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Summary. This paper introduces an exchangeable negative binomial distribution resulting

from relaxing the independence of the Bernoulli sequence associated with a negative bino-

mial distribution to exchangeability. It is demonstrated that the introduced distribution is

a mixture of negative binomial distributions and can be characterized by infinitely many

parameters that form a completely monotone sequence. The moments of the distribution are
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derived and a small simulation is conducted to illustrate the distribution. For data analytic

purposes, two methods, truncation and completely-monotone links, are given for convert-

ing the saturated distribution of infinitely many parameters to parsimonious distributions

of finitely many parameters. A full likelihood procedure is described which can be used to

investigate correlated and overdispersed count data common in biomedical sciences and ter-

atology. In the end, the introduced distribution is applied to analyze a real clinical data of

burn wounds on patients.

Key words: Beta-binomial; complete monotonicity; exchangeability; negative binomial;

overdisperson.
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1 Modeling Correlated and Overdispersed Count Data

Poisson regression is the standard method used to model count data. However, the Poisson

distribution requires the equality of its mean and variance, an assumption which is rarely

met in real data. What often happens is that the variance of data is bigger than the mean,

which is termed as Poisson overdisperson in the literature. The standard parametric model

to account for Poisson overdisperson is the negative binomial distribution. Since most real

count data situations appear to involve overdispersion, the negative binomial regression

has now been finding increased use in many fields of science including biomedical sciences,

econometrics and teratology. For a systematic discussion, see the first book on the negative

binomial regression by Hilbe (2007).

A negative binomial random variable can be viewed as the count to get the desired num-

ber of successes in a series of independent and identically distributed Bernoulli trials. The
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independence, nevertheless, cannot be assumed in many real situations. The perception of

exchangeability, intensely studied over the past century, is meant to capture the notion of

symmetry in a collection of random variables and is often used as an alternative to in-

dependence. In this article, by relaxing independence to exchangeability, we introduce the

exchangeable negative binomial distribution, based upon which we propose a full likelihood

procedure for investigating correlated and overdispersed binary response data.

The introduced exchangeable negative binomial distribution has many advantages over some

existing models. In models like those various marginal models and generalized estimating

equation (GEE) procedures, only the marginal means and variances or second order corre-

lations are modeled, while higher order correlations are usually so intractable that they are

replaced by “Gaussian working matrices” and are estimated by the method of moments. In

an exchangeable model, the joint distribution is expressed in terms of the marginal probabili-

ties. Hence, correlations of all orders are given by these probabilities, so that an exchangeable

model incorporates higher order moments and makes the full use of information in them. Un-

like a mixture model in which an arbitrary mixing distribution is chosen, an exchangeable

model does not utilize an arbitrary mixing distribution but makes full use of the struc-

ture that characterizes the associated exchangeable binary sequence based on the elegant de

Finetti theorem. It should be noted that the exchangeable negative binomial generalizes the

negative binomial. Since the negative binomial model is very useful both in theory and appli-

cation when the associated Bernoulli sequence is independent, so would be the exchangeable

negative binomial model when it is more appropriate or safer to assume exchangeability for

the associated Bernoulli sequence.

Statistical analysis of correlated data has been increasingly important because correlation is

often evident in many fields including biomedical sciences and teratology. Take teratology

for example, which is the study of the estimation of risk in developmental toxicity. The
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endpoints are malformations, intrauterine deaths, resorptions, growth retardation, etc. The

recorded responses in many teratogenic studies are binary, denoting, for example, death or

survival of a fetus, or the presence or absence of some fetal abnormality due to the toxic

substance. The offspring in a litter are not independent but correlated. Indeed, offspring from

the same litter may respond more similarly (call this similarity response) to a stimulus than

fetuses from different litters. This within-litter correlation also causes overdispersion (extra-

binomial variation). That is, the variance of the responses exceeds the nominal variance when

the binomial model is used.

Similarity responses also often occur in other situations. Consider burn wounds on different

body locations of a patient. The responses to a treatment of burn wounds on different body

locations of the same patient are certainly correlated. Further, burn wounds from the same

patient would, seemingly, respond more similarly to a treatment than burn wounds from

different patients. Another example in medical science is arthritis on different body locations

of a patient. In modeling these similarity responses it seems more realistic to assume the

less restrictive assumption of exchangeability rather than independence. In fact, similarity

responses are positively correlated, which is carried on by exchangeability because the latter

of course implies nonnegative correlation.

In the past several decades, many statistical procedures have developed to analyze terato-

genic data and account for the litter effect. These procedures include the beta-binomial

model by Williams (1975), the correlated-binomial model by Kupper and Haseman (1978),

the non-parametric jackknife procedure by Gladen (1979), and the adjusted chi-square tests

by Donner and Donald (1988). Using the relationship between exchangeability and complete

monotonicity, George and Bowman (1995) initiated an investigation on correlated binary

data. George and Kodell (1996) gave the tests of independence, treatment heterogeneity, and

dose-related trend with exchangeable binary data. Kuk (2004) introduced a litter-based ap-
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proach to risk assessment in developmental toxicity studies via a power family of completely

monotone functions. Both George and Bowman and Kuk applied their approaches in clinical

and developmental toxicity studies and compared their results with existing models. Xu and

Prorok (2003) investigated modelling and analyzing exchangeable binary data with random

cluster sizes. Stefanescu and Turnbull (2003) used the EM algorithm to model exchangeable

binary data with varying cluster sizes. Recently, Yu and Zelterman (2007) investigated the

sums of exchangeable Bernoulli random variables for family and litter frequency data. Dang,

Keeton and Peng (2009) proposed a unified approach for analyzing exchangeable binary

data and applied the approach to developmental toxicity studies. Their approach generalizes

the methodology in generalized linear models. In particular, the generalization of one link

function in GLM’s to a sequence of link functions. Specifically, one link specifies one model

in GLM’s, but in their models many links are employed to specify one model. Resulting

from completely monotonic functions, they introduced a rich family of parametric parsimo-

nious binomial mixtures. With such a rich family, one can perform statistical inference on

correlated binary data and, in particular, overdispersed data.

In this article, we apply the proposed procedure to fit a real clinical burn wounds dataset. Our

results indicate that the proposed exchangeable negative binomial (ENB) fitting improves

the negative binomial (NB) fitting. The ENB fitting yields the estimate 52.3% (33.7%) of

the rate of one wound location (two wound locations at the same time respectively) of no

need of surgical treatment after using the debriding agent. We have not yet found in the

literature that the number of burn wounds on a patient as a response is fitted this way.

We organize our article as follows. In section 2, we introduce the ENB and give the moments,

simulations and graphs. Completely monotone links are discussed in section 3. The truncated

ENB is given in section 4. Section 5 is devoted to maximum likelihood and empirical esti-

mation. In section 6, we apply the proposed procedure to fit a real clinical data set. Some
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technical details are collected in the Appendix.

2 The Exchangeable Negative Binomial

In this section, we introduce the ENB and demonstrate that it is a “parametric distribution”

with infinitely many parameters, followed by the characterization. We also discuss simulation

and give graphs.

2.1 Definition and Moments. In modeling correlated binary data with the binomial dis-

tribution such as in a developmental study, independence is not an adequate assumption. Re-

laxing independence to exchangeability, George and Bowman (1995) initiated a full likelihood

procedure. Dang, Keeton and Peng (2009) further developed the procedure and proposed a

unified approach. Recall that a finite sequence of binary random variables X1, X2, ..., Xn

are exchangeable if

P(Xπ(1) = x1, ..., Xπ(n) = xn) = P(X1 = x1, ..., Xn = xn), x1, ..., xn ∈ {0, 1}

for every permutation π(1), π(2), ..., π(n) of 1, 2, ..., n. A sequence of infinitely many binary

random variables are exchangeable if any finite subsequence is exchangeable.

Let R be the total number of successes in X1, ..., Xn, so that R = X1 + X2 + · · · + Xn.

George and Bowman (1995) among others derived the distribution of R, which is given by

P(R = r) =

(

n

r

)

n−r
∑

k=0

(−1)k

(

n − r

k

)

λr+k, r = 0, 1, 2, ..., n, (2.1)

where λ0 = 1, λk = P(X1 = 1, X2 = 1, ..., Xk = 1), k = 1, 2, ..., n. See also Dang, Keeton

and Peng (2009) for more details about the distribution. From now on, we shall assume

that X1, X2, ... is an infinite sequence of exchangeable Bernoulli r.v.’s. Let r be the desired

number of successes. Let Y be an integer-valued random variable that counts the number of
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trials until the first r successes are realized. Then it can be seen that the probability that

the first r successes are realized in y trials is given by

P(Y = y) =

(

y − 1

r − 1

)

y−r
∑

k=0

(−1)k

(

y − r

k

)

λr+k, y = r, r + 1, ... (2.2)

Note that the exchangeable Bernoulli sequence X1, X2, ... may be hidden and unobservable.

What we can observe is the value of Y – the number of trials to get the first r successes;

or equivalently, the number of failures to get the first r successes. Let S be the number of

failures. Then Y = S + r and the above probability (2.2) can be rewritten as

P(S = s) =

(

s + r − 1

r − 1

)

s
∑

k=0

(−1)k

(

s

k

)

λr+k, s = 0, 1, ... (2.3)

This latter form is used in our application of the distribution to the real data.

It is interesting to observe that there are infinitely many parameters, {λk : k = r, r + 1, ...},

in this distribution. Further, these parameters are a part of a completely monotone sequence

{λk : k = 0, 1, ...} (λ0 = 1) in the sense that

(−1)l∆lλk ≥ 0, k, l = 0, 1, 2, ..., (2.4)

where ∆ is the difference operator defined inductively by ∆ai = ai+1−ai, ∆l = ∆∆l−1, ∆0 =

I, l = 1, 2, ... for a sequence {a1, a2, ...} with I the identity operator. For a given completely

monotone sequence {λk : k = 0, 1, ...}, one has (2.2) and P(Y = y) =
(

y−1
r−1

)

(−1)y−r∆y−rλr ≥

0 (for details, see Feller (1971)). Accordingly, to justify that (2.2) indeed defines a legitimate

probability distribution, one only has to show

∞
∑

y=r

(

y − 1

r − 1

)

y−r
∑

k=0

(−1)k

(

y − r

k

)

λr+y = 1. (2.5)

Using the elegant de Finetti theorem, this can be verified and the details are given in the

Appendix.
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Clearly the above distribution generalizes the negative binomial distribution. Specifically,

if the associated Bernoulli sequence is independent and identically distributed, so that

λk = λ1
k for k = 1, 2, ..., then Y has a negative binomial with parameters λ1 and r,

i.e., Y ∼ NB(λ1, r). Further, the above probability (2.2) is a mixture of negative binomial

distributions, since from the de Finetti theorem it follows

P(Y = y) =
∫ 1

0

(

y − 1

r − 1

)

λr
1(1 − λ1)

y−r dQ(λ1), y = r, r + 1, ...

where Q is the probability measure on [0, 1] uniquely determined by the infinite Bernoulli

sequence. Thus, we have obtained an interesting fact that the mixture of negative binomial

distributions is equivalently to a “parametric distribution” with infinitely many parameters.

Let us denote Y ∼ ENB(λ, r) with λ = {λr, λr+1, ...}. The special case r = 1 corresponds

to the exchangeable geometric distribution and we write Z ∼ EG(λ) with λ = {λ1, λ2, ...}.

The probability distribution of Z is

P(Z = z) =
z−1
∑

k=0

(−1)k

(

z − 1

k

)

λ1+k, z = 1, 2, ... (2.6)

The exchangeable geometric distribution can be used to efficiently estimate the mixing mea-

sure Q, which is still under our investigation.

We now give the moment generating function (m.g.f.) with the proof delayed to the Appendix.

Theorem 1. Let Y ∼ ENB(λ, r). Then the moment generating function of Y is given by

MY (t) = etr

∫ 1

0
ur
(

1 − (1 − u)et
)−r

dQ(u), t ∈ B (2.7)

for some neighborhood B of the origin in which the above integral converges.

We now derive the formulas for the mean and variance. To guarantee the existence of the

first and second moment, we need to assume the convergence of certain improper integrals.
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We formally define

λ−k =
∫ 1

0
u−k dQ(u), k = 1, 2, ... (2.8)

Differentiating the m.g.f. and evaluating the derivatives at zero, we obtain the following

results.

Corollary 1. Let Y ∼ ENB(λ, r). (1) If λ−1 < ∞, then the mean of Y exists and is given

by E(Y ) = M ′
Y (0) = rλ−1. (2) If λ−2 < ∞, then the second moment of Y exists and is

given by E(Y 2) = M ′′
Y (0) = r(r + 1)λ−2 − rλ−1. Then, of course, the variance of Y is simply

Var(Y ) = E(Y 2) −
(

E(Y )
)2

= r(r + 1)λ−2 − rλ−1 − (rλ−1)
2.

By Hausdorff’s theorem (see e.g. Feller (1971)), the completely monotone sequence {λk} can

be expressed as the moments of the measure Q, namely,

λk =
∫ 1

0
uk dQ(u), k = 0, 1, 2, ... (2.9)

Interestingly (2.8) extends the definition of λk in (2.9) from positive k = 1, 2, ... to negative

k = −1, −2, ..., so that we have {..., λ−1, λ0, λ1, ...}.

In terms of {λk, k = 1, 2, ...} of positive indices, {λ−k, k = 1, 2, ...} of negative indices and

therefore the first and second moment can be expressed as follows, using the negative bino-

mial expansion.

E(Y ) = r
∞
∑

j=0

j
∑

k=0

(−1)k

(

j

k

)

λk, (2.10)

and

Var(Y ) = r(r + 1)
∞
∑

k=0

k
k
∑

j=0

(−1)j

(

k

j

)

λj

+r2
∞
∑

k=0

k
∑

j=0

(−1)j

(

k

j

)

λj −

(

r
∞
∑

k=0

k
∑

j=0

(−1)j

(

k

j

)

λj

)2

. (2.11)

We take some special cases of the Beta-binomial distribution to illustrate the behavior of
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the distribution. Suppose now that the distribution Q has a density, say q(u), with respect

to the point-mass measure (Case 1) and the Lebesgue measure (Cases 2-4).

Case 1. Q is a point mass concentrated on p ∈ (0, 1). Then the resulting distribution is the

negative binomial distribution NB(p, r). Here we have

λk =

1
∫

0

uk dQ(u) = pk, k = 0, ±1, ±2, ...

Hence, we recover the familiar mean and variance of the negative binomial, which are

E(Y ) = rλ−1 = r/p, Var(Y ) = r(r + 1)λ−2 − rλ−1 − (rλ−1)
2 = r(1 − p)/p2.

In this case all the moments exist.

Case 2. Suppose q(u) = 1. We have λk =
1
∫

0
uk(1) du = 1/(k + 1), k = 0, 1, ... In this case

λ−k =
1
∫

0
u−k dQ(u) =

1
∫

0
u−k du does not exist for all k = 1, 2, ...; therefore, none of the

moments exists either.

Case 3. Now suppose q(u) = 2u. Then we have λk =
1
∫

0
uk(2u) du = 2/(k + 2), k = 0, 1, 2, ...

In this case, λ−1 =
1
∫

0
2u/u du = 2. Consequently, the mean of Y is given by E(Y ) = rλ−1 =

2r. However, the variance and higher moments still do not exist.

Case 4. Finally, suppose q(u) = 4u3. Then we have λk =
1
∫

0
uk(4u3) du = 4/(k + 4), k =

0, 1, 2, ... In this case, λ−1 =
1
∫

0

4u3

u
du = 4

3
, λ−2 =

1
∫

0

4u3

u2 du = 4
1
∫

0
u du = 2. Consequently,

the mean and variance of Y are given by

E(Y ) = rλ−1 = 4r/3, Var(Y ) = r(r + 1)λ−2 − rλ−1 − (rλ−1)
2 = 2r2/9 + 2r/3.

2.2 Simulations and Probability Curves. Here we give a method to simulate ENB ran-

dom variables. Some histograms and probability curves are drawn to illustrate the introduced

distribution.
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First, we discuss a direct method of generating ENB random variables Y1, Y2, ..., Yn. A

probability measure Q concentrated on [0,1] can be given by specifying its density q with

respect to the Lebesgue measure. Then, by (2.9), values of λ1, λ2, ..., λm can be calculated

for some m. Next, values of P(Y = j) are computed with the calculated λj’s. Let F (j) be

the cumulative distribution function given by

F (j) =
j
∑

y=r

P(Y = y) =
j
∑

y=r

(

y − 1

r − 1

)

y−r
∑

k=0

(−1)k

(

y − r

k

)

λr+k, j = r, r + 2, ...

Calculate F (j) for j = 1, 2, ..., m. Generate n random variables, U1, U2, ..., Un, from the

uniform distribution on (0, 1). Define Yj = k + r − 1 if F (k − 1) ≤ Uj < F (k) so that

P(Yj = k + r − 1) = P(F (k − 1) ≤ Uj < F (k)) = F (k)− F (k − 1) = P(Y = k + r − 1). This

is equivalent to defining Yj = F−1(Uj). The resulting Y1, Y2, ..., Yn are simulated random

variables from Y having distribution ENB(λr, λr+1, ..., r) with the selected sequence λj’s.

Note that for finite sample size n only finitely many parameters λj’s are involved. We consider

two cases q(u) = 5u4, r = 1 and q(u) = 7u6, r = 2 both with sample size n = 200 and m = 30

(large enough). For q(u) = (a + 1)ua, u ∈ (0, 1) with a ≥ 0, it is easy to compute

P(Y = y) =
(a + 1)(r + a)(r + a − 1) · · · r

(y + a + 1)(y + a) · · · y
, y = r, r + 1, ... (2.12)

The histograms in Fig. 1 are generated by the simulated random variables Yj’s, superimposed

with the corresponding ENB and NB probability curves respectively. We observe clear dif-

ference between the two curves, especially in the right graph. Consequently, if the Bernoulli

sequence associated with a data set is exchangeable but not independent, and if we fit it with

the independence-based negative binomial, then there would be such a difference between

the true and fitted probabilities. Indeed, we have observed this difference in our application

of the ENB to the real clinical data in the last section.
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Fig. 1. The histograms superimposed with the probability curves for the ENB with q(u) = 5u4,

r = 1 and q(u) = 7u6, r = 2 and the corresponding NB probability curves. The ENB curve fits

better than the NB curve.

3 Completely Monotone Links

An ENB distribution has infinitely many parameters, which may complicate statistical infer-

ence and the interpretation of the parameters. Either theoretically or practically, we may wish

to work with a distribution of finitely many parameters, because such a distribution is suc-

cinct and may allow pleasant interpretation of the parameters. There are many approaches

to converting a distribution of infinitely many parameters to parsimonious distributions

of finitely many parameters. Here we mention a few of them: (1) Re-parameterization. (2)

Bayesian approach. (3) Truncation. (4) Completely monotone links. The last two approaches

will be discussed below. The approach (4) was first appeared in George and Bowman (1995),

continued in Kuk (2004), and systematically studied in Dang, Keeton and Peng (2009). We

discuss (4) first and then (3) in the next section.
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Note that ENB(λ, r) has infinitely many parameters and is the saturated model with pa-

rameter space Λ = {λ = (λk : k = r, r + 1, ...) : λ satisfies (2.4)}. Following Dang, Keeton

and Peng (2009), we will seek parsimonious distributions of finitely many parameters of the

saturated distribution. By mapping a lower d-dimensional subset Θ ⊂ R
d into Λ, we obtain

a parsimonious model. Consider such a map from Θ into Λ defined by λ = h(θ), where

θ ∈ Θ is the parameter space of the parsimonious model. Write h = {hk : k = r, r + 1, ...}

so that λj = hj(θ), j = r, r + 1, .... Substitution of these representations in (2.2) results in

a parsimonious model,which can be expressed as

f(y; θ) =

(

y − 1

r − 1

)

y−r
∑

k=0

(−1)k

(

y − r

k

)

hy+k(θ), θ ∈ Θ, y = r, r + 1, ... (3.13)

where h0(θ) = 1 for every θ ∈ Θ. In order to ensure that the above expression is a legitimate

probability mass function, these {hj(θ)} have to be completely monotone (2.4):

(−1)k∆jhk(θ) ≥ 0, θ ∈ Θ, j = 0, 1, ..., k = r, r + 1, ... (3.14)

Such h is called a completely monotone (inverse) link. Dang, Keeton and Peng (2009) have

given a wide variety of completely monotone link functions and demonstrated with real data

how the above approach can be used to conduct statistical inference for correlated binary

data. Here we quote several links from them and more can be found in their paper: the

Independence-Binomial link ht(θ) = θt, θ ∈ (0, 1); the MM-Binomial link ht(θ) = θ/(θ + t),

θ ∈ (0,∞); the Beta-Binomial link ht(θ) = B(θ1 + t, θ2)/B(θ1, θ2), θ ∈ (0,∞)2; the Gamma-

Binomial link ht(θ) = (1 + θ2t)
−θ1 , θ ∈ (0,∞)2; and the Poisson-Binomial link ht(θ) =

exp(θ(e−t − 1)), θ ∈ (0,∞). We will not further discuss this approach and refer interested

readers to Dang, Keeton and Peng (2009) for a full description of the approach.
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4 The Truncated ENB Distribution

Now we propose a truncated ENB, which converts the distribution of infinitely many pa-

rameters into a distribution of finitely many parameters. In fact, we may view it as an ap-

proximation to the ENB because it converges to the ENB as the truncation grows to infinity.

Consider a sequence of infinitely many exchangeable Bernoulli trials. Let Y ∼ ENB(λ, r)

associated with the sequence, and let m be a fixed positive integer. Let W (m) be the number

of trials necessary to get the first r successes, given that the total number of trials does

not exceed m, i.e., W (m) = Y |Y ≤ m. The resulting distribution is called the truncated

exchangeable negative binomial (TENB).

We now derive the distribution of W (m). By definition, the distribution of W (m) is

P(W (m) = w) = P(Y = w|Y ≤ m) = P(Y = w)/P(Y ≤ m), w = r, r + 1, ..., m,

provided P(Y ≤ m) > 0; otherwise P(W (m) = w) = 0. One issue that must be addressed

is the selection of the truncation value m in real applications. We may choose m to be the

largest observed value of Y . Besides, it can be seen that the limiting distribution of TENB

as m → ∞ is the ENB, because

lim
m→∞

P(Y ≤ m) = P(Y < ∞) = 1,

which is demonstrated in the Appendix. Observe that Y occurring before m means that

there are at least r successes in the m exchangeable Bernoulli trials. That is, the two events

{Y ≤ m} and {Rm ≥ r} are equivalent, where Rm has the exchangeable binomial distribution

EB(λ1, ..., λm, m), and the formula of the probability P(Rm = r) is given in (2.1). Thus

P(Y ≤ m) = P(r ≤ Rm ≤ m). (4.15)

An algebraic proof of the above equality can be found in the Appendix. Thus we have a nice
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formula:

P(W (m) = w) = P(Y = w)/P(r ≤ Rm ≤ m), w = r, r + 1, ..., m.

The above discussion results in a relation between the cumulative distribution of the ENB

and the EB.

Remark 1. Let Y ∼ ENB(λ, r). For a fixed positive integer m, let Rm ∼ EB(λ1, ..., λm, m).

Then the cumulative distribution function of Y given r is equal to the probability of having

at least r successes in m trials as given in (4.15).

5 Maximum Likelihood and Empirical Estimates

This section gives an estimating procedure based on maximum likelihood and empirical

estimation.

The ENB distribution has infinitely many parameters; thus it is not a parametric distribution

in the strict sense. There exists well-developed theory in the literature on the estimation of

parameters with infinite dimensionality, see e.g. the monograph by Bickel, Klaassen, Ritov

and Wellner (1993). Here we shall directly apply maximum likelihood estimation to “esti-

mate” the infinitely many parameters. It is interesting to observe that even though there

are infinitely many parameters contained in the ENB, for a finite sample, the number of

parameters contained in the (joint) likelihood is finite. To estimate all the parameters, we

need to have infinitely many observations. In fact, the number of parameters in the joint

likelihood for a random sample increases with the number of observations.

Note that unlike λi’s which are continuous variables in [0, 1], r is integer-valued. Both λi’s

and r are unknown in real applications and have to be estimated. We first address estimating
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λi’s. Let the observations be collected in terms of the numbers S1, ..., Sn of failures to get

the first r successes. The maximum likelihood estimators λ̂S∗

n+r are the maximizers of the

average of the log-likelihood

ℓn(λS∗

n+r) =
1

n

n
∑

i=1

log





Si
∑

k=0

(−1)k

(

Si

k

)

λr+k



+
1

n

n
∑

i=1

log

(

Si + r − 1

r − 1

)

subject to the constraints

λr ≤ 1, (−1)l∆lλi ≥ 0, i ≥ r, l ≥ 0, i + l ≤ Y ∗
n , (5.16)

where Y ∗
n = max(Y1, ..., Yn). A numerical solution λ̂

∗
of λ̂Y ∗

n
can be found by the Newton-

Raphson iteration scheme,

λ̂
k+1

= λ̂
k
− [Hn(λ̂

k
)]−1Tn(λ̂

k
), λ̂

k
∈ Cn, (5.17)

where Cn is a feasible set, Tn = (∂ℓn/∂λi)
⊤ is the score and Hn = (∂2ℓn/∂λi∂λj) is the

Hessian matrix. As for the initial value λ̂
0
, we may start from the case where the hidden

Bernoulli sequence is independent. That is, we may choose the initial value λ̂
0

= λ̄r ×

(1, (λ̄r+1/λ̄r), ..., (λ̄r+1/λ̄r)
1+S∗

n), where λ̄r, λ̄r+1 are the first and second coordinate of the

empirical estimate of λY ∗

n
which is given below. The SAS subroutine NLPNRA performs

constrained nonlinear optimization by the newton-raphson method, and we used it to carry

out the numerical computation in our application.

The Estimating Procedure. When fitting a dataset with an ENB model in practice, r

is usually an unknown integer-valued parameter, and has to be estimated. Here we propose

a procedure to estimate both r and λi’s, based on the maximum likelihood. To stress the

dependence of ℓn(λr+S∗

n
) on r, let us write ℓn(λr+S∗

n
) = ℓn(r,λr+S∗

n
). Note that for a finite

sample, the possible values for r are r = 1, 2, ..., r∗, where r∗ = max(ri : i = 1, ..., n)

with ri = Yi −Si. Theoretically, possible values of r can be 1, 2, ..., Y ∗
n ; practically, however,

we may take 1, 2, ..., r∗. Hence the MLE (r̂, λ̂r+S∗

n
) of the parameters (r, λr+S∗

n
) are the
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maximizers of the log-likelihood ℓn(r, λr+S∗

n
) for r = 1, ..., r∗n subject to the constraints

λr+S∗

n
∈ Cn. Therefore, we carry out the maximization for each r = 1, 2, ..., r∗n, so we obtain

the maximized log-likelihood values Mn,r = ℓn(r, λr). Then (r̂, λ̂r+S∗

n
) is the argument that

results in the largest value of Mn,1, ..., Mn,r∗n
. Our application below to the real clinical data

of burn wounds uses the above procedure, where n = 153, S∗
n = 8 and r∗n = 9, so that there

are 9 parameters λr, ..., λr+S∗

n
to be estimated based on the 153 observations S1, ..., S153.

It is worth to mention that there are infinitely many parameters contained in the ENB

distribution, but the number of parameters to be estimated for a random sample is finite,

i.e., S∗
n+1 parameters. Besides, the number of constraints are also finite. The following result

tells that we can estimate almost all the parameters asymptotically if the sample size grows

to infinity. The proof can be found in the Appendix.

Proposition 1. If 0 < λ1 < 1, then P(limn→∞ Y ∗
n = ∞) = 1.

With the observations S1, ..., Sn, we can only estimate λr, ..., λr+S∗

n
. Substitution of the

estimates λ̂S∗

n
= (λ̂r, ..., λ̂r+S∗

n
) in (2.3) gives an estimate P̂(S = s) of the probability

P(S = s) as follows,

P̂(S = s) =

(

s + r − 1

r − 1

)

s
∑

k=0

(−1)k

(

s

k

)

λ̂r+k. (5.18)

This probability can only be evaluated at s = 0, 1, ..., S∗
n, so that any statistical analysis

relating to this probability can only be carried out in the range s ∈ [0, S∗
n].

The Empirical Estimates. There are explicit formulas for the empirical estimates, which

can be used as initial values for obtaining efficient estimates. We now briefly describe the

empirical estimates and the details can be found in Rayner (2005). Denote Ay =
∑n

i=1 1[Yi =

y]. Then the empirical estimates of the marginal probabilities are

λ̄t =
1

n

t
∑

i=r

(−1)i−rctiAi, t = r, r + 1, ..., Y ∗
n , (5.19)
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where cij =
(

i−r

j−r

)

/
(

j−1
r−1

)

. For small n, the above estimates λ̄t’s may not satisfy complete

monotonicity (2.4). However, λ̄t’s will satisfy (2.4) almost surely for large n by the law of

large numbers. Denote the frequency of failures by Bs =
∑n

j=1 1[Sj = s]. Then the empirical

estimates can be rewritten in terms of the failures S1, ..., Sn as

λ̄t =
t−r
∑

i=0

(−1)i

(

t−r

i

)

(

i+r−1
r−1

)

Bi

n
, t = r, r + 1, ..., r + S∗

n.

This latter form of estimates is useful when we observe the numbers S1, ..., Sn of failures.

Our application to the real data uses this latter form.

Under the exchangeable geometric distribution, the correlation of the associated binary se-

quence is positive and calculated by ρ = Cov(X1, X2)/Var(X1) = (λ2 − λ2
1)/(λ1 − λ2

1). An

estimate of this can be obtained from the plug-in estimate

ρ̂ = (λ̂2 − λ̂2
1)/(λ̂1 − λ̂2

1). (5.20)

This quantity ρ̂ is useful. It can be used to test the exchangeability of a sequence of Bernoulli

trials, because it is well known that the correlation of a sequence of exchangeable Bernoulli

trials is positive.

6 Application to a Real Clinical Dataset

This section applies the ENB to fit a real clinical dataset of burn wounds on patients.

The clinical dataset of retrospective study consists of 153 patients (age from 2 months to

82 years) with etiology of fire/flame, scald and contact burns, who were hospitalized from

year 1985 to 2000. These patients were treated by an enzymatic debriding agent, in partial

deep dermal or full thickness burn wounds. Each patient had 1-16 different burn wound
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Fig. 2. The scatter plot of burn wound location against Patient ID.
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Fig. 3. The histogram of the frequencies of wound locations in need of surgical treatment super-

imposed with the fitted ENB and corresponding NB probability curves. The ENB fitting improves

the NB fitting.
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locations on his/her body such as head, neck, left/right hand, left/right leg, etc. There were

19 pre-defined burn wound locations, such as head, left/right hand, left/right leg, etc., in the

study protocol and case report form. There were a total of 393 burn wound locations among

the 153 patients with burn wound locations up to 12. A scatter plot of (Patient ID, Wound

location ) is given in Fig. 2. The mean and variance of the number of wound locations are

2.57 and 3.76 respectively. Hence a Poisson modeling is inappropriate because of the unequal

mean and variance. A substitute candidate for the Poisson modeling is the negative binomial

model. Here we use the proposed ENB model.

A surgical treatment such as autograft is one option for a wound area with a large full

thickness defect after the enzymatic debridement. One question of interest is the rate of

surgical treatment after the enzymatic debridement. Let Xi,j be a Bernoulli random variable

with Xi,j = 1 if the ith wound location on jth patient does not need a surgical treatment,

and Xi,j = 0 otherwise for 1 ≤ i ≤ 19 and j = 1, ..., 153. We define Yj to be the number of

wound locations for the jth patient (i.e., the number of trials in the definition of the ENB) and

Sj to be the number of wound locations that need a surgical treatment after the enzymatic

debridement (the number of failures in the definition. Thus we have “failure=need of surgical

treatment” and “success=no need of surgical treatment”), so Sj =
∑

1≤i≤19 1[Xi,j = 0]. In

this setup, we may have a very nice interpretation for the parameters λi’s. The parameter

λ1 is the probability of no need of surgical treatment and hence 1 − λ1 is the probability of

surgical treatment. The parameter λ2 is the probability of two wound locations at the same

time having no need of surgical treatment.

We consider j = 1, ..., 153 patients to be n = 153 replicates from “one theoretical patient”.

We assume that for each of the 153 patients, the need or lack of need of surgical treatment of

any of his/her burn wounds is exchangeable. Namely, we assume for each j = 1, ..., 153 the

Bernoulli random variables {Xi,j : 1 ≤ i ≤ 19} are exchangeable. The observations are the
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numbers S1, ..., S153 of failures to get the first r successes (no need of a surgical treatment).

The parameters to be estimated are r and λr, ..., λr+S∗

153
, where S∗

153 = 8. The probability

histogram of S0, ..., S153 is presented in Fig. 3.

We use the estimating procedure described in Section 3 to calculate the numerical values of

the MLE’s of the parameters λr, ..., λr+8 for each r = 1, 2, ..., r∗ = 9. Using the SAS sub-

routine NLPNRA which performs nonlinear optimization by the Newton-Raphson method

to optimize the log likelihood function for r = 1, ..., 9, we obtain the values of maximum

likelihood: -223, -638, -658, -409, -407, -392, -899, -305, -393 respectively. Thus the overall

maximal log likelihood value −223 is attained at r̂ = 1. The corresponding maximal likeli-

hood estimates (MLE) and empirical estimates (EMP) of λ1, ..., λ9 are reported in Table 1.

From Table 1, we see λ̂1 = 0.523, indicating that the estimated rate of no need of surgical

treatment after using the debriding agent is 52.3%. Hence the estimated surgical treatment

rate after the enzymatic debridement is 1 − λ̂1 = 47.3%. The estimated rate of two wound

locations in the same time having no need of surgical treatment after using the debriding

agent is λ̂2 = 33.7%. If independence, instead of exchangeability, of the {Xi,j} is assumed,

the estimated rate of no need of surgical treatment is 55.74% and the estimated rate of two

wound locations in the same time having no need of surgical treatment is 30.77%. These

Table 1

MLE and Empirical Estimates (EMP) (r̂ = 1) of the Parameters for the Wound Location Data

i 1 2 3 4 5 6 7 8 9

MLE 0.523 0.337 0.274 0.257 0.254 0.254 0.254 0.254 0.254

EMP 0.523 0.353 0.327 0.386 0.540 0.837 1.392 2.340 3.824
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latter two estimates are moderately different from the previous ones.

From Table 1 and by (5.20), the MLE-based and the empirical-estimate-based plug-in esti-

mates of the correlation are ρ̂MLE = 0.2557 and ρ̂EMP = 0.3188 respectively. These two pos-

itive correlations suggest that correlation does exist but it is not very strong. The positivity

of the two values also supports our assumption of exchangeability, because an exchangeable

Bernoulli sequence admits only positive correlation. These correlations may also explain why

the two groups of aforementioned estimated rates (i.e., (52.3%, 33.7%) under exchangeability

and (55.74%, 30.77%) under independence) are different but not significantly different. Fig.

3 is the probability histogram of the wound locations superimposed with the fitted ENB and

NB probability curves. We observe that the ENB model improves the NB model.

Appendix

Here we collect some of the technical details. We need the Hausdorff theorem (Feller, 1971).

Lemma 6.1. To every infinite sequence of exchangeable binary random variables X1, X2, ...

there corresponds a probability distribution Q concentrated on [0, 1] such that for y = l +

1, l + 2, ..., l = 0, 1, 2, ...,

P(X1 = 1, ..., Xl = 1, Xl+1 = 0, ..., Xy = 0) =
∫ 1

0
ul(1 − u)y−l dQ(u).

Proof of (2.5). We show below that {Y < ∞} is a certainty event if 0 < λ1 < 1. It is

readily verified that
(

y − 1

r − 1

)

= O(yr−1), y → ∞.

Then it follows from limy→∞ yr−1ur(1 − u)y−r = 0 for 0 ≤ u ≤ 1 and Fatou’s lemma

that limy→∞

(

y−1
r−1

)

∫ 1
0 ur(1 − u)y−r dQ(u) = 0. This and Lemma 6.1 yield P(Y = ∞) =
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limy→∞ P(Y = y) = 0, which, in turn, yields that P(Y < ∞) = 1. This shows the desired

(2.5). 2

Proof of Theorem 1. By definition, the moment generating function Y is

MY (t) = E(etY ) =
∞
∑

y=r

ety
P(Y = y), t ∈ N.

In order to derive an explicit formula, we use de Finetti theorem to obtain

P(Y = y) =

(

y − 1

r − 1

)

∫ 1

0
ur(1 − u)y−rdQ(u), y = r, r + 1, ...

Substituting this in the formula of the m.g.f. yields an infinite series of nonnegative terms.

We can swap the summation and the integration, so that

MY (t) = etr

∫ 1

0
ur

(

∞
∑

y=r

(

y − 1

r − 1

)

[(1 − u)et]y−r

)

dQ(u).

By the Taylor expansion of the infinite negative binomial series

∞
∑

k=0

(

r + k − 1

r − 1

)

wk = (1 − w)−r, −1 < w < 1,

we have

MY (t) = etr

∫ 1

0
ur[1 − (1 − u)et]−rdQ(u).

This is the desired (2.7), and the proof is complete. 2

Proof of (4.15). Note that

P(Y ≤ m) =
m
∑

y=r

P(Y = y) =
m
∑

y=r

(

y − 1

r − 1

)

y−r
∑

k=0

(−1)k

(

y − r

k

)

λr+k.

Substituting j = k + r and swapping the order of summation, we have
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P(Y ≤ m) =
m
∑

y=r

(

y − 1

r − 1

)

y
∑

j=r

(−1)j−r

(

y − r

j − r

)

λj =
m
∑

j=r

m
∑

y=j

(−1)j−r

(

y − 1

r − 1

)(

y − r

j − r

)

λj

=
m
∑

j=r

(−1)j−r

(

j − 1

r − 1

)

λj

m
∑

y=j

(

y − 1

j − 1

)

=
m
∑

j=r

(−1)j−r

(

m

j

)(

j − 1

r − 1

)

λj,

where we used the formulas

(

y − 1

r − 1

)(

y − r

j − r

)

=

(

j − 1

y − 1

)(

y − 1

j − 1

)

and
m
∑

y=j

(

y − 1

j − 1

)

=

(

m

j

)

.

Now, for Rm ∼ EB(λ1, ..., λm, m), by (2.1), we have

P(r ≤ Rm ≤ m) =
m
∑

i=r

P(Rm = i) =
m
∑

i=r

(

m

i

)

m−i
∑

k=0

(−1)k

(

m − i

k

)

λi+k.

Substituting j = k + i and swapping the order of summation, we obtain

P(r ≤ Rm ≤ m) =
m
∑

j=r

(−1)j

(

m

j

)

λj

j
∑

i=r

(−1)i

(

j

i

)

=
m
∑

j=r

(−1)j−r

(

m

j

)(

j − 1

r − 1

)

λj,

where we used the formulas

(

m

i

)(

m − i

j − i

)

=

(

m

j

)(

j

i

)

and
j
∑

i=r

(−1)i

(

j

i

)

= (−1)r

(

j − 1

r − 1

)

.

Combining the above shows the desired (4.15). 2

Proof of Proposition 1. For any fixed positive integer M , we have P(Y1 ≤ M) < 1 so

that P(Y ∗
m ≤ M) = (P(Y1 ≤ M))m → 0 as m → ∞. Note for any fixed m > 0, we have

P(limn→∞ Y ∗
n ≤ M) ≤ P(Y ∗

m ≤ M) → 0, so that allowing m → ∞ yields P(limn→∞ Y ∗
n ≤

M) = 0 for any fixed M > 0. Now letting M → ∞, we have P(limn→∞ Y ∗
n < ∞) = 0. This

is the desired result. 2
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