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Motivating Examples

Linear-Regression Modeling and Its Shortcomings

I y=household income. x=interval variable, ED (the household
head’s years of schooling), or a dummy variable, BLACK (the
head’s race, 1 = black and 0 = white). Data: (xi, yi) : i = 1, ..., n.

I In linear regression model (LRM),

yi = β0 + β1xi + εi,

Assumptions: εi iid N(0, σ2).
I E(y|x) = β0 + β1x: the average in the population of y values

corresponding to a fixed value of the covariate x.
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Motivating Examples

I ŷ = 23127 + 5633ED
ED 9 12 16
E(y|ED) $27,570 $44,469 $67,001

I ŷ = 53466− 18268BLACK
BLACK 0 1
E(y|BLACK) $53,466 $35,198

I In LRM: the mean of a distribution representing its central
tendency; homoscedasticity assumption; normality
assumption; Outliers (The usual practice is to identify outliers
and eliminate them. Both the notion of outliers and the practice
of eliminating outliers undermine much social-science research,
particularly studies on social stratification and inequality, as
outliers and their relative positions to those of the majority are
important aspects of inquiry).
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Motivating Examples

Household Income Data

I The location shifts among 3 education groups and between
blacks and whites are obvious, their shape shifts are substantial.

I The conditional mean from the LRM fails to capture the shape
shifts caused by changes in the covariate (education or race)

I Since the spreads differ substantially among the education
groups and between the two racial groups, the homoscedasticity
assumption is violated.

I All box graphs are right-skewed. LRM models are not able to
detect these shape changes.

I Seven outliers identified: three cases with 18 years of schooling
having an income of more than $ 505,215 and four cases with 20
years of schooling having an income of more than $471,572.
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Motivating Examples

INCOME INEQUALITY IN 1991 AND 2001
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Quantiles and Properties

Quantiles

I The pth quantile Q(p) of a cdf F is the minimum of the set of
values y such that F(y) ≥ p for 0 ≤ p ≤ 1. The function Q(p) (as
a function of p) is referred to as the quantile function.

I Given a sample y1, ..., yn, the pth sample quantile Q̂(p) is the pth
quantile of the corresponding empirical cdf F̂; Q̂(p) is the sample
quantile function.
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Quantiles and Properties

Quantile as solution to minimization problem
I (Sample) mean as solution to minimization: µ̂ = ȳ solves

min
µ

∑
(yi − µ)2

I Median as solution to min: m̂ = median(y1, ..., yn) solves

min
m

∑
|yi − m|

I Quantile as solution to min: Q̂(p) solves

min
q

{
(1− p)

∑
yi<q

|yi − q|+ p
∑
yi≥q

|yi − q|
}

I Monotone equivariance: Suppose h is monotone. If q is the pth
quantile of Y , then h(q) is the pth quantile of h(Y).

I Robust to outliers.
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Quantile regression models

Quantile regression models (QRM)

I In LRM,
E(y|x) = β0 + β1x

I In QRM, for 0 < p < 1,

Q(p)(y|x) = β
(p)
0 + β

(p)
1 x, 0 < p < 1
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Quantile regression models

Example: Fitting Household Income Data
I Tables 3.2 and 3.3: 19 conditional quantiles of income given

education or race; the coefficient for education grows
monotonically from $1,019 at the .05th quantile to $ 8,385 at the
.95th quantile. Similarly, the black effect is weaker at the lower
quantiles than at the higher quantiles.

I Conditional quantiles on 12 years of schooling:
p .05 .50 .95
Q̂(p)(yi|EDi = 12) $7,976 $36,727 $111,268

I Conditional quantiles on blacks:
p .05 .50 .95
Q̂(p)(yi|BLACKi = 1) $5,432 $26,764 $91,761

I These results are very different from the conditional mean of the
LRM.
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Quantile regression models

I The left panel of Figure 3.3 presents the scatterplot of household
income against the head of household’s years of schooling. The
single regression line indicates mean shifts, for example, a mean
shift of $22,532 from 12 years of schooling to 16 years of
schooling (5633 · (16 - 12)). However, this regression line does
not capture shape shifts.

I The right panel of Figure 3.3 shows the same scatterplot as in the
left panel and the 19 quantile-regression lines. The .5th quantile
(the median) fit captures the central location shifts, indicating a
positive relationship between conditional-median income and
education. The slope is $4,208, shifting $16,832 from 12 years
of schooling to 16 years of schooling (4208 · (16 - 12)). This
shift is lower than the LRM mean shift.
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Quantile regression models

I In addition to the estimated location shifts, the other 18
quantile-regression lines provide information about shape shifts.
These regression lines are positive, but with different slopes. The
regression lines cluster tightly a low levels of education (e.g.,
0-5 years of schooling) but deviate from each other more
widely at higher levels of education (e.g., 16-20 years of
schooling).

I A shape shift is described by the tight cluster of the slopes at
lower levels of education and the scattering of slopes at higher
levels of education. For example: the spread of the conditional
income on 16 years of schooling (from $12,052 for the .05th
conditional quantile to $144,808 for the .95th conditional
quantile) is much wider than that on 12 years of schooling (from
$7,976 for the .05th conditional quantile to $111,268 for the
.95th conditional quantile).
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Quantile regression models

QR Estimation

I In LRM, the least squres estimates β̂1, β̂2 solves

min
β1,β2

∑
(yi − β1 − β2xi)

2

I In median-regression model (p = .5), the estimates β̂(.5)1 , β̂
(.5)
2

solves
min
β1,β2

∑
|yi − β1 − β2xi|

the resulting median-regression line, must pass through a pair of
data points with half of the remaining data lying above the
regression line and the other half falling below.
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Quantile regression models

QR Estimation

I In QRM (0 < p < 1), the estimates β̂(p)1 , β̂
(p)
2 solves

min
β1,β2

{
(1−p)

∑
yi<β

(p)
1 +β

(p)
2 xi

|yi−β1−β2xi|+p
∑

yi≥β(p)
1 +β

(p)
2 xi

|yi−β1−β2xi|
}

the resulting pth quantile regression estimator must pass through
a pair of data points with p proportion of data points lying below
the fitted line y = β̂

(p)
1 + β̂

(p)
2 x, and the 1− p proportion lying

above.
I This is a linear programming problem and algorithms for

computing the quantile-regression coefficients have been
developed.
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Quantile regression models

I For example, when we estimate the coefficients for the .10th
quantile regression line, the observations below the line are given
a weight of .90 and the ones above the line receive a smaller
weight of .10. As a result, 90% of the data points (xi, yi) lie
above the fitted line leading to positive residuals, and 10% lie
below the line and thus have negative residuals.

I Conversely, to estimate the coefficients for the .90th quantile
regression, points below the line are given a weight of .10, and
the rest have a weight of .90; as a result, 90% of observations
have negative residuals and the remaining 10% have positive
residuals.
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Quantile regression models

Transformation, Equivariance and Robustness

I In LRM,
E(c + ay|x) = c + aE(y|x)

Similar for QRM: a > 0 or a < 0

Q(p)(c+ay|x) = c+aQ(p)(y|x) or Q(p)(c+ay|x) = c+aQ(1−p)(y|x)

I Monotone equivariance: if h is monotone (incr), then

Q(p)(h(y)|x) = h(Q(p)(y|x))

LRM does not have this property.
I Robustness: the QRM estimates are not sensitive to outliers.

LRM is not robust.
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Asymptotic Normality

Conditions
Assume that Z1, ...,Zn are independent replicates of Z = (X>,Y)>

which form the linear regression model

Y = β>X + ε, (1)

where β is a parameter, E(XX>) is finite and positive definite, and ε is
an unobservable random error that has continuous conditional density
f (t|X) given X, bounded and bounded away from zero at t = 0 and
satisfying

∫ 0
−∞ f (t|X)dt = p for 0 < p < 1 and E(f (0|X)XX>)

positive definite. The quantile regression estimator β̂(p) of β solves:

β̂(p) = arg min
b

∑
j

ρp(Yj − b>Xj), (2)

where ρp(t) = (p− 1[t < 0])t, t ∈ R is the check function.
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Asymptotic Normality

Theorem

Under the above conditions, β̂(p) has an asymptotic normal
distribution with mean β0 and variance-covariance matrix

p(1− p)

nf 2(0|X)

{
E(XX>)

}−1
.
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Asymptotic Normality

I

I
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