By Assumption 10(iii)
with (i, j) = (1, 0),

|Ψ̄n(ϑ1, r, z) − Ψ̄n(ϑ2, r, z)| ≤ c2
‖ϑ1 − ϑ2‖

hn

1

n

n
∑

j=1

A2j

12



for an integrable sequence {A2j} independent of ϑ1, ϑ2. Again by Assump-
tion 10(iii) with (i, j) = (0, 1),

|Ψ̄n(ϑ, r1, z) − Ψ̄n(ϑ, r2, z)| ≤ c3
|r1 − r2|

hn

1

n

n
∑

j=1

A3j

for an integrable sequence {A3j} independent of r1, r2. Consequently there
exists of a sequence {Aj} independent of wi = (ϑi, ri, zi), i = 1, 2 such that

sup
‖w1−w2‖≤δ

∣

∣

∣Ψ̄n(w1) − Ψ̄n(w2)
∣

∣

∣ ≤ c0
δ

h2
n

1

n

n
∑

j=1

Aj.

Let {δn} be a sequence tending to zero and Θn, Hn, Zn be δn-nets of Θ, H, [0, 1]
respectively. Then, for some constant c,

P (sup
ϑ,r,z

|Ψ̄n(ϑ, r, z)| > ǫ) ≤ P ( max
ϑ∈Θn,r∈Hn,z∈Zn

|Ψ̄n(ϑ, r, z)| > ǫ/2)

+P ( sup
‖w1−w2‖≤δ

|Ψ̄n(w1) − Ψ̄n(w2)| > ǫ/2) ≤ c

ǫp

1

δ2
nnp/2hp

n
+

c

ǫ

δn

h2
n

→ 0

if ǫ = Mnτn = Mnn
−p/(2p+4)h(p+4)/(p+2)

n with Mn → ∞ and δn = O(τnh
2
n).

Likewise, one can establish ‖q̂n − q‖ = OP (hn + n−p/(2p+4)h−(p+4)/(p+2)
n ). Com-

bining the above and in view of Assumption 7 (ii) yields the desired (20).
Analogously one can show (21) and (22). This completes the proof. 2
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