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Introduction

Jackknife Empirical likelihood for Multivariate U-statistics

Let (Z,.) be a measurable space and P be a probability measure on
this space. Let Zy, . .., Z, be independent copies of a Z-valued
random variable Z with cumulative distribution function F under P.
Let h : R” — R< be a known function that is permutation symmetric
in its m arguments. A multivariate or vector U-statistic with kernel h
of order m is defined as

—1
Uy, = Upn(h) = <”> S hZy,....Z), nz2

1<i1<...<im<n
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Introduction to U-statitstics
» h € Ly(F™), where L(F™) = {f : [ |[f]|?dF" < oo}
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Introduction to U-statitstics
» h € Ly(F™), where L,(F™) {f [ 1Ifl?dF™ < oo}
» 0 = E(h) := E(h(Z,,...,Zy,)) = [hdF™
> P f=n' S0 f(Z) PE=E (f(Z))
» U, isan unblased estimate of @

» Let U denote the projection of U,, then Un is a sum of
independent and identically distributed random vectors, as

ZEU|Z (n—1)6.
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Introduction to U-statitstics

» h € Ly(F™), where L,(F™) {f [ 1Ifl?dF™ < oo}
» 0 =E(h):=E(Z,...,Z,)) = [hdF"
»Pf_n”z f(Z;) ,Pt=FE (f(Z))

» U, is an unblased estimate of 6

» Let U denote the projection of U,, then Un is a sum of
independent and identically distributed random vectors, as

ZEU|Z (n—1)6.

v

One obtains the approximation,

U, =Uf +a, a,=0,(n").
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» Let U denote the projection of U,, then Un is a sum of
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ZEU|Z (n—1)6.

v

One obtains the approximation,

U, =Uf +a, a,=0,(n").
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Introduction

Lemma

(The Central Limit Theorem for Multivariate U-statistics)

Suppose the kernel h is square-integrable and the dispersion matrix
> = Var(U) is positive definite. Then \/n(U, — 6) and /n(U} — )
are asymptotically equivalent, hence \/n(U,, — 0) is asymptotically
normal with mean zero and covariance matrix m*Y, that is,

ViU, — ) = 4 (0,m*X).
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Jackknife pseudo values of U-statistics

> Let U,(;jl) denote the U-statistic based on the n — 1 observations
Z,...2; \,Zj,,..., 12,
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> Let U,(;jl) denote the U-statistic based on the n — 1 observations
Z,...2; \,Zj,,..., 12,

» The Jackknife pseudo values of the U-statistic are defined as
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Some Properties
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Some Properties

> V,;is also an unbiased estimator of 6.

» One has

V., =mhy(Z) +0,(n"V?), j=1,....n.

where

/flc(Zl,...,ZC) :E(h(Zl,...,Zm)|Z] :Zl,...,ZC :Zc),
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» It shows that each Jackknife value V,; depends asymptotically on
Z;,sothat V,;,j=1,...,n are asymptotically independent.
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» If 7; is a probability mass placed at Z;, then approximately the
same probability mass 7; is placed at the Jackknife value V,,; for
j=1,...,n
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Introduction

» It shows that each Jackknife value V,; depends asymptotically on
Z;,sothat V,;,j=1,...,n are asymptotically independent.

» If 7; is a probability mass placed at Z;, then approximately the
same probability mass 7; is placed at the Jackknife value V,,; for
j=1,...,n

» The joint likelihood is approximately the product of these 7rl’~ S.
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Introduction

Jackknife Empirical likelihood with side information

n n n
;@n(h,g) = sup { Hl’lﬂ'j ‘T E Py, ijan =0, Zﬂ'jg(Zj) = O},
=1 =1 =1

» g is a measurable functions from 2 to R” such that [ gdF =0
and [ ||g||* dF is finite.

» ris the number of equalities that express the side information,
and we shall call them constraints.

» We allow r to depend on the sample size n, r = r,,, and to grow
to infinity slowly with n and study the asymptotic behaviors of
the empirical likelihood.
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Wilks Theorems with fixed number of constraints

» Let h() be a measurable functions from 2™ to R% which is
argument-symmetric and square-integrable fori = 1,...,r.

> Let V,,;(h()) be the centered jackknife pseduo value of the
U-statistic Unmk(h(k)) of order m;.
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Wilks Theorems with fixed number of constraints

» Let h() be a measurable functions from 2™ to R% which is
argument-symmetric and square-integrable fori = 1,...,r.

> Let V,,;(h()) be the centered jackknife pseduo value of the
U-statistic Unmk(h(k)) of order m;.

» With the U-statistics as side information, we associate the
empirical likelihood

(0D ")) = sup { Hmrj LT E @n,Zijpzj(h(k)) =0,
j=1 J=1

k:1,...,r}.
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Wilks Theorems with fixed number of constraints

Theorem

THEOREM 1 Let r,, = r for all n. Suppose h®, ... h") are
argument-symmetric and square-integrable kernels. Assume
W(h®, ... h")is positive definite. Then

—2log Z,(WV, ... W) = 3L,
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Testing Uniformity

» Suppose X1, ..., X, is a random sample from uniform
distribution on the unit sphere, % (S%~1).
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» Suppose X1, ..., X, is a random sample from uniform
distribution on the unit sphere, % (S%~1).

> Let2 <m<n.
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Testing Uniformity

» Suppose X1, ..., X, is a random sample from uniform
distribution on the unit sphere, % (S%~1).

> Let2 <m<n.

> ):(m = riz*l >_im1 X; (the sample mean vector);
X5, = X/ || X || (the direction of sample mean);
Ry = || Xim|| (length of the sample resultant).
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Example

Testing Uniformity

» Suppose X1, ..., X, is a random sample from uniform
distribution on the unit sphere, % (S%~1).
> Let2 <m<n.
> ):(m = riz*l >_im1 X; (the sample mean vector);
X5, = X/ || X || (the direction of sample mean);
Ry = || Xim|| (length of the sample resultant).
» Kent, Mardia arld Rao (1979) proved that
Uniformity < X9 L R,, which implies

m
E(ar(Rn)X) =0, ax € Log(F),k=1,2,...,

where F is the distribution function of R, and {ay} is a basis of
Ly o(F).
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» For convenience, let m = 2 and d = 3.

» X ~ % (8%),X = (x,y,z)", and the density is
f(69,:2) = g5, (x,,2) € S

» Let Xy,...,X, bei.i.d copies of X.

X; + X

RX: X)) = Xt X, S5 X)) = =~
i j

iLj=1,...,n.
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Example

» For convenience, let m = 2 and d = 3.

» X ~ % (8%),X = (x,y,z) ", and the density is
f(69,:2) = g5, (x,,2) € S

» Let Xy,...,X, bei.i.d copies of X.

X; + X

RX: X)) = Xt X, S5 X)) = =~
i j

iLj=1,...,n.

» It follows that

E(ar(R(X;,X))S(Xi, X)) =0, ax € Lyo(F),k=1,2,...,
» Assume that F is continuous. Then a basis of L, o(F) is

{or o F}, where {or} = {¢x : k =1,2,...} is a basis of

Ly o(% ) with % the uniform distribution over [0, 1].

» We usually use the trignometric basis ¢y (f) = v/2 cos k.
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Example

» In this case, an estimator of the above expected value is the
vector U-statistics

Un=<n>l Y a(R(X:, X))S(X:, X))

m oy
1<i<j<n
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» In this case, an estimator of the above expected value is the
vector U-statistics

Un=<n>l Y a(R(X:, X))S(X:, X))

m oy
1<i<j<n

» We can show that this is a minimum variance unbiased estimator
of E(ax(R(X;, X;))S(X:, X)).
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Example

» In this case, an estimator of the above expected value is the
vector U-statistics

Unz(n>_l Y a(R(X:, X))S(X:, X))

m .
1<i<j<n

» We can show that this is a minimum variance unbiased estimator
of E(ax(R(X;, X;))S(X:, X)).
» Jackknifing this vector U-statistics by the Jackknife pseudo
values
V,; =nU, — (n— 1)U )
where U,(l:jl) denote the vector U-statistic based on the n — 1
observations Xy, ..., X;_1, Xjy1,...,X,.
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Example

» State the null hypothesis Hy : X1, ..., X, ~ % (S?)

» The null hypothesis implies E (ax(R(X;, X;))S(X;, X;)) = 0.
This suggests the jackknife empirical likelihood

n n
Ry, = sup{Hmri T E @,1,Zﬂjvnj(ak) =0, k= 1,...,r}.
=1

i=1
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This suggests the jackknife empirical likelihood

n n
Ry, = sup{Hmri T E @,1,Zﬂjvnj(ak) =0, k= 1,...,r}.
i=1

j=1

» We will show that
—2log %y = X’uy
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Example

» State the null hypothesis Hy : X1, ..., X, ~ % (S?)
» The null hypothesis implies E (ax(R(X;, X;))S(X;, X;)) = 0.
This suggests the jackknife empirical likelihood

Ry, = sup{Hmri T E @,1,Zﬂjvnj(ak) =0, k= 1,...,r}.
i=1

j=1

» We will show that
—2l0g %y = Xiry
» In this case, we accept Hy if —2log %Z,, < ngr(l — «), where «
is the level of significance. x?(1 — «) is the (1 — a) x 100%
percentile of x? distribution with degrees of freedom r.
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E Testing Symmetries

Testing Symmetries

> Spherical Symmetry

> Rotational Symmetry
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Testing Spherical Symmetry

» Suppose a random vector X € R has a distribution spherically
symmetric about 8, i.e.,

X-0<1(X-0),

for every orthogonal d X d matrix I'.
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E Testing Symmetries

Testing Spherical Symmetry
» Suppose a random vector X € R has a distribution spherically
symmetric about 8, i.e.,
d
X-0=I'X-0),

for every orthogonal d X d matrix I'.
» V=|X-0|,U=(X-8)/|X—0|. Wehave U ~ % (S¢1").
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E Testing Symmetries

Testing Spherical Symmetry

» Suppose a random vector X € R has a distribution spherically
symmetric about 8, i.e.,

X-0<1(X-0),

for every orthogonal d X d matrix I'.
» V=|X-0|,U=(X-8)/|X—0|. Wehave U ~ % (S¢1").
» Spherical symmetry
< VIUs E[a(V)b(U)} =0, ac Lzy()(Fv), b e LZ,O(FU)-
The choices for a, b are uncountably many.
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E Testing Symmetries

» However a, b can be reduced to countably many equations.
» Let {a;} denote a basis of L, o(Fy) and {b;} denote a basis of

L270(Fu).
Take a; = @;j o Fy and b, = ©Yk © Fy. gok(t) = ﬁCOS krt.

» Using the first few basis functions, we can construct empirical
likelihood ratio:

n
KX, = sup{Hmrl T E @n,ZW,aJ Obk(U;) =0, j=1,..,J,
i=1 i=1

k= 1,...,1(}

where (V;,U;),i = 1,...,nis a random sample of (V,U).
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E Testing Symmetries

» However a, b can be reduced to countably many equations.
» Let {a;} denote a basis of L, o(Fy) and {b;} denote a basis of

L270(Fu).
Take a; = @;j o Fy and b, = ©Yk © Fy. gok(t) = ﬁCOS krt.

» Using the first few basis functions, we can construct empirical
likelihood ratio:

n

KX, = sup{Hmrl WE:@MZW,LI] Obk(U;) =0, j=1,..,J,
i=1 i=1
k= 1,...,1(}
where (V;,U;),i = 1,...,nis a random sample of (V,U).

» By Owen’s theorem, —2 log Z;° = X%K'



An Empirical Likelihood Approach Of Testing of High Dimensional Symmetries

ETesting Symmetries

» Consider a vector function U — f(U) for some known function
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E Testing Symmetries

» Consider a vector function U — f(U) for some known function
f: RY — Re. (For example, f(U) = U.)

» The empirical likelihood takes the form

n n
A" = sup { [[rmi: 7 e 2,> mai(Vf(U) =0, j=1, "-vj}

i=1 i=1
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E Testing Symmetries

» Consider a vector function U — f(U) for some known function
f: RY — Re. (For example, f(U) = U.)

» The empirical likelihood takes the form

A" = sup { f[mr,- ITE Wn,zn:maj(vi)f(Ui) =0, j=1 “'71}

i=1 i=1

» In this case, under certain conditions we have

~210g ;" = X
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Simulations with Jackknife pseudo values

» Suppose Xi, ..., X, is a random sample from a spherically
symmetrical distribution.
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E Testing Symmetries

Simulations with Jackknife pseudo values

» Suppose Xi, ..., X, is a random sample from a spherically
symmetrical distribution.

> Vi=|Xi - 0|, Ui = (X; — 0)/[IX; — 6],
U ~%(SNi=1,...,n

» Letm =2, foranyp,g=1,...,n,let R=U, +U,,
R’ =R/|R].
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E Testing Symmetries

Simulations with Jackknife pseudo values

» Suppose Xi, ..., X, is a random sample from a spherically
symmetrical distribution.

> Vi=|Xi - 0|, Ui = (X; — 0)/[IX; — 6],
U ~%(SNi=1,...,n

» Letm =2, foranyp,g=1,...,n,let R=U, +U,,
R’ =R/|R]|.

» We have the fact that U; ~ % (S?~!) < ||R|| 1L RO,



An Empirical Likelihood Approach Of Testing of High Dimensional Symmetries

E Testing Symmetries

» Letby = ¢ 0 G, pi(t) = V2cosknt,k=1,...,K.
bx = (b1,...,bx)".

n -1
G(u) = (2) Z1§p<q§n 1[[[Up + Ug|| < u].
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E Testing Symmetries

» Letby = ¢ 0 G, pi(t) = V2cosknt,k=1,...,K.
bx = (b1,...,bx)".
Glu) = (3) Cicpeqen Uy + Uy < u.

» Let the kernel function
h(UlﬂUq) = bK(HUP.J’_ UqH) ® ((UP + Uq)/HUP + U,
is argument-symmetric.

), which
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E Testing Symmetries

» Letby = ¢ 0 G, pi(t) = V2cosknt,k=1,...,K.
bx = (b1,...,bx)".
Glu) = (3) Cicpeqen Uy + Uy < u.

» Let the kernel function
_h(UlﬂUq) = bK(HUP.J’_ UqH) ® ((UP + Uq)/HUP + U,
is argument-symmetric.

), which

» The U-statistics with the kernel h is given by

Un(bK):<Z>l 3w, U,

1<p<g<n
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E Testing Symmetries

» Letby = ¢ 0 G, pi(t) = V2cosknt,k=1,...,K.
bx = (b1,...,bx)".
Glu) = (3) Cicpeqen Uy + Uy < u.

» Let the kernel function
_h(UlﬂUq) = bK(HUP.J’_ UqH) ® ((UP + Uq)/HUP + U,
is argument-symmetric.

), which

» The U-statistics with the kernel h is given by

Un(bK):<Z>l 3w, U,

1<p<g<n

» The Jackknife pseudo values of the U-statistics is given by

an:nUn(bK>—(n—I)Un,l(bK), l: 1,...,”.
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E Testing Symmetries

» Leta; = (al,...,aj)T

» Combine two parts together, we get the Jackknife empirical
likelihood with side information as follows,

Iy (h, g)fsup{Hmr, WE@H,Zﬂ'laJ ) ® f(U;) =0,

i=1 i=1

zn: 7V =0}

i=1
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E Testing Symmetries

» Leta; = (al,...,a])T

» Combine two parts together, we get the Jackknife empirical
likelihood with side information as follows,

Iy (h, g)fsup{Hmr, ﬁe,@n,ZWlaJ ) ® f(U;) =0,
i=1 i=1

i Vi = o}

i=1
» By Theorem 1, under certain conditions we have

—210g <@}1(117 g) — X%]€+Kd)
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E Testing Symmetries

Simulation results of samples from normal distribution

> We still calculate powers of this test with different settings.
» For convenience, we setd = e = dim,andJ = K =r.
» ris basically the number of basis functions.

» The null hypothesis Hy : @ = (0,0,0)".
rep(x, dim) denotes the alternative hypothesis
Hi:0=(x,x,x)".



Multivariate Normal Distribution

Comparison of Power for Different H1 with HO:theta=0

n=100 m=2000

d=e=dim J=K=r

r=1 =2 =3 =4 r=h
rep (0. dim) 0.044]  0.031 0.04] 0.056] 0.0785
rep (0. 1, dim) 0.1215] 0.084] 0.081] o0.1015] 0. 135
o rep (0. 2, dim) 0.4185] 0.329] o0.2825] 0.2935] 0.3595
dim=2 ™ 0(0. 3. dim) 0.793] 0.7365] 0.663] 0.6715] 0.707
rep (0. 4, dim) 0.922 0.971] 0.928] 0.9215] 0.9265
rep (0. 5, dim) 0.901] 0.9985] 0.9955] 0.9945] 0.9935
rep (0, dim) 0.0325| 0.0345] 0.0715] 0.1355] 0.2825
rep (0. 1, dim) 0.0775] 0.097] o0.131] o0.201] 0.363
imes |rep(0.2, dim) 0.203]  0.335] o0.381] 0.471] o0.6185
rep (0. 3, dim) 0.531] 0.7425] 0.7355] 0.7995] 0.8665
rep (0. 4, dim) 0.6055] 0.954] 0.9365] 0.956] 0.9665
rep (0. 5, dim) 0.566] 0.9465] 0.9395] 0.9695] 0.9795
rep (0, dim) 0.0235] 0.054] 0.145] 0.349] 0.639
rep(0. 1, dim) 0.068] o0.109] o0.214] o0.443] 0.717
timet | xep (0.2, dim) 0.209] 0.351] 0.477] 0.6965] 0.8825
rep (0. 3, dim) 0.3425] o0.7225]  0.772] 0.9135] 0.9595
rep (0. 4, dim) 0.374]  0.836] 0.8735] 0.9515] 0.981
rep (0.5, dim) 0.3155 o0.757 o0.842] 0.933] 0.9745
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E Testing Symmetries

Simulation results of samples from ¢ distribution

» We still calculate powers of this test with different settings.

» For convenience, we setd = e = dim,andJ = K = r, df
denotes the degrees of freedom of ¢ distribution.

» ris basically the number of basis functions.

» The null hypothesis Hy : @ = (0,0,0)".
rep(x, dim) denotes the alternative hypothesis
Hy:0=(x,x,x)".



Multivariate t Distribution

Comparison of Power for Different Hl with HO:theta=0

n=100 m=2000 df=1

d=e=dim J=K=r

rep (0, dim) 0.044] 0.0295] 0.0335] 0.0505[ 0.0835

rep (0.1, dim) 0.0745 0.003[ 0.0595 0.079] 0.1145

dim=2 rep (0. 2, dim) 0.2145 0.16%5 0. 159 O.l?ﬁ? 0. 225
rep(0. 3, dim) 0.484] 0.3955 0.367| 0.3635] 0.4045

rep (0.4, dim) 0.733] 0.6925] 0.6085] 0.5995 0. 643

rep(0. 5, dim) 0.8725 0.889 0.8275| 0.8045] 0.8195

rep (0, dim) 0. 036 0.037 0.07] 0.1245 0.274

rep(0. 1, dim) 0.06] 0.0625] 0.1025 0.19( 0.3195

dim=3 rep(0. 2, dim) 0.198] 0.2255 0. 255 0.35] 0.5115
rep(0. 3, dim) 0. 4035 0.485] 0.4915 0.599] 0.7065

rep (0. 4, dim) 0.619 0.762] 0.7265 0.817] 0.8765

rep (0. 5, dim) 0. 734 0.918 0. 89 0.929] 0.9585

rep (0, dim) 0.0295] 0.0495] 0.1365 0.326] 0.6315

rep (0.1, dim) 0. 062 0.097] 0.1985 0.418 0.713

dim=d rep (0. 2, dim) 0. 205 0.284] 0.4025] 0.6295[ 0.8315
rep (0. 3, dim) 0. 4385 0.574] 0.6575] 0.8205 0.929

rep (0.4, dim) 0.6315] 0.8235] 0.8495] 0.9405] 0.9735

rep (0. 5, dim) 0.7275 0.912] 0.9215 0.977] 0.9935




Multivariate t Distribution

Comparison of Power for Different H1 with HO:theta=0

n=100 m=2000 df=2

d=e=dim J=K=r
r=1 r=2 r=3 r=4 r=5

rep (0, dim) 0. 042 0.033] 0.0375 0. 056 0. 092

rep(0.1, dim) 0. 0805 0.055] 0.0615] 0.0795] 0.1265

dim=9 rep(0. 2, dim) 0.2415] 0.1925 0.15 0.17? 0.2?1
rep(0. 3, dim) 0.514 0. 462 0.38] 0.3995 0. 452
rep(0.4, dim) 0. 7585 0.7725 0.664| 0.6695 0. 708

rep (0.5, dim) 0. 7985 0.9355| 0.8875| 0.8755| 0.8755

rep (0, dim) 0. 034 0.041 0. 065 0.129] 0.2615

rep (0.1, dim) 0. 0605 0.068] 0.0945] 0.1775 0. 332

dim=3 rep (0. 2, dim) 0.14 0.222 0.236] 0.3485[ 0.5085
rep (0. 3, dim) 0.2845) 0.4875] 0.5135] 0.6155] 0.7195

rep (0.4, dim) 0. 3755 0. 769 0. 749 0.834] 0.8875

rep (0. 5, dim) 0. 3895 0.883] 0.8785 0.934 0. 964

rep (0, dim) 0.027 0.05] 0.1375] 0.3335 0. 636

rep (0.1, dim) 0. 049 0.101] 0.2045] 0.4035 0. 691

dim=1d rep(0. 2, dim) 0. 107 0.%535 0. 3665 0.589§ 0.82?
rep (0. 3, dim) 0.191] 0.5205 0.624] 0.8155 0.925

rep(0. 4, dim) 0. 2765 0.735] 0.8075] 0.9265[ 0.9725

rep(0. 5, dim) 0.306] 0.8055| 0.8535 0. 947 0. 985




Multivariate t Distribution

Comparison of Power for Different H1 with HO:theta=0

n=100 m=2000 df=3

d=e=dim J=K=r
r=1 r=2 r=3 r=4 r=5

rep (0, dim) 0.0425] 0.0365] 0.0385 0. 054 0. 092

rep(0.1, dim) 0.102] 0.0565] 0.0655 0. 083 0.118

dim=2 rep (0.2, dim) 0.2615 0.199] 0.1665 0. 197 0.24
rep (0. 3, dim) 0.5625] 0.5165 0.435| 0.4375 0.476
rep(0.4, dim) 0. 7745 0.821] 0.7565] 0.7355 0. 738

rep (0.5, dim) 0. 8225 0.957] 0.9245 0.912] 0.8975

rep (0, dim) 0.02 0. 039 0.075 0.135] 0. 2665

rep (0.1, dim) 0.0575] 0.0705 0.108 0.186] 0. 3405

dim=3 rep(0. 2, dim) 0. 1405 0. 198 .2501] 0.3485] 0.5215
rep (0. 3, dim) 0.2545( 0.4995] 0.5325] 0.6355] 0.7465

rep (0.4, dim) 0.3165 0.804) 0.7775 0. 84 0.902

rep(0. 5, dim) 0. 305 0.874] 0.8835 0.932] 0.9585

rep (0, dim) 0.031] 0.0505] 0.1425 0. 332 0. 642

rep(0. 1, dim) 0. 047 0. 093 0.191] 0.4155 0. 705

dim=A rep(0. 2, dim) 0.0915 0.231] 0.3715] 0.6105 0.817
rep (0. 3, dim) 0.147] 0.5055 0.619] 0.7995 0.935

rep (0.4, dim) 0.1705f 0.6985] 0.7985] 0.9105] 0.9775

rep(0. 5, dim) 0.1745( 0.7145] 0.7995] 0.9435 0. 981
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E Testing Symmetries

Testing Rotational Symmetry

» Suppose a random vector X € S?~! is rotationally symmetric
about direction 6, that is,

X-020(X-0),

for every d x d rotation matrix O about a fixed direction 8 in R?.
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Testing Rotational Symmetry

» Suppose a random vector X € S?~! is rotationally symmetric
about direction 6, that is,

X-020(X-0),

for every d x d rotation matrix O about a fixed direction 8 in R?.
» Let T = 6" X be the projection of X onto the direction 6.
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E Testing Symmetries

Testing Rotational Symmetry

» Suppose a random vector X € S?~! is rotationally symmetric
about direction 6, that is,

X-020(X-0),

for every d x d rotation matrix O about a fixed direction 8 in R?.
» Let T = 6" X be the projection of X onto the direction 6.
» Let £ be the unit tangent at  to S9!

€~ U(S7%(9)), where

S472(0) = {xeRY: x| = 1,x"6 =0}.

> Rotational Symmetry = T =0'X Il £ = X716

X760’
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E Testing Symmetries

» Independence implies
E(a(T)b(€)) =0, a & Lyo(Fr), b € Lyo(Gg).
» Similar to the spherical symmetry case, take a; = ¢; o Fr,

Jj=1,...,J, and a vector function & — f(£) for some known
function f : RY — Re.
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E Testing Symmetries

» Independence implies
E(a(T)b(€)) =0, a & Lyo(Fr), b € Lyo(Gg).
» Similar to the spherical symmetry case, take a; = ¢; o Fr,

Jj=1,...,J, and a vector function & — f(£) for some known
function f : R — RE.

» We have E(a;(T)¢) = 0. Letay = (ay,...,a;) . The empirical
likelihood ratio takes the form

n

%,?h = sup { Hmr, T e P, Zﬂ',a_] ®E= O}

i=1 i=1
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E Testing Symmetries

» Independence implies
E(a(T)b(€)) =0, a & Lyo(Fr), b € Lyo(Gg).
» Similar to the spherical symmetry case, take a; = ¢; o Fr,

Jj=1,...,J, and a vector function & — f(£) for some known
function f : R — RE.

» We have E(a;(T)¢) = 0. Letay = (ay,...,a;) . The empirical
likelihood ratio takes the form

n
e@’gsh:sup{nnﬂ', ﬂe,@n,ZW,aJ ®€_O}

i=1 i=1

» Under certain conditions we have

—2log %fh = X.%e
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E Testing Symmetries

Simulations with Jackknife pseudo values

» We construct the same U-statistics and Jackknife pseudo values
as the spherical symmetry case.
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E Testing Symmetries

Simulations with Jackknife pseudo values

» We construct the same U-statistics and Jackknife pseudo values
as the spherical symmetry case.

» Eventually we have the same asymptotic distribution for the
Jackknife empirical likelihood

—2log %, (h,g) — X%Je+l<d)
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E Testing Symmetries

Simulations with Jackknife pseudo values

» We construct the same U-statistics and Jackknife pseudo values
as the spherical symmetry case.

» Eventually we have the same asymptotic distribution for the
Jackknife empirical likelihood

—2log %, (h,g) — X%Je+l<d)

» In our simulation, we generated the data distributed from Von
Mises-Fisher distribution.
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E Testing Symmetries

Simulations with Jackknife pseudo values

» We construct the same U-statistics and Jackknife pseudo values
as the spherical symmetry case.

» Eventually we have the same asymptotic distribution for the
Jackknife empirical likelihood

—2log %, (h,g) — X%Je+l<d)

» In our simulation, we generated the data distributed from Von
Mises-Fisher distribution.

» We are testing
Hy:0=(0,0,1)" V.S. Hy:0=(0.14,0.14,0.98) .
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E Testing Symmetries

v

Calculate the powers of this test with different settings.

v

For convenience, taked = e =3,/ =K =r.

v

r is basically the number of basis functions.

The results of simulations are showed below:

v



The level of significance of the testing of

rotational symmetry

HO: theta=(0,0, 1)

d=e=3 J=K=r m=2000

r=1

r=o

n=50

0. 0505

0. 099

]
-]

n=100

0. 053

0. 0685

==
[ R
(W3]
[ap]
o e

The power of the testing of rotational symmetry

HO: theta=(0,0,1) V.S. Hl: theta=(0.14,0.14,0.98)

d=e=3 J=K=r m=2000

r=1

r=3

on

n=50

0. 949

0. 9995

n=100

0. 9995

1

0. 9950
1
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Thank you very much!
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