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ABSTRACT

To fast approximate the least squares estimator (LSE) efficiently in a Big Data linear regression by
a subsampling LSE, numerous optimal sampling distributions are derived based on the criterion of
minimizing the sum of the component variances of the subsampling LSE. We discuss truncation of
the distributions, and construct the Scoring Algorithm with far less running time for implementing the
subsampling LSE than for the full-sample LSE. The subsampling LSE is proved to be almost surely
asymptotically normal for an arbitrary sampling distribution under suitable conditions. Motivated by
subsampling and data-splitting in machine learning, sample size determination for multidimensional
parameters is investigated. We conduct a comprehensive evaluation of our proposed approach through
various numerical studies and compare it with the uniform sampling. Our results in both simulated
and real data indicate that our approach substantially outperforms the uniform and the Algorithm
significantly reduces the computational time required for implementing the full-sample LSE.

Keywords Asymptotic normality; Least squares estimator; Big data; Optimal sampling; Sample size determination

1 Introduction

In a linear regression model, the response yi and covariate vector xi satisfy

yi = β⊤xi + εi, i = 1, . . . , n, (1)

where β ∈ Rp is an unknown parameter and ε1, . . . , εn are independent and identically (i.i.d.) random errors with zero
mean and finite positive variance σ2 = Var(εi). Assume that X = (x1, . . . ,xn)

⊤ is a nonrandom n× p matrix of full
rank p.

The parameter vector β can be estimated by the ordinary least squares estimator (LSE) β̂ols = (X⊤X)−1X⊤y, where
y = (y1, . . . , yn)

⊤. Consider the case of data of massive size in which β̂ols is not available. One may draw a subsample
(X∗,y∗) of small size r << n using a sampling distribution πn = (π1, . . . , πn) as a surrogate for the full sample, and
calculate the subsampling weighted LSE β̂

∗
r to approximate β̂ols,

β̂
∗
r = (X∗⊤W∗X∗)−1X∗⊤W∗y∗. (2)

where W∗ = diag(1/rπ∗) is the diagonal matrix with π∗ equal to the vector of the corresponding sampling probabilities.
Here we adopt the componentwise division a/b = (a1/b1, . . . , an/bn)

⊤ for vectors a,b. This is a Hansen-Hurwitz
estimator and could also be viewed as a weighted bootstrap estimator based on the subsample. Full sample weighted
bootstrap estimators were well studied in the literature, see the monograph by Barbe and Bertail (1995)[2].

Over the past two decades, there have been considerable progresses on subsampling, see Liang, et al. (2013)[11],
Kleiner, et al. (2014)[9], Wang, et al. (2015)[20], Wang, et al. (2019)[19] among others. Algorithms for fast computing
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the LSE were constructed, see the monograph by Mahoney (2011)[14] and the references therein. A key feature of
these results is the nonuniform sampling. While these results were mainly focused on the algorithmic properties, we
shall be concerned with statistical inference. Zhu, et al. (2015)[22] pioneered in this aspect and their work is influential
in our work. They obtained several A-optimal distributions and proved asymptotic normality. We give the A-optimal
distributions for approximating a smooth function g(β̂ols) of β̂ols (the choice of g(β̂ols) = X⊤Xβ̂ols = X⊤y yields
their results), and prove an almost sure asymptotic normality result.

The statistical leverage scores based distribution ℓ has played a central role in the development of randomized matrix
algorithms, see e e.g. Candés and Tao (2009)[3]; Drineas et al. (2012)[7]; Ma and Sun (2014)[12]; Ma, et al. (2015)[13];
Xu, et al. (2016)[21]. Interestingly, ℓ and the A-optimal distribution π̂2 draw data points in a totally opposite way.
Specifically, the former draws points close to the regression hyperplane, whereas the latter does away from the
hyperplane.

While classic methods compute the LSE β̂ols in O(np2) time, randomized methods usually take o(np2) time. Typically,
the bottleneck is to compute the appropriate sampling distributions, and the A-optimal distributions fall in with this
category. As the LSE β̂ols and ℓ are fundamental and ubiquitous, there have been developed randomized algorithms on
rapidly approximating them, see e.g. Drineas, et al. (2006)[6]. These algorithms can be utilized to fast compute the
optimal distributions. In the spirit of the scoring method for improving estimation efficiency, we construct the Scoring
Algorithm in Fig. 2 with running time O(rp2) where r << n. Our extensive simulations indicated that the algorithm
worked particularly well.

It is obvious that a suitable subsample size is critical for obtaining a desired result within a desired peroid of time. Sample
size determination (SSD) for scalar parameters is a melody. In this article, we introduce SSD for multidimensional
parameters and study its numerical properties through simulations and real data. The result may be useful for data
spliting in machine learning.

The article is organized as follows. In Section 2, we define SSD for multidimensional parameters and proivde the
formulas. In Section 3, we present an asymptotic normality result, give the A-optimal distributiogns, construct the
Scoring Algorithm, and discuss truncation and the raltationship between the leverage-scores- based distribution and the
A-optimal distributions. Simulations and real data applications are reported in Section 4. The ASN is proved in Section
5.

2 SSD for Multidimensional Parameters

Let P be a probability measure on some measurable space. Let m the volume measure on Rp. Consider a parameter
vector θ ∈ Rp, and a random region Rn on Rp. Given ϵ > 0 and α ∈ (0, 1), we seek a minimum sample size n such
that at the level 1 − α of confidence, Rn catches θ within the “range of error" (ROE) ϵ, that is, m(Rn) ≤ ϵ. Let θ0

denote the true value of parameter.

Definition 1. Given ϵ > 0 and α ∈ (0, 1), the sample size with the ROE ϵ > 0 at the 1 − α level of confidence is
defined as

n(ϵ, α) = min {n : P (θ0 ∈ Rn, m(Rn) ≤ ϵp) ≥ 1− α} .

Analogous to selecting bootstrapping sample sizes, both α and ϵ must be appropriately chosen in which ϵ is critical. We
now give two examples, using the following two-step method.

Step 1 Construct a 1− α level confidence region Rn for θ.

Step 2 Find the minimum sample size n such that the ROE is ϵ, that is, m(Rn) ≤ ϵp.

Example 1. (Ellipsoid) Let θ̂ be an estimator of θ0 ∈ Θ ⊂ Rp with the (asymptotic) variance-covariance matrix
Σ positive definite. Let Rn be the 1 − α level confidence ellipsoid centered at θ̂n, Rn = {θ ∈ Θ : T (θ) ≤ qα(p)},
where T (θ) = n(θ − θ̂)⊤Σ−1(θ − θ̂), and qα(p) denotes the upper α-percentile of the distribution of T (θ0), that is,
P (T (θ0) > qα(p)) ≤ α. By definition, the sample size is determined by

np(ϵ, α) = min {n : P (θ0 ∈ Rn, m(Rn) ≤ ϵp) ≥ 1− α} .

The volume of the ellipsoid is

m(Rn) =
n−p/2πp/2

Γ(p/2 + 1)
qp/2α (p)

p∏
d=1

√
λd,

2
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where λd, d = 1, . . . , p are the eigenvalues of Σ. Solving m(Rn) ≤ ϵ for n yields the sample size np(ϵ, α) with ROE ϵ
at the 1− α level, given by

np(ϵ, α) =
πqα(p)

Γ2/p(p/2 + 1)

p
√
det(Σ)

ϵ2
, (3)

where det(Σ) =
∏p

d=1 λd. Often Σ is unknown, one then uses an estimator Σ̂ of it. For p = 1, as Γ(3/2) =
√
π/2,

the sample size with ROE 2ϵ (margin of error (MOE) ϵ) at the 1 − α level boils down to n1(ϵ, α) = qα(1)σ
2/ϵ2,

commonly found in textbooks. For large p, by Sterling’s formula, Γ2/p(p/2 + 1) ≈ (p/2e)(pπ)1/p. A computationally
easy formula is now given by

ñp(ϵ, α) = 2πeqα(p)
p
√
det(Σ)/(pπ)/(pϵ2). (4)

Example 2. (Bonferroni) Consider the same problem as in Example 1, but now based on Bonferroni’s method. We
take Rn to be the p-dimensional (1− α)-confidence hyperrectangle,

Rn =

p∏
d=1

(θ̂d,n − zα/(2p)σd/
√
n, θ̂d,n + zα/(2p)σd/

√
n),

where zα denotes the upper α-percentile of the distribution of Σ−1/2
√
n(θ̂n − β0), and θ̂d,n and σ2

d denote the d-th
component of θ̂n and the d-th diagonal entry of Σ, respectively. As the volume of the hyperrectangle Rn is

m(Rn) = 2pn−p/2zpα/(2p)σ1 · · ·σp,

solving m(Rn) ≤ ϵp about n yields the sample size,

nbon
p (ϵ, α) = 4z2α/(2p)σ

2/p
1 · · ·σ2/p

p ϵ−2. (5)

For unknown parameters σd’s, one uses estimates σ̂d’s of them.
Remark 1. If Tn(θ0) has Chisquare distribution with p degrees of freedom, χ2(p), (often approximately), then
qα(p) = χ2

α(p), the upper α-percentile of χ2(p). Similarly for Bonferroni, qα = Zα, the upper α-percentile of the
standard normal N (0, 1). Alternatively, one can get an estimate of qα(p) by bootstrapping or pre-subsampling in the
Scoring Algorithm 2 in the case of Big Data.

Remark 2. In nonuniform subsampling for data of massive size, a sampling distribution π must be computed before
actually sampling. An optimal distribution π typically has the same computational complexity as the original problem.
To tackle this problem, one may take a uniform pre-subsample of small size and compute an approximation π̃0 to π as
described in the Scoring Algorithm, choosing suitable values of the ROE ϵ, α and qα(p)(= χ2

α(p)). To determine the
pre-subsample size, one may take det(Σ) = 1 and get

np,0(ϵ, α) =
πqα(p)

Γ2/p(p/2 + 1)

1

ϵ2
. (6)

For large p, one may use ñp,0(ϵ, α) in 4 with det(Σ) = 1. Noting the fact that p and n must satisfy p = o(
√
n) (Portnoy,

1987), one may take the sample size to be

n0 = max(np,0(ϵ, α), ñp,0(ϵ, α),
√
n/(c0 log(n)), p),

where c0 is a constant (c0 = 1 in our study). More generally, this can be used for SSD in the uniform sampling and
data splitting in machine learning.

Remark 3. Given α and sample size r, one obtains the observed ROE from solving 3 for ϵ,

ϵ(α, r) =

√
πqα(p)

Γ1/p(p/2 + 1)

2p
√
det(Σ)√
r

. (7)

We shall use it to compare the efficiency of sampling distributions, together with the criterion of MSE, see our extensive
simulations and real data application below.

3 ASN and the A-optimal Distributions

In this section, we prove an almost sure ASN result, derive the A-optimal distributions and discuss its relationship to
the leverage-scores-based distribution, construct the Scoring Algorithm, and introduce truncation.

3
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Figure 1: Algorithm 1 (Computing the subsampling estimator β̂
∗
r )

1. Construct a distribution π on the data points (xi, yi)’s, use it to draw a subsample (X∗,y∗) of size r << n
from (X,y), and formulate the diagonal matrix W∗ = diag(1/rπ∗) with π∗ the corresponding probability
vector.

2. Calculate the weighted least squares estimator β̂
∗
r = (X∗⊤W∗X∗)−1X∗⊤W∗y∗.

3.1 Asymptotic Normality

We give a set of conditions for the almost sure asymptotic normality of β̂
∗
r for an arbitrary sampling distribution.

Occasionally, we write π = πn and πi = πn,i to stress their dependene on the sample size n.

(M1)
1

n

n∑
i=1

xix
⊤
i (ε

2
i − σ2)

nπn,i
= O(1), a.s.

(M2) There is a p× p symmetric matrix Γ whose smallest eigenvalue is bounded away from zero, i.e., λmin(Γ) ≥
b0 > 0 for some constant b0, such that

1

n

n∑
i=1

xix
⊤
i = Γ + o(1).

(M3)
1

n

n∑
i=1

∥xi∥4

nπn,i
= O(1) a.s.

(M4) Ln(π) =: n−1
∑n

i=1 xix
⊤
i /(nπn,i) satisfies 0 < b ≤ λminLn(π) ≤ λmaxLn(π) ≤ B < ∞ a.s. for

constants b, B, where λmin and λmax denote the maximum and minimum eigenvalues, respectively.
(M5) Lindeberg condition: the double array ηn,i := xiεi/(nπn,i), i = 1, 2, . . . , n, n ≥ 1 satisfies that for any

t > 0,
1

n

n∑
j=1

∥xi∥2ε2i
nπn,i

1

[
∥xi∥|εi|
nπn,i

≥
√
rt

]
= o(1), a.s. r → ∞.

(D1) Condition (M1) can be verified using the result on the SLLN for weighted i.i.d. rv’s of Baxter, et al. (2004)[1].
Specifically, for a sequence {ai}, 1

n

∑n
j=1 |ai|q = O(1) for some q > 1 implies 1

n

∑n
j=1 aiξi → 0 a.s. for an

i.i.d. {ξn} with E(ξ1) = 0 and E(|ξ1|) < ∞.
(D2) Condition (M2) was used in Lemma 3.1 of Portnoy (1984)[15].
Theorem 1. Assume (M1)–(M5). Suppose that for every ϱ > 0,

max
1≤i≤n

∥xi∥ = o(n1/2 log−ϱ(n)), a.s. (8)

Suppose that there exists some ρ > 2 such that

E(|ε1|ρ) < ∞. (9)

Then β̂
∗
r is asymptotically normal along almost all the sample paths of the sequence {(xi, yi)}, i.e.,

Σ−1/2(π)
√
r(β̂

∗
r − β̂ols) =⇒ N (0, Ip), a.s. r → ∞, (10)

where Σ(π) = (X⊤X)−1X⊤Diag(ε̂2/π)X(X⊤X)−1 with ε̂ = y −Xβ̂.
Remark 4. For the uniform distribution, πi = 1/n, (M1) – (M5) are usual assumptions, which are independent of the
sampling distribution π. This is true in general if nπi ≥ l0 for some positive constant l0. For later use, we shall denote
the usual assumptions by (M1’) – (M5’).
Remark 5. The leverage scores are widely used in the development of stochastic algorithms, see e.g. Ma, et al.(2015)
[13]. The scores induce a distribution given by ℓ = (hi,i/p) =: (ℓi), where hi,i are the diagonal entries of the hat
matrix H = X(X⊤X)−1X⊤. Assume that there exist positive constants c1, c2 such that uniformly in n,

λmax(n
−1X⊤X) ≤ c1, ∥xi∥ ≥ c2, i = 1, 2, . . . , n. (11)

From hi,i = x⊤
i (X

⊤X)−1xi it follows ℓi ≥ c22/(pc1n). Thus (M1’) – (M5’) are sufficient conditions for (M1) – (M5).

4
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3.2 The A-optimal Distributions

For a q × p matrix A, we minimize the trace norm Tr(ΣA) over distributions on the data points, where

ΣA(π) = AΣ(π)A⊤ = A(X⊤X)−1Σc(π)(X
⊤X)−1A⊤, (12)

with Σc(π) = X⊤Diag(ε̂2/rπ)X. Let θ̂ = Aβ̂ols. The plug-in estimate θ̂
∗
= Aβ̂

∗
r of θ̂ has Var∗(θ̂

∗
) = ΣA(π).

Consider θ = g(β), where g has the continuous partial derivative ġ. Then θ̂
∗
= g(β̂

∗
r) is a subsampling estimator

to approximate θ̂ = g(β̂ols), and an A-optimal distribution for θ̂
∗

to approximate θ̂ is given by taking A = ġ(β̄) for
some pilot estimator β̄ of β.

An A-optimal distribution depends on data, parameters, and the estimation method. With these in mind and for
convenience, we introduce the following definition.
Definition 2. Given a σ-field F , a distribution π supported on the data points is said to be A-optimal for the
subsampling estimate θ̂

∗
to approximate an estimate θ̂ of parameter θ if π asymptotically minimizes the trace norm of

the conditional variance-covariance matrix Var(θ̂
∗
|F) of θ̂

∗
given F .

If F is the σ-field generated by {(xi, yi)} ({xi}), then π is referrred to as Â (Ā)-optimal.

The Â-optimal Distribution π̂2. Minimizing the trace norm of the variance-covariance matrix ΣA in 12, we obtain
the Â-optimalizer π̂A. We now invoke the Lagrange multipliers to get
Proposition 1. Let A be a q × p matrix which is independent of π. Assume that A(X⊤X)−1xi ̸= 0 and hi,i ̸= 1 for
all i. Then the square roots of the diagonal entries of Ĥ2,A induce the unique Â-optimal distribution π̂A for Aβ̂

∗
r to

approximate Aβ̂ols, where Ĥ2,A = Diag(ε̂)H2,ADiag(ε̂) with

H2,A = X(X⊤X)−1A⊤A(X⊤X)−1X⊤. (13)

We shall refer to Ĥ2,A as the Â-optimal score matrix. Write pi ∝ bi if pi = bi/
∑

j bj for all i. Then π̂A is given by

π̂A,i ∝ ∥A(X⊤X)−1xi∥ |ε̂i|. (14)

For A = (X⊤X)1−α/2, set Hα = H2,A and Ĥα = Ĥ2,A, so that

Hα = X(X⊤X)−αX⊤, Ĥα = Diag(ε̂)HαDiag(ε̂), α ∈ R.

It then follows Ĥα is the Â-optimal score matrix for θ̂
∗
α = (X⊤X)1−α/2β̂

∗
r to approximate θ̂α = (X⊤X)1−α/2β̂ols =

(X⊤X)−α/2X⊤y, with the unique Â-optimal distribution π̂α given by

π̂α,i ∝
√
hα,i,i|ε̂i|, where hα,i,i = x⊤

i (X
⊤X)−αxi. (15)

As a result, π̂2 = (
√

h2,i,i|ε̂i|) is the unique Â-optimal distribution for β̂
∗
r to approximate β̂ols.

Remark 6. While π̂0,i ∝ ∥xi∥|ε̂i| has less computational cost than π̂α (α ̸= 0) (as only ∥xi∥ and |ε̂i| must be
computed), π̂1,i ∝

√
hi,i|ε̂i| can be computed using the fast algorithm given in Drineas, et al. (2006)[6].

Remark 7. Notice that the unique Â-optimal distribution for θ̂
∗
0 = (X⊤X)β̂

∗
r to approximate θ̂0 = (X⊤X)β̂ols is

π̂0, neither π̂2 nor any other distribution. This note applies in general.

The Ā-optimal π̄2 and its Approximation π̃2. Consider minimizing the trace norm of the conditional variance-
covariance matrix given X. Since τ̂A(π) = Tr(ΣA(π)) = r−1

∑n
i=1 ∥ai∥2ε̂2i /πi and Var(ε̂|X) = (In −H)σ2, we

integrate out the squared residuals in the trace τ̂A(π) to get

τ̄A(π) = E(τA(π)|X) =
σ2

r

n∑
i=1

∥ai∥2(1− hi,i)

πi
, ai = A(X⊤X)−1xi. (16)

Suppose that hi,i’s satisfy maxi=1,...,n hi,i = o(1). One then obtains an approximation to the trace as follows:

τ̃A(π) =
σ2

r

n∑
i=1

∥ai∥2

πi
.

5
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Minimizing τ̄A(π) and τ̃A(π) yields the sampling distributions π̄A and π̃A, respectively. Note the conditional version
of Ĥ2,A in 13 takes the form,

H̄2,A = Diag((1− hi,i)
1/2)H2,ADiag((1− hi,i)

1/2).

Thus π̄A is given by π̄A,i ∝ ∥ai∥
√
1− hi,i. For A = (X⊤X)1−α/2, let H̄α = H̄2,A. The Ā-optimal π̄α is

π̄α,i ∝
√
hα,i,i

√
1− hi,i. (17)

Hence π̄2 is the unique Ā-optimal distribution for β̂
∗
r to approximate β̂ols. Likewise, π̃α is given by

π̃α,i ∝
√
hα,i,i. (18)

Remark 8. As in Remark 6, while π̄1, π̃1 can be fast computed, π̄0, π̃0 enjoy computational ease. The latter are,
respectively, the optimal sampling (OPT) and predictor-length (PL) sampling given in Zhu, et al. (2015).

Comparison and Truncation. Since π̂A minimizes τ̂A(π), it follows from Proposition 1 that τ̂A(π̂A) ≤ τ̂A(π̄A).
Hence, by 16, we obtain

E(τ̂A(π̂A)) ≤ E(τ̂A(π̄A)) = τ̄A(π̄A).

This shows that π̂A is, on average, better A-optimizing than π̄A. Our extensive simulations and real data applications
exhibited that π̂A was much better optimizing than both π̄A and π̃A.

Truncation. Observe that 14 implies that (xi, yi) must be drawn with probability π̂A,i proportional to |ε̂i|. Since each
probability is inversely used in constructing β̂

∗
r , π̂A must be truncated from below in order to guarantee appropriate

statistical properties for β̂
∗
r . In fact, similar to Remark 5, we have

Remark 9. Assume 11. Then hα,i,i = x⊤
i (X

⊤X)−αxi ≥ c22c
−α
1 n−α for α ≥ 0 and all i. Assume, furthermore, that

there exist positive constants c0, c3 such that

λmin(n
−1X⊤X) ≥ c0, ∥xi∥ ≤ c3, i = 1, 2, . . . , n, n ≥ 1.

Then
∑n

i=1

√
hα,i,i|ε̂i| ≤ c3c

−α/2
0 n−α/2S, where S =

∑n
i=1 |ε̂i|. Therefore, by 15, 17 – 18,

π̂α,i ≥ c|ε̂i|/S, π̄α,i ≥ c
√

1− hi,i/S̄, π̃α,i ≥ c, i = 1, 2, . . . , n,

where S̄ =
∑n

i=1

√
1− hi,i and c = (c0/c1)

α/2c2/c3. As in Remark 5, (M1’) – (M5’), which are used for the uniform
distribution in Remark 4, are sufficient conditions for (M1) – (M5) for π̃α; for π̄α if, additionally, hi,i are uniformly
bounded away (by a constant) from one; but not for π̂α. This exhibits that the above conditions are not enough for π̂α,i

to be bounded away from zero. In fact, it is necessary to truncate π̂α from below for π̂α to satisfy (M1)–(M5).

Truncation was used in constructing the generalized bootstrap estimator by Chatterjee and Bose (2002)[4]. Specifically,
we truncate π̂A from below by L/n and define π̂A(l) by

π̂A,i(l) ∝ π̂A,i1[π̂A,i≥L/n] + (l/n)1[π̂A,i<L/n], i = 1, 2, . . . , n,

where L is a threshold value. Typically 0 < L ≤ 1. This is, in fact, a mixture distribution of the optimal and the
uniform distributions. For fast computing, we may drop “unimportant” observations by taking l = 0, otherwise l = L.
See p. 18 (Tropp, 2019)[17] for further discussion. As π̄A,i = 0 at hi,i = 1, we truncate π̄A,i similarly from below by
π̄A,i(l). Although π̃A is positive, we also truncate it and define the likewise π̃A(l).

To determine the value of L, we must take it into consideration the desired running time and the accuracy. Our extensive
numerical results exhibited that even high percentages of truncation led to only slight loss of efficiency.

The Scoring Algorithm. Like a typical optimal sampling, the A-optimal sampling π̂2, π̄2 and π̃2 have the same
running time O(np2) as the full data LSE β̂ols. We provide a fast algorithm in Fig. 2.

Since the computational bottleneck is to invert X⊤X, we shall approximate it by the subsampling (X∗⊤
0 X∗

0)
−1 based

on a computationally easy pre-subsample (X∗
0,y

∗
0) from the data (X,y). Let the resulting estimator and residuals be

β̂
∗
0 = (X∗⊤

0 X∗
0)

−1X∗⊤
0 y∗

0, ε̂∗0 = y1 −X1β̂
∗
0,

where (X1,y1) is the remaining observations in (X,y). Compute one of

H∗
0,α = X1(X

∗⊤
0 X∗

0)
−αX⊤

1 , Ĥ∗
0,α, and H̄∗

0,α, α = 1, 2. (19)

Our simulations in Section 4 exhibited that the Scoring Algorithm performed paticularly well.

6
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Figure 2: The Scoring Algorithm

1. Take a uniform pre-subsample (X∗
0,y

∗
0) of size r0 from (X,y), and use it to compute H∗

0,α (H̄∗
0,α or Ĥ∗

0,α)
given in 19.

2. Call Algorithm 1 in Fig. 1 with the subsample size r and the A-optimal distribution π.

Remark 10. The Algorithm in Fig. 2 can be implemented in O(max(r0, r) p
2) much faster than the original running

time O(np2) as max(r0, r) << n.

The Leverage Scores and its Relationship with the A-optimal Distributions.

The formula ℓi = u⊤
i ui/p indicates that ℓi depends only on the singular vector ui of X. Meanwhile, since the

Â-optimal π̂2,i depends on h2,i,i, which can be written as

h2,i,i = u⊤
i Diag(1/σ2

1 , . . . , 1/σ
2
p)ui,

it follows that π̂2,i depends on not only ui but all the singular values σi’s of X. These suggest that ℓ is not efficient in
extracting information as it ignores the information in the singular values.

Suppose that X is column-orthonormal. Then hi,i = ∥xi∥2 and

π̄2,i ∝
{ √

hi,i + o(1), hi,i = o(1),√
1− hi,i + o(1), hi,i = 1− o(1).

When sampling according to ℓ, the ith observation is drawn with probability proportional to hi,i, especially in the
vicinity of hi,i = 1. The Ā-optimality, however, dictates that in this vicinity the ith observation must be drawn with the
probability proportional to

√
1− hi,i — decreasing with hi,i. In fact, the increasing relationship occurs in the vicinity

of hi,i = 0 with the probability proportional to
√
hi,i. Similarly, π̂2,i ∝ h

1/2
2,i,i|ε̂i|, suggesting data points closer to the

regression hyperplane is less informative than those farther away.

4 Simulations and Real Data Applications

In this Section, we report simulations and real data application about the numerical behaviors of the A-optimal
distributions and their comparison with the uniform and the leverage scores (lev) based distributions.

Simulated MSE. As in Zhu, et al. (2015)[22], we chose the coefficient β = (1⊤
30, 0.1 · 1⊤

20)
⊤, generated p = 50-

dimensional covariate vector x (treated as non-random) from Gaussian N(0,Σ) (GA), Log-normal exp(N(0,Σ))(LN),
and Mixing Gaussian 0.5N(0,Σ) + 0.5N(0, 25Σ)(MG) with Σij = 2 ∗ 0.8|i−j|. The random error ε was generated
from the normal (N ) and the logistic (L ), both with zero mean and unit standard deviation. For sample size n = 105

and a few subsample sizes r, we calculated the empirical mean squared errors of β̂
∗
r as follows:

EMSE(β̂
∗
r) =

1

M

M∑
m=1

∥β̂
∗
m − β̂ols∥2, M = 500.

Reported on Tables 6–10 are the ratios of the EMSE of β̂
∗
r to that of the uniform subsampling estimator, where the

sampling distributions are untruncated in Table 6 and truncated in Tables 7-10; the residual ε̂ was computed based on
the full sample (X,y) in Tables 6-7 and on a uniform pre-subsample (X∗

0,y
∗
0) of size 0.1n in Tables 9-10. In addition,

the Scoring Algorithm in Fig. 2 was used in Table 10.

Observe first that the ratios in all the tables are almost all less than one, indicating that the uniform sampling is
ineffective in extracting information. This is most noticeable for Â-optimal sampling, and for the LN covariate in which
some of the ratios were as low as 25%. Note that the LN is skewed, whereas both GA and MG are symmetric in which
the uniform sampling had better performance. Second, the small differences of the ratios in all the tables indicated that
the uniform pre-subsampling of a small size resulted in small loss of efficiency, and that the Scoring Algorithm worked
well. Third, the Â-optimal sampling performed the best, and gave substantially smaller EMSE ratios than Ā-, Ã- and
the leverage scores based sampling. In particular, π̂2 gave the smallest EMSE ratios in Table 6, when the subsample
size reached half the full sample size, which was mostly kept for the truncated sampling distributions in Tables 7-10.

The Running Time. Reported on Table 12 are the running times of the Scoring Algorithm and the LSE. They were
measured on a computing cluster with 16 processors running at 2.60GHz with 250GB of memory. The R package (ver

7
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Table 1: PUMS: the empirical MSE ratios of the subsampling LSE β̂
∗
r using the A-optimal Subsampling to using the Uniform. The

Scoring Algorithm was used with 1% truncation for sample size n = 6, 688, 524.

r : n π̂0 π̂1 π̂2 π̄0 π̄1 π̄2 π̃0 π̃1 π̃2

.05% .599 .304 .208 .981 .628 .578 .935 .661 .597

.10% .556 .279 .185 .969 .619 .677 .968 .700 .615

.50% .542 .270 .174 .923 .719 .610 .923 .675 .611
1.0% .524 .291 .178 .879 .688 .586 .868 .729 .592
5.0% .449 .268 .178 .935 .640 .608 .949 .684 .549

3.3.1) was used to carry out the numerical computations. Since X⊤X was approximated by the subsampling X∗⊤
0 X∗

0,
the time-consuming part is the matrix multiplications in Ĥ∗

2. Instead of using solve to find the inverse, we called svd to
obtain a singular value decomposition of X∗

0 to compute the sampling distribution π̂2, and called lm to compute both
the subsampling estimator β̂

∗
r and the full data β̂ols. The Scoring Algorithm saved time in comparison with the LSE.

The times spent on the matrix multiplications were found to be about 30% of the total running times, which can be
improved by fast matrix multiplication. Here x was generated from GA and ε from N (0, 1). The results for the other
distributions of x and ε considered in Table 6 are similar (not reported here).

SSD Reported on Table 13 are the sample sizes for the Lev and the π̂2 sampling. We chose the values of δ̂ in
P(∥β̂

∗
r − β̂∥ > δ̂) < α with α = 0.01 so that the sample sizes using the Unif sampling were k · 103 for k =

1, 2, 5, 10, 20, 50. The data of sample size n = 105 were generated from the normal (N ) and the logistic (L )
distributions for the error ε, and the Gauss mixing (GA), the logarithmic normal (LN) and the mixing Gauss (MG)
distributions for the covariate x. The data were truncated at 30%. One observes that the sample sizes using the Lev
were almost the same as the Unif, and the sizes using the π̂2 were mostly only half the sizes of the Unif (hence also
the Lev). Similar results were also obtained (not reported here) for the larger values of α = 0.05, 0.10 and the smaller
value 10% of truncation.

Income Census Data. The Public Use Microdata Sample (PUMS) contains a sample of actual responses to the
American Community Survey. The PUMS dataset includes variables for nearly every question on the survey, and new
variables that were derived from multiple survey responses. Each record in the file represents a single person, or – in
the household-level– a single housing unit. In the person-level file, individuals are organized into households, making
possible the study of people within the contexts of their families and other household members. The PUMS files for
an individual year, such as 2016, contain data on approximately one percent of the United States population. The
files, covering a five-year period such as 2012-2016, contain data on approximately five percent of the United States
population.

We downloaded the 5-year (2012-2016) PUMS data from the US census website2. After cleaning, the sample size was
reduced to n = 6, 688, 524. We fit the data with the linear regression model to study the influence of the covariates
on the response PINCP(total personal income). We used 16 covariates including AGEP(age), COW(class of work),
ENG(ability to speak English), GCL(Grandparents living with grandchildren), MAR(Marital status), SCHL(Educational
attainment), SCIENGP(Fields of Degrees in Science and Engineering), SEX(Sex), DIS(Disability), NATIVITY, etc.

Reported in Tables 1 and 3 are the ratios of the EMSE of the subsampling LSE β̂
∗
r using the A-optimal distributions to

using the uniform distribution, and in Tables 2 and 4 are the running times in second, based on 500 repetitions. Here the
Scoring Algorithm in Fig. 2 was used with truncation rates at 1% and 10%.

The MSE ratios in Table 5 were obtained using 25 covariates in which the variables with multiple levels were converted
to indicator variables, thus the data-cleaning led to n = 6, 103, 746 observations. The results in this table indicated
that (1) the leverage-scores based sampling was very efficient although it was still less efficient than the A-optimal
distributions and far less efficient in our simulations, and (2) only 0.16% of the full data retained almost all efficiency.
All the MSE ratios are significantly less than one, suggesting that the A-optimal distributions substantially outperformed
the uniform distribution. π̂2 gave the smallest MSE ratios, about 0.18, a tremendous improvement over the uniform.
The running times were much faster than 24.20 seconds for the full-data LSE β̂ols. The Scoring Algorithm and the
truncation only resulted in slight loss of efficiency.

2https://www.census.gov/programs-surveys/acs/data/pums.html
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Table 2: PUMS: The average running times in second for computing Table 1

r : n π̂0 π̂1 π̂2 π̄0 π̄1 π̄2 π̃0 π̃1 π̃2

.05% .209 .208 .203 .213 .212 .205 .215 .212 .205

.10% .216 .215 .212 .222 .221 .217 .224 .22 .217

.50% .334 .333 .327 .346 .340 .337 .338 .342 .334
1.0% .521 .515 .515 .531 .532 .527 .534 .534 .524
5.0% 1.89 1.89 1.88 1.96 1.95 1.95 1.97 1.97 1.95

Table 3: PUMS: Same as Table 1 but with 10% truncation: the empirical MSE ratios of the subsampling LSE β̂
∗
r using the

A-optimal Subsampling to using the Uniform. The Scoring Algorithm was used with 1% truncation for sample size n = 6, 688, 524.

r : n π̂0 π̂1 π̂2 π̄0 π̄1 π̄2 π̃0 π̃1 π̃2

.05% .575 .276 .184 .952 .684 .622 .893 .688 .596

.10% .528 .268 .175 .930 .650 .580 .920 .680 .623

.50% .490 .254 .181 .958 .666 .620 .882 .655 .645
1.0% .493 .243 .177 .941 .667 .593 .958 .691 .605
5.0% .495 .244 .176 .933 .684 .610 .929 .658 .601

5 Proof for Asymptotic Normality

A rv w = (w1, · · · , wn)
⊤ ∼ sMult(π, r) (the scaled multinomial distribution) for π ∈ [0, 1]n with

∑n
i=1 πi = 1 if

P
(
w1 =

k1
rπ1

, . . . , wn =
kn
rπn

)
=

r!∏n
i=1 ki!

n∏
i=1

πki
i , ki ≥ 0,

n∑
i=1

ki = r. (20)

It is customary to express β̂
∗
r in the full data using w, decoupling the resampling scheme from the data. Stochastically

equivalently,
β̂
∗
r

d
= (X⊤WX)−1X⊤Wy, W = Diag(w), (21)

where x
d
= y denotes x and y have the same distribution. Note that the laws Pw and P∗ governed by sMult(π, r) and

π, respectively, are stochastically equivalent, see, e.g., page 2055, Præstgaard and Wellner (1993)[16] and Zhu, et al.
(2015)[22]. Such equivalence is commonly used in the bootstrap theory, see Sections 3.5–3.6, Van de Vaart and Wellner
(1996)[18]. We shall use P∗ also for Pw, and write E∗, Var∗, etc. for the expected value, variance, etc. It is easy to
check

E∗(w) = 1, Cov∗(w) = (1/r)(Diag(1/π)− 11⊤). (22)
Lemma 1. Assume (M2). Suppose 8 holds for all ϱ > 0 and 9 holds for some ρ > 2. Then

∥β̂ols − β0∥ = O(n−1/2 log
1/2
2 (n)), a.s. (23)

Hence,
max
1≤i≤n

|x⊤
i (β̂ols − β0)| = o(1), a.s. (24)

PROOF. We show without loss of generality that 23 holds for the first component β̂1 of β̂ols. To do so, we shall apply
Theorem 2 of Lai and Wei (1982)[10], for which we need to verify

lim
n→∞

An = ∞, lim sup
n→∞

An+1/An < ∞, and (25)

max
1≤i≤n

|xi,1 − k⊤
nH

−1
n ti| = o(n1/2 log−ϱ(n)) (26)

for all ϱ > 0, where xi = (xi,1, t
⊤
i )

⊤, kn =
∑n

i=1 xi,1ti, Hn =
∑n

i=1 tit
⊤
i , and An =

∑n
i=1(xi,1 − k⊤

nH
−1
n ti)

2.
Partition M0 as follows:

M0 =

(
m1,1 m⊤

1
m1 M1,1

)
.

It follows from (M2) that

1

n

n∑
i=1

x2
i,1 = m1,1 + o(1),

kn

n
= m1 + o(1),

Hn

n
= M1,1 + o(1). (27)
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Table 4: PUMS: The average running times in second for computing Table 3

r : n π̂0 π̂1 π̂2 π̄0 π̄1 π̄2 π̃0 π̃1 π̃2

.05% .202 .204 .205 .211 .209 .205 .214 .210 .208

.10% .214 .214 .213 .222 .222 .210 .223 .221 .217

.50% .329 .331 .330 .347 .336 .333 .347 .336 .340
1.0% .518 .517 .521 .536 .527 .527 .537 .526 .528
5.0% 1.91 1.89 1.88 1.95 1.95 1.95 1.96 1.96 1.95

Table 5: PUMS: the empirical MSE ratios of the subsampling LSE β̂
∗
r using the A-optimal Subsampling to using the Uniform.

The Scoring Algorithm r0 The Scoring Algorthm r0
Truncation r : n Lev π̂2 5 ∗ 103 104 2 ∗ 104 r : n Lev π̂2 5 ∗ 103 104 2 ∗ 104

.0 .001 .372 .114 .131 .125 .120 .005 .360 .109 .128 .119 .119

.1 .001 .385 .115 .127 .122 .121 .005 .367 .110 .124 .118 .118

.3 .001 .350 .115 .125 .121 .122 .005 .364 .114 .128 .122 .118

The last two equalities imply k⊤
nH

−1
n = m⊤

1 M1,1 + o(1). Hence,

n−1An = m1,1 −m⊤
1 M

−1
1,1m1 + o(1).

Since the above difference is positive as it is the inverse of the positive definite matrix M0, it follows that 25 holds,
while 26 follows from the triangle inequality, ∥ti∥ ≤ max1≤i≤n ∥xi∥ and 8. Apply now Theorem 2 of Lai and Wei
(1982)[10] to finish the proof.

PROOF (of Theorem 1). Let

w̄ = w − 1, W̄ = W − I, ∆∗ = (X⊤WX)−1 − (X⊤X)−1. (28)

Then Ew(w̄) = 0, Ew(W̄) = 0, and stochastically equivalently,

∆∗ d
= (X∗⊤W∗X∗)−1 − (X⊤X)−1, X⊤W̄y

d
= X∗⊤W∗y∗ −X⊤y. (29)

Let ∆∗
1 = −(X⊤X)−1(X⊤W̄X). Stochastically equivalently,

∆̄
∗
1 =: I−∆∗

1 = (X⊤X)−1(X⊤WX). (30)

Recall W̄ and ∆∗ in 28 and write

(X⊤WX)−1 = (X⊤X)−1 +∆∗, Wy = y + W̄y.

Substitution of them in the full-data formula 21 of β̂
∗
r yields

β̂
∗
r = (X⊤WX)−1X⊤Wy

=
(
(X⊤X)−1 +∆∗)X⊤(y + W̄y)

= β̂ols + (X⊤X)−1X⊤W̄y +∆∗X⊤y +∆∗X⊤W̄y

= β̂ols + (X⊤X)−1X⊤W̄ε̂+ (X⊤X)−1X⊤W̄ŷ +∆∗X⊤y +∆∗X⊤W̄y

= β̂ols+(X⊤X)−1X⊤W̄ε̂+∆∗X⊤W̄ε̂+[(X⊤WX)−1X⊤W̄ŷ+∆∗X⊤y].

Substituting ŷ = X(X⊤X)−1X⊤y in the square bracket, the sum inside it is identically zero. Since all the preceding
statements hold on the subspace in which X⊤WX is invertible, we show 31-32,

β̂
∗
r = β̂ols +

1

r

r∑
j=1

(X⊤X)−1
x∗
j ε̂

∗
j

π∗
j

+ r∗, (31)

valid on the subspace in which X∗⊤W∗X∗ is invertible, where r∗ is given by

r∗ =
(
(X∗⊤W∗X∗)−1 − (X⊤X)−1

)
(X∗⊤W∗ε̂∗). (32)

Let A∗
n be the event on which ∆̄

∗
1 is nonsingular. Using ∆∗

1(∆̄
∗
1)

−1 = (∆̄
∗
1)

−1∆∗
1, we express

∆∗ = ∆∗
1(X

⊤WX)−1 = ∆∗
1(∆̄

∗
1)

−1(X⊤X)−1 = (∆̄
∗
1)

−1∆∗
1(X

⊤X)−1,

10
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valid on A∗
n. Recalling δ∗ = (X⊤X)−1(X⊤W̄ε̂), we thus obtain

r∗ = ∆∗X⊤W̄ε̂ = (∆̄
∗
1)

−1∆∗
1δ

∗ valid on A∗
n. (33)

By the second equality in 22, one gets

E∗(∥∆∗
1∥2) ≤

1

r

n∑
i=1

h2,i,i

πi
∥xi∥2.

Using ε̂2i ≤ 2ε2i + 2∥β0∥2∥xi∥2, one has

E∗(∥δ∗∥2) ≤ 1

r

n∑
i=1

h2,i,i

πi
ε̂2i ≤ 2

r

n∑
i=1

h2,i,i

πi
ε2i +

2∥β0∥2

r

n∑
i=1

h2,i,i

πi
∥xi∥2.

It thus follows from (M1) and (M3) that

r[E∗(∥∆∗
1δ

∗∥)]2 ≤ rE∗(∥∆∗
1∥2)E∗(∥δ∗∥2) = o(1), a.s.

This, ∆̄∗
= I+ oP∗(1) a.s. and the expression 33 for the remainder r∗ prove

√
rr∗ = oP∗(1) a.s. Consequently, by

31, it suffices to show for any t ∈ Rp with ∥t∥ = 1,

σ−1
n (t)√

r

r∑
j=1

t⊤(X⊤X)−1
x∗
j ε̂

∗
j

π∗
nj

=⇒ N (0, 1), a.s. r → ∞, (34)

where σ2
n(t) = t⊤Σ(π)t. As X⊤ε̂ = 0, we have

E∗(x∗
j ε̂

∗
j/π

∗
nj

)
= X⊤ε̂ = 0, Var∗(x∗

j ε̂
∗
j/π

∗
nj) = X⊤Diag(ε̂2/π)X. (35)

Let ξ∗j = t⊤(X⊤X)−1x∗
j ε̂

∗
j/π

∗
nj . It is shown below for every η > 0,

σ−2
n (t)E∗(|ξ∗1 |21[|ξ∗1 | >

√
rσn(t)η]) → 0, a.s. r → ∞. (36)

We now apply the Lindeberg-Feller theorem (e.g. Theorem 7.2.1. of Chung (2001)[5]) to claim 34. To show 36, we
prove below

1

n2

n∑
i=1

xix
⊤
i

πi
(ε̂2i − ε2i ) = o(1), a.s. (37)

Let Σc = n−2X⊤Diag(ε̂2/π)X. Then Σ(π) = (n−1X⊤X)−1Σc(n
−1X⊤X)−1. It follows from 37 and (M1) that

Σc =
1

n2

n∑
i=1

xix
⊤
i

πi
σ2 +

1

n2

n∑
i=1

xix
⊤
i

πi
(ε2i − σ2) +

1

n2

n∑
i=1

xix
⊤
i

πi
(ε̂2i − ε2i )

=
1

n2

n∑
i=1

xix
⊤
i

πi
σ2 + o(1), a.s.

We now use (M2) to get

Σ(π) = σ2Γ−1
n

1

n2

n∑
i=1

xix
⊤
i

πi
Γ−1
n + o(1), a.s. (38)

This immediately yields for any unit vector t,

σ2
n(t) = σ2t⊤Γ−1

n

1

n2

n∑
i=1

xix
⊤
i

πi
Γ−1
n t+ o(1), a.s. (39)

By (M2)–(M4), there are constants b0, B0 such that

0 < b0 ≤ sup sup
∥t∥=1

σ2
n(t) ≤ B0 < ∞, a.s.

This shows that 36 is implied by the following (shown below)

L(r, n) := E∗(|ξ∗1 |21[|ξ∗1 | >
√
rb0η]) → 0, a.s. r → ∞. (40)

11
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To prove 37, we use (M1) and (M3) to get

1

n2

n∑
i=1

∥xi∥2

πi
ε2i =

1

n2

n∑
i=1

∥xi∥2

πi
(ε2i − σ2) +O(1) = O(1), a.s. (41)

By 24, we have uniformly in i = 1, . . . , n,

ε̂i − εi = x⊤
i (β̂ols − β0) = o(1), ε̂i + εi = 2εi + o(1), a.s. (42)

Thus ε̂2i − ε2i = o(1)εi a.s. uniformly in i. This yields 37 in view of∥∥∥ 1

n2

n∑
i=1

xix
⊤
i

πi
εi

∥∥∥2 ≤ 1

n2

n∑
i=1

∥xi∥2

πi

1

n2

n∑
i=1

∥xi∥2

πi
ε2i = O(1), a.s.

where 41 and (M3) were used. To finish, it remains to prove 40. This follows from (M2), (M5), the first equality in 42,
and

L(r, n) =

n∑
i=1

|t⊤(X⊤X)−1xi|2

πi
ε̂2i1

[ |t⊤(X⊤X)−1xi|
πi

|ε̂i| ≥
√
rb0η

]
≤ 2∥Γ−1

n ∥2o
1

n2

n∑
i=1

∥xi∥2ε̂2i
πi

1
[∥xi∥|ε̂i|

nπi
≥

√
rb0η

∥Γ−1
n ∥o

]
≤ 4∥Γ−1

n ∥2o
1

n2

n∑
i=1

∥xi∥2ε2i
πi

1
[∥xi∥|εi|

nπi
≥

√
rb0η

2∥Γ−1
n ∥o

]
−→ 0, a.s. r → ∞.
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Table 6: Simulated empirical MSE ratios of the subsampling LSE β̂
∗
r using the A-optimal Subsampling to using the

Uniform for sample size n = 105 and subsample sizes r. The residual ε̂ was computed using the full sample.
x ε r : n π̂2 π̂1 π̂0 π̄2 π̄1 π̄0 π̃2 π̃1 π̃0 Lev
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45% .276 .278 .286 .419 .425 .447 .415 .425 .453 .952
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10% .238 .238 .254 .382 .388 .404 .382 .385 .402 .848
45% .253 .253 .266 .412 .422 .450 .428 .426 .444 .942
50% .253 .253 .268 .420 .425 .450 .418 .427 .446 .959
.5% .558 .551 .593 .644 .651 .675 .633 .636 .687 .900

N 1% .515 .506 .542 .655 .662 .709 .649 .651 .690 .948
MG 10% .451 .454 .476 .682 .695 .723 .685 .683 .714 1.02

45% .438 .446 .458 .684 .692 .719 .694 .682 .698 1.01
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Table 7: Same as Table 6 except that the sampling distributions are truncated: Simulated empirical MSE ratios of the
subsampling LSE β̂

∗
r using the A-optimal Subsampling to using the Uniform for sample size n = 105 and subsample

sizes r. The residual ε̂ was computed using the full sample.
x ε r : n π̂2 π̂1 π̂0 π̄2 π̄1 π̄0 π̃2 π̃1 π̃0 Lev

Truncation 10%
.5% .800 .812 .852 .985 .964 1.03 1.00 .994 1.02 .976

N 1% .718 .740 .755 .961 1.00 1.03 .985 1.01 1.04 .994
GA 10% .646 .646 .680 .982 1.01 1.04 .989 1.00 1.04 1.00

.5% .744 .775 .788 .977 .981 1.02 .952 .985 1.02 .973
L 1% .668 .686 .714 .964 .999 1.03 .960 .983 1.02 .996

10% .595 .588 .625 .995 .999 1.04 1.01 .995 1.02 .998
.5% .305 .302 .322 .337 .330 .353 .323 .320 .361 .458

N 1% .269 .275 .286 .339 .329 .362 .331 .336 .359 .569
LN 10% .260 .263 .278 .384 .392 .402 .386 .390 .409 .813

.5% .287 .279 .303 .328 .327 .370 .324 .331 .358 .462
L 1% .253 .258 .277 .335 .340 .369 .331 .334 .364 .580

10% .247 .247 .258 .396 .406 .425 .398 .391 .424 .840
.5% .545 .559 .572 .637 .632 .656 .633 .656 .670 .888

N 1% .522 .514 .556 .656 .674 .708 .661 .688 .705 .964
MG 10% .455 .449 .477 .692 .685 .715 .695 .681 .724 .985

.5% .527 .534 .558 .653 .638 .676 .636 .650 .684 .905
L 1% .478 .476 .504 .664 .663 .697 .649 .665 .687 .955

10% .412 .416 .430 .680 .671 .718 .676 .664 .695 .959
Truncation 30%

.5% .753 .749 .802 .980 .983 1.02 .971 1.01 1.02 1.01
N 1% .705 .689 .726 .970 .974 1.01 .967 .980 1.01 .971

GA 10% .664 .684 .708 .995 1.01 1.06 .991 1.03 1.03 1.00
.5% .701 .712 .730 .978 .983 1.01 .980 .989 .999 .990

L 1% .658 .673 .694 1.00 1.01 1.02 .991 1.00 1.02 1.01
10% .612 .619 .638 .989 .983 1.00 .987 .994 1.03 .998
.5% .295 .301 .330 .340 .334 .373 .344 .342 .384 .422

N 1% .269 .266 .295 .326 .332 .356 .323 .341 .356 .500
LN 10% .263 .264 .280 .391 .394 .416 .393 .391 .414 .741

.5% .290 .291 .309 .348 .344 .390 .350 .344 .376 .434
L 1% .258 .257 .276 .331 .342 .364 .337 .340 .362 .515

10% .247 .251 .263 .403 .399 .426 .395 .398 .423 .747
.5% .560 .546 .580 .646 .645 .659 .652 .651 .666 .866

N 1% .504 .510 .532 .659 .657 .698 .667 .656 .692 .886
MG 10% .456 .466 .481 .685 .681 .733 .685 .677 .709 .945

.5% .524 .535 .546 .655 .650 .642 .652 .658 .670 .861
L 1% .468 .481 .500 .660 .663 .688 .663 .670 .689 .926

10% .421 .420 .439 .693 .692 .710 .675 .693 .724 .939
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Table 8: The ROE of the subsampling LSE β̂
∗
r for sample size n = 105 and subsample sizes r. The residual ε̂ was

computed using the full sample.
x ε r : n Unif Lev π̂2 Unif Lev π̂2 Unif Lev π̂2

α = 0.01 α = 0.05 α = 0.10
Truncation 10%

.5% .2524 .2522 .2013 .2376 .2374 .1896 .2298 .2296 .1834
N 1% .1784 .1783 .1424 .1680 .1679 .1340 .1625 .1624 .1297

GA 10% .0564 .0564 .0450 .0531 .0531 .0424 .0514 .0514 .0410
.5% .2534 .2531 .1938 .2386 .2383 .1824 .2308 .2305 .1765

L 1% .1792 .1789 .1370 .1687 .1685 .1290 .1632 .1630 .1248
10% .0567 .0566 .0433 .0534 .0533 .0408 .0516 .0515 .0395
.5% .0394 .0380 .0204 .0371 .0358 .0192 .0359 .0346 .0186

N 1% .0279 .0269 .0145 .0262 .0253 .0136 .0254 .0245 .0132
LN 10% .0088 .0085 .0046 .0083 .0080 .0043 .0080 .0077 .0042

.5% .0395 .0394 .0207 .0372 .0371 .0195 .0360 .0358 .0189
L 1% .0279 .0278 .0147 .0263 .0262 .0138 .0255 .0253 .0134

10% .0088 .0088 .0046 .0083 .0083 .0044 .0080 .0080 .0042
.5% .0699 .0696 .0464 .0659 .0655 .0437 .0637 .0634 .0423

N 1% .0495 .0492 .0328 .0466 .0463 .0309 .0450 .0448 .0299
MG 10% .0156 .0156 .0104 .0147 .0146 .0098 .0142 .0142 .0095

.5% .0701 .0696 .0445 .0660 .0656 .0419 .0638 .0634 .0405
L 1% .0495 .0492 .0315 .0467 .0464 .0296 .0451 .0448 .0287

10% .0157 .0156 .0100 .0148 .0147 .0094 .0143 .0142 .0091
Truncation 30%

.5% .2524 .2518 .2054 .2376 .2370 .1934 .2298 .2293 .1871
N 1% .1784 .1780 .1452 .1680 .1676 .1368 .1625 .1621 .1323

GA 10% .0564 .0563 .0459 .0531 .0530 .0432 .0514 .0513 .0418
.5% .2534 .2527 .1974 .2386 .2379 .1859 .2308 .2301 .1798

L 1% .1792 .1787 .1396 .1687 .1682 .1314 .1632 .1627 .1271
10% .0567 .0565 .0441 .0534 .0532 .0416 .0516 .0515 .0402
.5% .0394 .0365 .0207 .0371 .0344 .0195 .0359 .0333 .0188

N 1% .0279 .0258 .0146 .0262 .0243 .0138 .0254 .0235 .0133
LN 10% .0088 .0082 .0046 .0083 .0077 .0044 .0080 .0074 .0042

.5% .0395 .0378 .0210 .0372 .0356 .0198 .0360 .0344 .0191
L 1% .0279 .0267 .0148 .0263 .0252 .0140 .0255 .0243 .0135

10% .0088 .0084 .0047 .0083 .0080 .0044 .0080 .0077 .0043
.5% .0699 .0684 .0470 .0659 .0644 .0442 .0637 .0623 .0428

N 1% .0495 .0483 .0332 .0466 .0455 .0313 .0450 .0440 .0303
MG 10% .0156 .0153 .0105 .0147 .0144 .0099 .0142 .0139 .0096

.5% .0701 .0684 .0450 .0660 .0644 .0424 .0638 .0623 .0410
L 1% .0495 .0484 .0318 .0467 .0456 .0300 .0451 .0441 .0290

10% .0157 .0153 .0101 .0148 .0144 .0095 .0143 .0139 .0092

15



A PREPRINT - NOVEMBER 9, 2023

Table 9: The ROE of the subsampling LSE β̂
∗
r for sample size n = 105 and subsample sizes r. The residual ε̂ was

approximated using a uniform pre-subsample X∗
0 of size r0 : n = 10%.

x ε r : n π̂2 π̂1 π̂0 π̄2 π̄1 π̄0 π̃2 π̃1 π̃0 Lev
Truncation 10%

.5% .843 .814 .868 .985 1.01 1.06 1.00 1.01 1.03 1.02
N 1% .730 .724 .781 1.00 .984 1.05 .975 .996 1.04 .994

GA 10% .649 .651 .699 1.02 .986 1.04 .996 1.01 1.05 1.00
.5% .808 .798 .846 .988 1.01 1.04 1.02 1.02 1.05 1.02

L 1% .690 .694 .715 .982 .992 1.02 .977 .990 1.03 1.00
10% .593 .603 .631 .991 1.01 1.05 .984 1.02 1.03 .986
.5% .288 .287 .311 .320 .324 .365 .322 .325 .353 .474

N 1% .268 .269 .298 .336 .335 .365 .338 .342 .364 .585
LN 10% .279 .281 .295 .391 .387 .415 .401 .399 .417 .834

.5% .256 .266 .286 .318 .316 .349 .312 .320 .341 .455
L 1% .249 .255 .277 .339 .340 .355 .335 .326 .349 .572

10% .253 .258 .270 .382 .391 .407 .383 .390 .409 .828
.5% .555 .554 .587 .636 .643 .665 .628 .638 .673 .879

N 1% .527 .533 .547 .660 .669 .708 .676 .681 .690 .944
MG 10% .460 .466 .491 .714 .701 .743 .697 .707 .745 1.02

.5% .531 .516 .549 .630 .633 .652 .632 .640 .661 .888
L 1% .471 .483 .501 .650 .652 .674 .643 .639 .679 .922

10% .422 .420 .442 .670 .673 .691 .666 .676 .709 .972
Truncation 30%

.5% .772 .781 .828 1.01 .989 1.01 1.00 1.01 1.04 1.00
N 1% .694 .718 .743 .978 1.01 1.02 .972 .978 1.04 1.00

GA 10% .683 .686 .706 1.02 1.01 1.03 1.03 1.00 1.04 1.01
.5% .722 .714 .739 .983 .996 1.03 .985 1.01 1.03 .996

L 1% .652 .666 .691 .996 .988 1.04 .993 .990 1.02 1.01
10% .614 .613 .623 .987 .998 1.02 .982 .995 1.03 .998
.5% .288 .294 .309 .328 .333 .368 .329 .337 .366 .413

N 1% .263 .264 .283 .321 .346 .364 .336 .338 .368 .510
LN 10% .279 .275 .297 .396 .398 .419 .383 .395 .416 .732

.5% .258 .270 .294 .332 .336 .365 .332 .331 .362 .408
L 1% .240 .236 .260 .325 .328 .376 .328 .326 .355 .493

10% .258 .258 .275 .394 .406 .429 .395 .400 .420 .753
.5% .555 .557 .576 .644 .656 .677 .656 .645 .675 .862

N 1% .517 .510 .548 .677 .675 .689 .688 .675 .691 .925
MG 10% .469 .477 .491 .703 .706 .716 .694 .696 .711 .977

.5% .515 .522 .546 .627 .640 .665 .655 .633 .667 .846
L 1% .486 .483 .508 .664 .663 .703 .663 .671 .684 .943

10% .438 .438 .458 .717 .701 .746 .701 .713 .729 .972
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Table 10: Same as Table 9 except that the Scoring Algorithm was used and the sampling distributions were
approximated resulted from approximating (X⊤X)−1 by (X∗⊤

0 X∗
0)

−1.
x ε r : n π̂2 π̂1 π̂0 π̄2 π̄1 π̄0 π̃2 π̃1 π̃0 Lev

Truncation 10%
.5% .834 .844 .869 .999 1.01 1.06 1.01 1.01 1.05 .986

N 1% .740 .749 .777 .965 1.01 1.03 .977 1.03 1.05 1.01
GA 10% .663 .670 .709 1.03 1.02 1.04 1.02 1.01 1.04 1.02

.5% .764 .779 .813 .976 1.01 1.02 .970 .995 1.02 .981
L 1% .680 .688 .734 .987 .978 1.02 .994 .969 1.01 .986

10% .604 .605 .641 .987 .982 1.05 1.01 1.02 1.03 1.02
.5% .288 .280 .313 .340 .335 .364 .338 .331 .357 .485

N 1% .274 .262 .280 .358 .344 .360 .338 .337 .351 .612
LN 10% .292 .285 .301 .409 .404 .424 .394 .403 .413 .858

.5% .284 .275 .308 .357 .348 .369 .341 .335 .370 .486
L 1% .242 .242 .258 .338 .334 .359 .332 .319 .343 .588

10% .259 .254 .262 .394 .385 .402 .381 .387 .394 .852
.5% .555 .550 .591 .619 .639 .670 .632 .630 .667 .889

N 1% .534 .539 .556 .687 .686 .712 .682 .676 .713 .979
MG 10% .458 .454 .475 .668 .686 .705 .664 .688 .713 .973

.5% .528 .537 .560 .635 .641 .702 .639 .643 .669 .919
L 1% .481 .497 .509 .657 .662 .681 .653 .659 .690 .930

10% .419 .420 .442 .684 .672 .713 .676 .687 .712 .980
Truncation 30%

.5% .782 .776 .800 .999 1.02 1.06 1.00 1.01 1.03 .990
N 1% .726 .735 .747 .971 1.01 1.03 .992 1.02 1.03 1.00

GA 10% .676 .691 .715 1.03 1.03 1.03 1.01 1.03 1.03 1.01
.5% .719 .716 .746 .978 1.00 1.01 .976 .996 1.01 .975

L 1% .655 .670 .711 .992 .982 1.01 .992 .978 1.01 .987
10% .615 .617 .642 .991 .985 1.04 1.00 1.01 1.01 1.01
.5% .302 .285 .303 .357 .349 .379 .342 .337 .358 .438

N 1% .274 .276 .291 .355 .357 .382 .342 .345 .358 .544
LN 10% .288 .289 .303 .414 .412 .431 .410 .404 .420 .780

.5% .287 .279 .302 .368 .352 .383 .359 .343 .377 .438
L 1% .244 .244 .253 .346 .342 .364 .335 .331 .343 .528

10% .260 .250 .268 .395 .399 .407 .392 .394 .401 .773
.5% .547 .547 .574 .629 .643 .676 .652 .632 .665 .866

N 1% .528 .529 .536 .677 .683 .713 .681 .677 .704 .940
MG 10% .462 .455 .483 .679 .695 .689 .674 .676 .731 .936

.5% .528 .523 .556 .634 .642 .674 .647 .639 .662 .879
L 1% .474 .471 .497 .656 .676 .672 .657 .664 .682 .887

10% .422 .429 .446 .675 .665 .712 .679 .683 .722 .939
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Table 11: Same as Table 10 except that the MSE ratios are replaced with the ROE.
x ε r : n Unif Lev π̂2 Unif Lev π̂2 Unif Lev π̂2

α = 0.01 α = 0.05 α = 0.10
Truncation 10%

.5% .2524 .2522 .2024 .2376 .2374 .1906 .2298 .2297 .1844
N 1% .1784 .1783 .1432 .1680 .1679 .1348 .1625 .1624 .1304

GA 10% .0564 .0564 .0453 .0531 .0531 .0426 .0514 .0514 .0412
.5% .2534 .2531 .1951 .2386 .2383 .1836 .2308 .2305 .1776

L 1% .1792 .1790 .1379 .1687 .1685 .1299 .1632 .1630 .1256
10% .0567 .0566 .0436 .0534 .0533 .0411 .0516 .0515 .0397
.5% .0394 .0388 .0218 .0371 .0366 .0205 .0359 .0354 .0198

N 1% .0279 .0275 .0154 .0262 .0259 .0145 .0254 .0250 .0140
LN 10% .0088 .0087 .0049 .0083 .0082 .0046 .0080 .0079 .0044

.5% .0395 .0399 .0220 .0372 .0376 .0207 .0360 .0363 .0200
L 1% .0279 .0282 .0155 .0263 .0266 .0146 .0255 .0257 .0141

10% .0088 .0089 .0049 .0083 .0084 .0046 .0080 .0081 .0045
.5% .0699 .0696 .0470 .0659 .0655 .0443 .0637 .0634 .0428

N 1% .0495 .0492 .0333 .0466 .0463 .0313 .0450 .0448 .0303
MG 10% .0156 .0156 .0105 .0147 .0146 .0099 .0142 .0142 .0096

.5% .0701 .0696 .0452 .0660 .0656 .0426 .0638 .0634 .0412
L 1% .0495 .0492 .0320 .0467 .0464 .0301 .0451 .0449 .0291

10% .0157 .0156 .0101 .0148 .0147 .0095 .0143 .0142 .0092
Truncation 30%

.5% .2524 .2518 .2060 .2376 .2370 .1940 .2298 .2293 .1876
N 1% .1784 .1780 .1457 .1680 .1676 .1371 .1625 .1621 .1327

GA 10% .0564 .0563 .0461 .0531 .0530 .0434 .0514 .0513 .0420
.5% .2534 .2527 .1981 .2386 .2379 .1865 .2308 .2301 .1804

L 1% .1792 .1787 .1401 .1687 .1682 .1319 .1632 .1627 .1276
10% .0567 .0565 .0443 .0534 .0532 .0417 .0516 .0515 .0403
.5% .0394 .0373 .0218 .0371 .0351 .0205 .0359 .0339 .0199

N 1% .0279 .0264 .0154 .0262 .0248 .0145 .0254 .0240 .0140
LN 10% .0088 .0083 .0049 .0083 .0078 .0046 .0080 .0076 .0044

.5% .0395 .0383 .0220 .0372 .0361 .0207 .0360 .0349 .0200
L 1% .0279 .0271 .0156 .0263 .0255 .0146 .0255 .0247 .0142

10% .0088 .0086 .0049 .0083 .0081 .0046 .0080 .0078 .0045
.5% .0699 .0684 .0474 .0659 .0644 .0446 .0637 .0623 .0432

N 1% .0495 .0483 .0335 .0466 .0455 .0316 .0450 .0440 .0305
MG 10% .0156 .0153 .0106 .0147 .0144 .0100 .0142 .0139 .0097

.5% .0701 .0684 .0455 .0660 .0644 .0428 .0638 .0623 .0414
L 1% .0495 .0484 .0322 .0467 .0456 .0303 .0451 .0441 .0293

10% .0157 .0153 .0102 .0148 .0144 .0096 .0143 .0139 .0093

Table 12: The running times (in seconds) of the Scoring Algorithm in Fig. 2 and the LSE for sample size n and
subsample sizes r with x ∼ GA and ε ∼ N (0, 1).

The Scoring Algorithm LSE
n\r .05n .10n .20n .30n .40n .50n n

6 ∗ 106 11.807 12.576 18.671 23.276 29.296 30.050 36.344
6 ∗ 105 0.882 0.981 1.502 1.896 2.266 2.784 3.809
6 ∗ 104 0.116 0.134 0.161 0.175 0.173 0.201 0.234
6 ∗ 103 0.012 0.013 0.017 0.018 0.030 0.029 0.027
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Table 13: Sample sizes using the leverage-scores-based (Lev) and the π̂2 sampling for sample size n = 105, truncation
at 30%, ε and x generated respectively from two and three distributions, and δ̂ in P(∥β̂

∗
r − β̂∥ > δ̂) < .01 chosen such

that the sample sizes using the uniform sampling are 103, 2 · 103, 5 · 103, 104, 2 · 104, 5 · 104.
x GA LN MG
ε δ̂ Lev π̂2 δ̂ Lev π̂2 δ̂ Lev π̂2

.432 986 652 .062 841 262 .119 959 445

.304 2003 1318 .044 1665 516 .084 1915 900
N .192 5021 3298 .028 4173 1307 .054 4728 2217

.137 9957 6521 .020 8276 2594 .038 9399 4397

.096 19904 13113 .014 16575 5196 .027 19294 9037

.061 49766 32657 .009 42005 13041 .017 47872 22397

.433 997 600 .062 906 271 .120 945 406

.306 2001 1203 .044 1802 548 .085 1924 818
L .194 4986 3026 .027 4545 1358 .054 4738 2036

.137 9886 5966 .019 9010 2741 .038 9478 4052

.097 20043 11993 .014 18211 5482 .027 18986 8093

.061 49805 29906 .009 45844 13675 .017 47412 20141

Table 14: Sample sizes determined by 3 and n(MSE) = trace(Σ)/MSE using the leverage-scores based (Lev) and the
π̂2 sampling for n = 105, p = 50, α = 0.05, truncation at 10%, ε and x generated respectively from two and three

distributions, and the ROE ϵ was chosen such that the sample sizes using the uniform sampling are 103, 104.
ε N L

x Unif ϵ Lev π̂2 MSE Lev π̂2 ϵ Lev π̂2 MSE Lev π̂2

GA 103 .9583 1997 1273 .0558 1997 1261 .9584 1995 1170 .0563 1995 1158
GA 104 .9430 9985 6365 .0112 9985 6304 .9431 9972 5848 .0113 9975 5789
LN 103 .9234 1862 539 .0012 1807 514 .9234 1984 551 .0012 1950 533
LN 104 .9086 9309 2692 .0002 9034 2566 .9087 9917 2755 .0002 9748 2664
MG 103 .9340 1979 881 .0043 1979 872 .9340 1976 808 .0043 1975 7799
MG 104 .9191 9893 4403 .0009 9895 4360 .9191 9876 4037 .0009 9871 3992
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