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ABSTRACT

To fast approximate the least squares estimator (LSE) efficiently in a Big Data linear regression by
a subsampling LSE, numerous optimal sampling distributions are derived based on the criterion of
minimizing the sum of the component variances of the subsampling LSE. We discuss truncation of
the distributions, and construct the Scoring Algorithm with far less running time for implementing the
subsampling LSE than for the full-sample LSE. The subsampling LSE is proved to be almost surely
asymptotically normal for an arbitrary sampling distribution under suitable conditions. Motivated by
subsampling and data-splitting in machine learning, sample size determination for multidimensional
parameters is investigated. We conduct a comprehensive evaluation of our proposed approach through
various numerical studies and compare it with the uniform sampling. Our results in both simulated
and real data indicate that our approach substantially outperforms the uniform and the Algorithm
significantly reduces the computational time required for implementing the full-sample LSE.

Keywords Asymptotic normality; Least squares estimator; Big data; Optimal sampling; Sample size determination

1 Introduction

In a linear regression model, the response y; and covariate vector x; satisfy

T .

:/6 X + €4, Z:]-v"‘anv (1)

where 3 € RP is an unknown parameter and €1, . . ., &, are independent and identically (i.i.d.) random errors with zero
mean and finite positive variance 02 = Var(e;). Assume that X = (xy,...,X,)' is a nonrandom n x p matrix of full

rank p.

The parameter vector 3 can be estimated by the ordinary least squares estimator (LSE) ﬁolg = (XTX)"'X Ty, where

(yl, ...,Yn) . Consider the case of data of massive size in which 601& is not available. One may draw a subsample
(X*, y*) of small size r << n using a samphng distribution 7r,, = (71, ..., 7, ) as a surrogate for the full sample, and

calculate the subsampling weighted LSE ﬁ to approximate ﬂ

ols»

where W* = diag(1/r=*) is the diagonal matrix with 7v* equal to the vector of the corresponding sampling probabilities.
Here we adopt the componentwise division a/b = (a1 /by, ..., a,/b,)" for vectors a, b. This is a Hansen-Hurwitz

estimator and could also be viewed as a weighted bootstrap estimator based on the subsample. Full sample weighted
bootstrap estimators were well studied in the literature, see the monograph by Barbe and Bertail (1995)[2].

Over the past two decades, there have been considerable progresses on subsampling, see Liang, et al. (2013)[11],
Kleiner, et al. (2014)[9], Wang, et al. (2015)[20], Wang, et al. (2019)[19] among others. Algorithms for fast computing

*Department of Mathematical Sciences, [UPUI, 402 N Blackford St., LD 270, Indianapolis, IN 46202, USA.
Email: shezhang @iu.edu, feitan@iu.edu, and hanxpeng @iu.edu.




A PREPRINT - NOVEMBER 9, 2023

the LSE were constructed, see the monograph by Mahoney (2011)[[14] and the references therein. A key feature of
these results is the nonuniform sampling. While these results were mainly focused on the algorithmic properties, we
shall be concerned with statistical inference. Zhu, et al. (2015)[22]] pioneered in this aspect and their work is influential
in our work. They obtained several A-optimal distributions and proved asymptotic normality. We give the A-optimal
distributions for approximating a smooth function g(3,,,) of 3, (the choice of g(B,,,) = X X3, = X "y yields
their results), and prove an almost sure asymptotic normality result.

The statistical leverage scores based distribution £ has played a central role in the development of randomized matrix
algorithms, see e e.g. Candés and Tao (2009)[3]]; Drineas et al. (2012)[7]; Ma and Sun (2014)[12]]; Ma, et al. (2015)[13]];
Xu, et al. (2016)[21]. Interestingly, £ and the A-optimal distribution 7ro draw data points in a totally opposite way.
Specifically, the former draws points close to the regression hyperplane, whereas the latter does away from the
hyperplane.

While classic methods compute the LSE 3., in O(np?) time, randomized methods usually take o(np?) time. Typically,
the bottleneck is to compute the appropriate sampling distributions, and the A-optimal distributions fall in with this
category. As the LSE Bols and £ are fundamental and ubiquitous, there have been developed randomized algorithms on
rapidly approximating them, see e.g. Drineas, et al. (2006)[6]]. These algorithms can be utilized to fast compute the
optimal distributions. In the spirit of the scoring method for improving estimation efficiency, we construct the Scoring
Algorithm in Fig. With running time O(rp?) where r << n. Our extensive simulations indicated that the algorithm
worked particularly well.

It is obvious that a suitable subsample size is critical for obtaining a desired result within a desired peroid of time. Sample
size determination (SSD) for scalar parameters is a melody. In this article, we introduce SSD for multidimensional
parameters and study its numerical properties through simulations and real data. The result may be useful for data
spliting in machine learning.

The article is organized as follows. In Section 2] we define SSD for multidimensional parameters and proivde the
formulas. In Section[3] we present an asymptotic normality result, give the A-optimal distributiogns, construct the
Scoring Algorithm, and discuss truncation and the raltationship between the leverage-scores- based distribution and the
A-optimal distributions. Simulations and real data applications are reported in Section[d] The ASN is proved in Section

2 SSD for Multidimensional Parameters

Let P be a probability measure on some measurable space. Let m the volume measure on RP. Consider a parameter
vector O € RP, and a random region R,, on RP. Given € > 0 and a € (0, 1), we seek a minimum sample size n such
that at the level 1 — « of confidence, R,, catches 8 within the “range of error" (ROE) ¢, that is, m(R,) < €. Let
denote the true value of parameter.

Definition 1. Given ¢ > 0 and o € (0, 1), the sample size with the ROE € > 0 at the 1 — « level of confidence is
defined as

n(e,a) =min{n: P(0y € R,, m(R,) <) >1—-a}.

Analogous to selecting bootstrapping sample sizes, both o and € must be appropriately chosen in which e is critical. We
now give two examples, using the following two-step method.

Step 1 Construct a 1 — « level confidence region R,, for 6.
Step 2 Find the minimum sample size n such that the ROE is ¢, that is, m(R,,) < €?.

Example 1. (Ellipsoid) Let 6 be an estimator of 6y € © C RP with the (asymptotic) variance-covariance matrix
Y. positive definite. Let R,, be the 1 — « level confidence ellipsoid centered at ,,, R,, = {0 € © : T(0) < qo(p)},

where T'(0) = n(0 — 6) TS 1(0 — ), and ¢, (p) denotes the upper a-percentile of the distribution of T'(0), that is,
P(T(6g) > gu(p)) < a. By definition, the sample size is determined by

np(e,) =min{n: P(@y € R,, m(R,) <€’) >1—a}.

The volume of the ellipsoid is

m(R,,) =
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where Ay, d = 1,...,p are the eigenvalues of 3. Solving m(R,,) < € for n yields the sample size n, (e, &) with ROE e
at the 1 — « level, given by

Tqa(p)  {/det(%)
rz/e(p/2+1) €
where det() = [[5_, 4. Often ¥ is unknown, one then uses an estimator 3 of it. For p = 1, as ['(3/2) = /7/2,

the sample size with ROE 2¢ (margin of error (MOE) ¢) at the 1 — « level boils down to n; (e, @) = go(1)0? /€2,
commonly found in textbooks. For large p, by Sterling’s formula, I'*/?(p/2 4 1) ~ (p/2€)(pm)'/P. A computationally

easy formula is now given by
fip(€, @) = 2meqq(p) /det(X)/(pm)/ (pe®) @)

Example 2. (Bonferroni) Consider the same problem as in Example 1] but now based on Bonferroni’s method. We
take R,, to be the p-dimensional (1 — «)-confidence hyperrectangle,

np(e, o) =

3)

p
= H(gd,n — Za/2p)0d/ Vs Odn + Zaj2p)0a/VN),
d=1

where z,, denotes the upper a-percentile of the distribution of -1/ 2\/ﬁ(én — By), and éd,n and 0021 denote the d-th
component of 8,, and the d-th diagonal entry of ¥, respectively. As the volume of the hyperrectangle R,, is

m(R,) = 2Pn~P/2 /(2p)01 - Op,
solving m(R,,) < ¢? about n yields the sample size,
nbO"(e a) = 4za/(2p) P --012)/”6_2. Q)

For unknown parameters o4’s, one uses estimates 64’s of them.

Remark 1. If T,,(0) has Chisquare distribution with p degrees of freedom, x*(p), (often approximately), then
4o (p) = X2(p), the upper a-percentile of x*(p). Similarly for Bonferroni, q, = Zo, the upper a-percentile of the
standard normal A (0, 1). Alternatively, one can get an estimate of q.,(p) by bootstrapping or pre-subsampling in the
Scoring Algorithm[2|in the case of Big Data.

Remark 2. In nonuniform subsampling for data of massive size, a sampling distribution 7 must be computed before
actually sampling. An optimal distribution 7 typically has the same computational complexity as the original problem.
To tackle this problem, one may take a uniform pre-subsample of small size and compute an approximation Ty to T as
described in the Scoring Algorithm, choosing suitable values of the ROE ¢, « and q,(p)(= X2 (p)). To determine the
pre-subsample size, one may take det(X) = 1 and get

Tqa(p) 1

T2/p(p/2+ 1) e ©

nyo(e, a) =

For large p, one may use i, o (€, o) inwith det(X) = 1. Noting the fact that p and n must satisfy p = o(y/n) (Portnoy,
1987), one may take the sample size to be

nog = max(np,0(€7 04)7 ﬁp,O(eﬂ a)v \/ﬁ/(CO IOg(n))a p)»

where cq is a constant (co = 1 in our study). More generally, this can be used for SSD in the uniform sampling and
data splitting in machine learning.

Remark 3. Given o and sample size r, one obtains the observed ROE from solving|3|for ¢,
R/det(X
dar) - Y/ T0B) /A
Ie(p/2+1)

We shall use it to compare the efficiency of sampling distributions, together with the criterion of MSE, see our extensive
simulations and real data application below.

N

3 ASN and the A-optimal Distributions

In this section, we prove an almost sure ASN result, derive the A-optimal distributions and discuss its relationship to
the leverage-scores-based distribution, construct the Scoring Algorithm, and introduce truncation.
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Figure 1: Algorithm 1 (Computing the subsampling estimator ,@: )

1. Construct a distribution 7r on the data points (x;,y;)’s, use it to draw a subsample (X*,y*) of size r << n
from (X, y), and formulate the diagonal matrix W* = diag(1/r=*) with 7v* the corresponding probability
vector.

2. Calculate the weighted least squares estimator 3, = (X*T W*X*)~1X*TW*y*.
3.1 Asymptotic Normality

. . . . . ok . . . . .
We give a set of conditions for the almost sure asymptotic normality of 3, for an arbitrary sampling distribution.
Occasionally, we write w = 7, and m; = 7, ; to stress their dependene on the sample size n.

M1)
2
— Z xix; (6] = 0%) =0(1), a.s.

NTn,i

(M2) There is a p x p symmetric matrix I" whose smallest eigenvalue is bounded away from zero, i.e., Apin (L") >
bo > 0 for some constant by, such that

(M3)

M4) Ly(w) = n= 130 %%, /(nmy,,;) satisfies 0 < b < ApinLn () < ApaxLn(m) < B < oo as. for
constants b, B, where \,i, and Ay .« denote the maximum and minimum eigenvalues, respectively.

(M5) Lindeberg condition: the double array n,, ; := x;&;/(nmyi), @ = 1,2,...,n, n > 1 satisfies that for any
t>0,

Ny

1 <~ ||x;
72 il {|X1|€Z| > \ft} o(1), a.s. 1 — o0.
n = ’fLﬂ'nJ

(D1) Condition (M1) can be verified using the result on the SLLN for weighted i.i.d. rV s of Baxter, et al. (2004)[1]].
Specifically, for a sequence {a;}, %Z?:l |a;]9 = O(1) for some g > 1 1mphes = ZJ 1 @& — 0 a.s. for an
iid. {&,} with E(§;) = 0and E(&]) < oo

(D2) Condition (M2) was used in Lemma 3.1 of Portnoy (1984)[15].

Theorem 1. Assume (M1)—(M5). Suppose that for every o > 0,

[pax |x:]| = o(n'/?log™¢(n)), a.s. (8)

Suppose that there exists some p > 2 such that
E(le1]?) < oc. )
Then B: is asymptotically normal along almost all the sample paths of the sequence {(x;,y;)}, i.e.,
=VHmVr(B, — Bos) = N(O.L), as. 1 oo (10)
where 3(w) = (XTX) !XT Diag(é?/m)X(XTX) ! with & =y — X3.
Remark 4. For the uniform distribution, m; = 1/n, (M1) — (M5) are usual assumptions, which are independent of the

sampling distribution 7. This is true in general if nm; > lg for some positive constant ly. For later use, we shall denote
the usual assumptions by (M1’) — (M5’).

Remark 5. The leverage scores are widely used in the development of stochastic algorithms, see e.g. Ma, et al.(2015)
[U3]]. The scores induce a distribution given by £ = (h; ;/p) =: ({;), where h; ; are the diagonal entries of the hat
matrix H = X(X T X)"1X . Assume that there exist positive constants c, cy such that uniformly in n,

Aax(P I XTX) <, x| >, i=1,2,...,n. (11)
From h; ; = x; (X7X)~1x; it follows {; > c3/(pcin). Thus (M1°) — (M5’) are sufficient conditions for (M1) — (M35).
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3.2 The A-optimal Distributions
For a ¢ x p matrix A, we minimize the trace norm Tr(X o ) over distributions on the data points, where
Sa(m) = AS(MAT = AXTX) I8 (m)(XTX) AT, (12)

with 3, () = X Diag(é?/rn)X. Let @ = A3,,.. The plug-in estimate 6 = AB: of 6 has Var*(@*) = Xa(m).
Consider 8 = g(3), where g has the continuous partial derivative g. Then 0 = g(B:) is a subsampling estimator

ols*

to approximate 6= g_(f)'ols), and an A-optimal distribution for 0 to approximate 0 is given by taking A = g(83) for
some pilot estimator 3 of 3.

An A-optimal distribution depends on data, parameters, and the estimation method. With these in mind and for
convenience, we introduce the following definition.

Definition 2. Given a o-field F, a distribution w supported on the data points is said to be A-optimal for the
A~k ~
subsampling estimate 6 to approximate an estimate 0 of parameter 0 if 7 asymptotically minimizes the trace norm of
~ K ~ K
the conditional variance-covariance matrix Var(0 |F) of 0 given F.

If F is the o-field generated by {(x;,y:)} ({xi}), then 7 is referrred to as A (A)-optimal.

The Afl-optimal Distribution 7ro. Minimizing the trace norm of the variance-covariance matrix 3 A in |12} we obtain
the A-optimalizer 7t o. We now invoke the Lagrange multipliers to get

Proposition 1. Let A be a q x p matrix which is independent of . Assume that A(X " X)'x; # 0 and hii # 1 for
all i. Then the square roots of the diagonal entries of I:IQ’ A induce the unique A-optimal distribution 7 A for AB: to
approximate AB,,,, where I:IQ’A = Diag(¢)Hz aDiag(&) with

ols»

Hyp = X(X'X)TATAXTX)"'X ", (13)

‘We shall refer to I:IZ A as the A-optimal score matrix. Write p; o< b; if p; = b;/ > j b; for all 7. Then 7t  is given by
Taq o JAXTX) x| €] (14)
For A = (XTX)'~%/2 set H, = Hy o and H,, = H 4, so that
H, = X(X'X)™*X", H, = Diag(¢)H,Diag(¢), «cR.

It then follows I, is the A-optimal score matrix for 6, = (X X)!=%/23 to approximate 0, = (X X)!=%/23_ =
(XTX)~*/2X Ty, with the unique A-optimal distribution 7, given by

TAI'OLJ; X 4/ h/a,i,i‘éi|; Where ha,i,i = X;F(XTX)iaXi. (15)

As aresult, 7o = (1/ha.; |€;]) is the unique A-optimal distribution for B: to approximate 3.,
Remark 6. While 7tg;  ||x;|||€:] has less computational cost than 7, (v # 0) (as only ||x;|| and |&;| must be

computed), 1 ; X +/h; ;|€;] can be computed using the fast algorithm given in Drineas, et al. (2006)[6]].

Remark 7. Notice that the unique A-optimal distribution for 9; = (XTX)B: to approximate 0y = (X7X)3
7o, neither 7ty nor any other distribution. This note applies in general.

ols IS

The A-optimal 7, and its Approximation 7. Consider minimizing the trace norm of the conditional variance-
covariance matrix given X. Since 7a () = Tr(Xa(w)) =r~ 1 >0 | ||la;]|?¢?/m; and Var(é|X) = (I, — H)o?, we
integrate out the squared residuals in the trace 7 () to get

2 " A2(1 — . .
7a(m) = B(ra(m)|X) = “7 Z M a; = AXTX) 'x;. (16)

T
i=1 v

Suppose that h; ;’s satisfy max;—1, ., hi; = o(1). One then obtains an approximation to the trace as follows:

2 "N 2
- g a;
TA(TI') = T“ E 7” ;H .
P

=1

.....
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Minimizing 7a (7) and 74 (7r) yields the sampling distributions 7 o and 7 4, respectively. Note the conditional version
of Hy A intakes the form,

H, 5 = Diag((1 — hi;)*/?)Hy o Diag((1 — h;)Y/?).
Thus 7 A is given by T4 ;  ||a;]| m For A = (XTX)lfa/Q, let H, = I:IQA. The A-optimal 7, is

Tayi K/ haiin/1— hi. an

— Ak ~
Hence 75 is the unique A-optimal distribution for 3, to approximate 3. Likewise, 7, is given by

Tei K\ haiyi- (18)

Remark 8. As in Remark[6] while 71,71 can be fast computed, 7, 7o enjoy computational ease. The latter are,
respectively, the optimal sampling (OPT) and predictor-length (PL) sampling given in Zhu, et al. (2015).

Comparison and Truncation. Since 7 o minimizes 7a (7), it follows from Propositionthat Ta(ta) < Ta(wa).
Hence, by [16] we obtain
E(7a(7a)) < E(Fa(7A)) = Ta(Ta).
This shows that 7 A is, on average, better A-optimizing than 7 5 . Our extensive simulations and real data applications
exhibited that ™o was much better optimizing than both T and A .
Truncation. Observe that[14]implies that (x;, y;) must be drawn with probability 7 4 ; proportional to |€;]. Since each
Ak
probability is inversely used in constructing 3,., 7o must be truncated from below in order to guarantee appropriate
Ak
statistical properties for ﬁ . In fact, similar to Remark we have

Remark 9. Assume Then hq ;i = X; T(XTX)=ox; > cei“n=° for a > 0 and all i. Assume, furthermore, that
there exist positive constants cg, c3 such that

Amin(n 71X TX) > o, |Ixi]| <es, i=1,2,...,n,n>1.
Then Y ;| \/ha,iiléi] < 0305(!/2717‘1/25, where S = Y"1 |&;|. Therefore, by —

ﬁaiZdéi‘/S ﬁ'aiZC\/l—hii/g ﬁ'aiZC, 1=1,2,...,n,

where S = ZZ 1V 1—=hisandc= (co/cl)a/202/03 Asin Remark (M1’) — (M5’), which are used for the uniform
distribution in Remark. are sufficient condltlonsfor (M1) — (M5) for 7, for T, if, additionally, h; ; are uniformly
bounded away (by a constant) from one; but not for 7. This exhibits that the above conditions are not enough for o
to be bounded away from zero. In fact, it is necessary to truncate 7, from below for 7, to satisfy (M1)—(M5).

Truncation was used in constructing the generalized bootstrap estimator by Chatterjee and Bose (2002)[4]. Specifically,
we truncate 7 o from below by L/n and define 7 4 (1) by

() < A 1[7a > L/n)+ (I/n)1l[7a<L/n], i=1,2,....n

where L is a threshold value. Typically 0 < L < 1. This is, in fact, a mixture distribution of the optimal and the
uniform distributions. For fast computing, we may drop “unimportant” observations by taking [ = 0, otherwise [ = L
See p. 18 (Tropp, 2019)[17]] for further discussion. As T4 ; = 0 at h; ; = 1, we truncate 7 ; similarly from below by
7a.i(1). Although 7 o is positive, we also truncate it and define the likewise 7 ().

To determine the value of L, we must take it into consideration the desired running time and the accuracy. Our extensive
numerical results exhibited that even high percentages of truncation led to only slight loss of efficiency.

The Scoring Algorithm. Like a typical optlmal sampling, the A-optimal sampling 7ro, 72 and 7ro have the same
running time O(np?) as the full data LSE 5 We provide a fast algorithm in Fig. |2

ols*

Since the computational bottleneck is to invert X T X, we shall approximate it by the subsampling (X" X5)~! based
on a computationally easy pre-subsample (X, y¢) from the data (X,y). Let the resulting estimator and residuals be

Bo = (XTX5) ' X5Tys, & =y1—XufB,,
where (X1, y1) is the remaining observations in (X, y). Compute one of
H;,, =X (X;TX5)™ X[, Hj, and Hj, a=12 (19)

Our simulations in Section [ exhibited that the Scoring Algorithm performed paticularly well.



A PREPRINT - NOVEMBER 9, 2023

Figure 2: The Scoring Algorithm

1. Take a uniform pre-subsample (X§, y) of size ro from (X, y), and use it to compute Hf; , (Hf , or I:Iaa)
given in[I9]

2. Call Algorithm 1 in Fig. [T| with the subsample size r and the A-optimal distribution 7.
Remark 10. The Algorithm in Fig. can be implemented in O(max(rq,r) p?) much faster than the original running
time O(np?) as max(rg,r) << n.

The Leverage Scores and its Relationship with the A-optimal Distributions.

The formula ¢; = u, u;/p indicates that ¢; depends only on the singular vector u; of X. Meanwhile, since the
A-optimal 72 ; depends on hs ; ;, which can be written as

hgﬁi)i = ujD1ag(1/0f7 ey 1/0’2)117;,

it follows that 75 ; depends on not only u; but all the singular values o;’s of X. These suggest that £ is not efficient in
extracting information as it ignores the information in the singular values.

Suppose that X is column-orthonormal. Then h; ; = ||x;||* and
PR hi i +o(1), hii = o(1),
2 T—Thi;+o(l), hi;=1-o(l).

When sampling according to £, the ith observation is drawn with probability proportional to h; ;, especially in the
vicinity of h; ; = 1. The A-optimality, however, dictates that in this vicinity the ith observation must be drawn with the
probability proportional to /1 — h; ; — decreasing with h; ;. In fact, the increasing relationship occurs in the vicinity
of h; ; = 0 with the probability proportional to y/h; ;. Similarly, 73 ; o hé/ 121 €
regression hyperplane is less informative than those farther away.

, suggesting data points closer to the

4 Simulations and Real Data Applications

In this Section, we report simulations and real data application about the numerical behaviors of the A-optimal
distributions and their comparison with the uniform and the leverage scores (lev) based distributions.

Simulated MSE. As in Zhu, et al. (2015)[22]], we chose the coefficient 3 = (1, 0.1 - 1J,) ", generated p = 50-
dimensional covariate vector x (treated as non-random) from Gaussian N(0, ) (GA), Log-normal exp(N(0, 3))(LN),
and Mixing Gaussian 0.5N(0, ) + 0.5N(0, 25%)(MG) with ;; = 2  0.8/"=7/. The random error £ was generated
from the normal (.4") and the logistic (.#), both with zero mean and unit standard deviation. For sample size n = 10°

. . . o~k
and a few subsample sizes 7, we calculated the empirical mean squared errors of 3, as follows:

M
~ % 1 ~ -
EMSE(IB’I”) = M E ||/8m - Bols”27 M = 500.
m=1

Reported on Tables are the ratios of the EMSE of /3': to that of the uniform subsampling estimator, where the
sampling distributions are untruncated in Table[6]and truncated in Tables the residual & was computed based on
the full sample (X,y) in Tablesand on a uniform pre-subsample (X§, y§) of size 0.1n in Tables In addition,
the Scoring Algorithm in Fig. 2] was used in Table[I0]

Observe first that the ratios in all the tables are almost all less than one, indicating that the uniform sampling is
ineffective in extracting information. This is most noticeable for fl-optimal sampling, and for the LN covariate in which
some of the ratios were as low as 25%. Note that the LN is skewed, whereas both GA and MG are symmetric in which
the uniform sampling had better performance. Second, the small differences of the ratios in all the tables indicated that
the uniform pre-subsampling of a small size resulted in small loss of efficiency, and that the Scoring Algorithm worked
well. Third, the A—optimal sampling performed the best, and gave substantially smaller EMSE ratios than A-, A- and
the leverage scores based sampling. In particular, 7, gave the smallest EMSE ratios in Table [6] when the subsample
size reached half the full sample size, which was mostly kept for the truncated sampling distributions in Tables [7{{I0}

The Running Time. Reported on Table [12|are the running times of the Scoring Algorithm and the LSE. They were
measured on a computing cluster with 16 processors running at 2.60GHz with 250GB of memory. The R package (ver
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Table 1: PUMS: the empirical MSE ratios of the subsampling LSE ,3: using the A-optimal Subsampling to using the Uniform. The
Scoring Algorithm was used with 1% truncation for sample size n = 6, 688, 524.

r:n | 7o T T o s o o T o

.05% | .599 304 208 | 981 .628 578 | 935 .661 .597
10% | 556 279 185 | 969 .619 677 | .968 .700 .615
S0% | 542 270 174 | 923 719 610 | 923 .675 .611
1.0% | .524 291 .178 | .879 .688 .586 | .868 .729 .592
5.0% | 449 268 .178 | 935 .640 .608 | .949 .684 .549

3.3.1) was used to carry out the numerical computations. Since X " X was approximated by the subsampling X" X,

the time-consuming part is the matrix multiplications in I:I§ Instead of using solve to find the inverse, we called svd to
obtain a singular value decomposition of Xg to compute the sampling distribution 7, and called /m to compute both

the subsampling estimator ﬁ: and the full data 3;.. The Scoring Algorithm saved time in comparison with the LSE.
The times spent on the matrix multiplications were found to be about 30% of the total running times, which can be
improved by fast matrix multiplication. Here x was generated from GA and ¢ from .4"(0, 1). The results for the other
distributions of x and € considered in Table @ are similar (not reported here).

SSD Reported on Table |13[ are the sample sizes for the Lev and the 7o sampling. We chose the values of § in

P(||,3: —B| > §) < a with & = 0.01 so that the sample sizes using the Unif sampling were k - 103 for k =
1,2,5,10,20,50. The data of sample size n = 10° were generated from the normal (.#) and the logistic (.Z)
distributions for the error ¢, and the Gauss mixing (GA), the logarithmic normal (LN) and the mixing Gauss (MG)
distributions for the covariate x. The data were truncated at 30%. One observes that the sample sizes using the Lev
were almost the same as the Unif, and the sizes using the 7t were mostly only half the sizes of the Unif (hence also
the Lev). Similar results were also obtained (not reported here) for the larger values of o = 0.05, 0.10 and the smaller
value 10% of truncation.

Income Census Data. The Public Use Microdata Sample (PUMS) contains a sample of actual responses to the
American Community Survey. The PUMS dataset includes variables for nearly every question on the survey, and new
variables that were derived from multiple survey responses. Each record in the file represents a single person, or — in
the household-level- a single housing unit. In the person-level file, individuals are organized into households, making
possible the study of people within the contexts of their families and other household members. The PUMS files for
an individual year, such as 2016, contain data on approximately one percent of the United States population. The
files, covering a five-year period such as 2012-2016, contain data on approximately five percent of the United States
population.

We downloaded the 5-year (2012-2016) PUMS data from the US census websiteﬂ After cleaning, the sample size was
reduced to n = 6, 688, 524. We fit the data with the linear regression model to study the influence of the covariates
on the response PINCP(total personal income). We used 16 covariates including AGEP(age), COW(class of work),
ENG(ability to speak English), GCL(Grandparents living with grandchildren), MAR(Marital status), SCHL(Educational
attainment), SCIENGP(Fields of Degrees in Science and Engineering), SEX(Sex), DIS(Disability), NATIVITY, etc.

Reported in Tables|1|and [3|are the ratios of the EMSE of the subsampling LSE B: using the A-optimal distributions to
using the uniform distribution, and in Tables [2]and ] are the running times in second, based on 500 repetitions. Here the
Scoring Algorithm in Fig. 2| was used with truncation rates at 1% and 10%.

The MSE ratios in Table [5] were obtained using 25 covariates in which the variables with multiple levels were converted
to indicator variables, thus the data-cleaning led to n = 6, 103, 746 observations. The results in this table indicated
that (1) the leverage-scores based sampling was very efficient although it was still less efficient than the A-optimal
distributions and far less efficient in our simulations, and (2) only 0.16% of the full data retained almost all efficiency.
All the MSE ratios are significantly less than one, suggesting that the A-optimal distributions substantially outperformed
the uniform distribution. 7ro gave the smallest MSE ratios, about 0.18, a tremendous improvement over the uniform.
The running times were much faster than 24.20 seconds for the full-data LSE 3. The Scoring Algorithm and the
truncation only resulted in slight loss of efficiency.

ols*

“https://www.census.gov/programs-surveys/acs/data/pums.html
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Table 2: PUMS: The average running times in second for computing Table

o

T

P

r:n 7_1'0 T o 7~T0 ’77('1 7~T2

05% | 209 208 .203 | 213 212 .205 | .215 212 .205
A0% | 216 215 212 | 222 221 217 | 224 .22 217
S50% | 334 333 327 | 346 340 337 | 338 342 334
1.0% | .521 515 515 | .531 .532 527 | .534 .534 524
50% | 1.89 1.89 188 | 196 195 195|197 197 1095

Table 3: PUMS: Same as Tablebut with 10% truncation: the empirical MSE ratios of the subsampling LSE B: using the
A-optimal Subsampling to using the Uniform. The Scoring Algorithm was used with 1% truncation for sample size n = 6, 688, 524.

o

1

T

r:n o s o o T o
05% | 575 276 .184 | 952 .684 .622 | .893 .688 .596
10% | 528 268 175 | 930 .650 .580 | .920 .680 .623
S50% | 490 254 181 | 958 .666 .620 | .882 .655 .645
1.0% | 493 243 177 | 941 .667 593 | 958 .691 .605
5.0% | 495 244 176 | 933 .684 .610 | 929 .658 .601
S Proof for Asymptotic Normality
Arvw = (wy, - ,w,) " ~ sMult(s,r) (the scaled multinomial distribution) for 7 € [0, 1] with Y"1 | m; = 1if

k k 7! . -
Plor =2 wg =) = Tl k20, k=
1 7“7T1’ y Wn T, H;L:1 ki!i:1 i 0 1 = ai:1 7

It is customary to express B: in the full data using w, decoupling the resampling scheme from the data. Stochastically
equivalently,

(20)

B, L (XTWX)"'X"Wy, W = Diag(w), 1)

where x < y denotes x and y have the same distribution. Note that the laws Py, and P* governed by sMult(7, r) and
, respectively, are stochastically equivalent, see, e.g., page 2055, Prastgaard and Wellner (1993)[[16] and Zhu, et al.
(2015)[22]]. Such equivalence is commonly used in the bootstrap theory, see Sections 3.5-3.6, Van de Vaart and Wellner
(1996)[18]. We shall use P* also for Py, and write E*, Var®, etc. for the expected value, variance, etc. It is easy to
check

E*(w)=1, Cov*(w)= (1/r)(Diag(1/m)—11"). (22)
Lemma 1. Assume (M2). Suppose[S|holds for all ¢ > 0 and[9 holds for some p > 2. Then
H/éols - ﬁOH = O(n_1/2 log;/Q(n))7 a.s. (23)
Hence, .
max |XZT(/6015 - ﬂ0)| = 0(1)7 a.s. (24)

1<i<n

PROOF. We show without loss of generality thatholds for the first component Bl of B
Theorem 2 of Lai and Wei (1982)[10], for which we need to verify

To do so, we shall apply

ols*

lim A, =oc0, limsupA,4+1/A, <oo, and (25)
n—o0 n—o0o
max |z; 1 — k| H; 't;| = o(n*/?log™¢(n)) (26)

1<i<n

forall o > 0, where x; = (z;1,t; )",k = >0 iaty, Hy = >0 tit) ,and A, = 30 (w51 — k) H 1t,)2
Partition M, as follows:

+
M, — my1 1y ]
0 ( m; M,
It follows from (M2) that
1< k, H,
=3 af =miito(l), —S=m+o(l), —==M;+o(l) (27)
n n n
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Table 4: PUMS: The average running times in second for computing Table

r:n ’fr() 7AT1 ’frg 7_1'0 T o 7~T0 ’77('1 7~T2

05% | 202 204 205 | .211 209 .205 | 214 .210 .208
10% | 214 214 213 | 222 222 210 | .223 221 .217
S50% | 329 331 330 | 347 336 333 | 347 336 .340
1.0% | 518 517 521 | .536 .527 527 | .537 .526 .528
50% | 191 1.89 188|195 195 195|196 196 195

Table 5: PUMS: the empirical MSE ratios of the subsampling LSE [3: using the A-optimal Subsampling to using the Uniform.

The Scoring Algorithm 7 The Scoring Algorthm 7o

Truncation | 7 :n  Lev o 5% 10° 107 2x10* | r:n Lev o 5x10° 10% 2% 10%
.0 001 372 114 131 125 120 | .005 360 .109 128 119 119

1 .001 385 .115 127 122 21| .005 367 110 124 118 118

3 .001 350 .115 125 121 122 1 005 364 114 128 122 118

The last two equalities imply k, H,,* = m] M; ; + o(1). Hence,
nflAn =mi1— m;er_%ml + 0(1)

Since the above difference is positive as it is the inverse of the positive definite matrix My, it follows that 25| holds,
while 26| follows from the triangle inequality, ||t;]] < maxi<;<y [|x;|| and[8] Apply now Theorem 2 of Lai and Wei

(1982)[110] to finish the proof. O]
PROOF (of Theorem [I). Let
w=w-1, W=W-1I, A*=X'WX)™' - (X"X)"" (28)
Then Ey (W) = 0, E (W) = 0, and stochastically equivalently,
AL (X*TW*X*)—I _ (XTX)—17 XTV_Vy 4 X*Tw*y* _XTy. (29)
Let A} = —(XTX)"1(XTWX). Stochastically equivalently,
Al =1-A7=X"X)"}(X"TWX). (30)

Recall W and A* in[28|and write
(XTWX)'=(XTX)"'+ A", Wy=y+Wy.
Substitution of them in the full-data formula of B: yields
= (X7 ) XTWy
(XTX)"'+A"XT (y + Wy)
B+ XTX) ' XTWy + A*X Ty + A*X "Wy
Bots
Bots

+(XTX)IX™We + (XTX)'XWy + A*X Ty + A*X "Wy
+(XTX) X TWe+ A*X "TWe+[(XTWX) ' X TWy+A*X Ty].

Substituting ¥ = X(X " X)~'X Ty in the square bracket, the sum inside it is identically zero. Since all the preceding
statements hold on the subspace in which X "WX is invertible, we show [31132)]

S A
By =Ba+ L D (XTX) T 4, &)
Jj=1 J
valid on the subspace in which X*T W*X* is invertible, where r* is given by
r = ((X*TW*X*)71 o (XTX)fl)(X*TW*é*) (32)
Let A* be the event on which A] is nonsingular. Using A% (A])~! = (A]) 'A%, we express

AT = AIXTWX)™ = AT(A)TH(XTX)T = (A TTATXTX) T

10
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valid on A’ . Recalling §* = (X" X)~}(XTW&), we thus obtain
r' = A*X"Weé = (A])"'A}6*  validon A7, (33)
By the second equality in[22} one gets
h2 1,0
B(1A117) < 130 2202
z:l v

Using €2 < 2e2 + 2|3,]|%||x:]|?, one has

n

[u—y

’ 5

ho s :
e 41 8
e

i=1 v

(071%) < -

’I"

22\ N 2||By|
‘2<7 2122 0

It thus follows from (M1) and (M3) that
r[E*(|AT87 D] < rE*(JATIP)E*(|67]%) = o(1),  a.s.

This, A" =T+ o0p- (1) a.s. and the expressmnmfor the remainder r* prove /rr* = op+ (1) a.s. Consequently, by
B1] it suffices to show for any t € RP with ||t|| =1,

~1(g XIEr
U”\ﬁ(’) ZtT(XTX)_lﬂjT; = N(0,1), a.s. 71— o0, (34)
where 02(t) =t X(m)t. As X & = 0, we have

E* (x}&5 /) = XTe=0, Var®(xjé;/m,;) = X "Diag(e?/m)X (35)

Let & = t7(XTX)~!'x3és /m . Itis shown below for every 7 > 0,

o, (OB (G 1°1]E]] > Vroa(t)n]) =0, as. r— oo (36)

We now apply the Lindeberg-Feller theorem (e.g. Theorem 7.2.1. of Chung (2001)[3]) to claim 34] To show 36} we
prove below

1 - XX,
;Z — (& —el) =o(1), as -

Let ¥, = n~2X " Diag(&*/m)X. Then 2(7r) (nIXTX)12,.(n X TX) 1 It follows fromand (M1) that

1 < X;X; 1 Goxix,)
Eczﬁ; i nQZ B ﬁ; i (6 <)
= % 2": X;i;aZ +o(1), a.s.
i=1
We now use (M2) to get
3(w) = o’T,, 1;2 i x] =TI, +o(l), a.s. (38)
This immediately yields for any unit vector t,
o2(t) = oQtTFgl% Zn: ﬂrglt +o(1), a.s. (39)
n?—~ m
By (M2)—-(M4), there are constants by, By such that
0<by < supHSIH1p1 02(t) < By < 00, a.s.
t)|=
This shows that[36]is implied by the following (shown below)
L(r,n) := E*(|&1P1[|&] > Vrbon]) = 0, a.s. r — oo. (40)

11
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To prove[37] we use (M1) and (M3) to get

L z": 7”&”252 _ L z”: I ® (e2 —0®)+0(1) = O(1), a.s 41)
e l_n2i:1 T - o

By[24] we have uniformly ini =1,...,n,
Ei—€& =X, (,8015 ﬁO) = O( ), Ei+e; =2+ 0(1), a.s. 42)

Thus 2 — €2 = o(1)e; a.s. uniformly in 4. This yields[37]in view of

Ldxx, 2 L2 L ||xz||
| > <5y Z =0(1), as.
=1

where 1] and (M3) were used. To finish, it remains to prove 0] This follows from (M2), (M5), the first equality in
and

T (XTX) T Ix]? L b T (X TX) x|
L(r,n) = Z [t 7r4) | 6?1[| ( - ) ||5Z| > \/Fb(m}
i=1 ¢ ¢
||><z\|2 IIlellszl Vrbon
< 2||T;;! > ]
Z nm; IIF Hlo

||xl\|2 lslled | Vi
<4 Z o 2rt))

— 0, a.s. r— o0. O]
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Table 6: Simulated empirical MSE ratios of the subsampling LSE ﬁj using the A-optimal Subsampling to using the
Uniform for sample size n = 10° and subsample sizes 7. The residual & was computed using the full sample.
X £ r:n T T ™o o T ) To T ™o Lev
5% | 823 832 884 | 992 975 999 | 968 960 1.03 | .979
N 1% | 784 783 813 | 1.01 995 1.07 | 994 1.01 1.06 | 1.02
GA 10% | .649 658 .685 | .981 .983 1.03 | 985 .997 1.02 | 1.00
45% | .653 .638 .651 | 983 991 1.03 | 994 982 1.06 | 1.01
50% | .620 .629 660 | .961 .971 1.04 | 965 964 1.02 | .995
5% | 7795 813 873 | 990 1.02 1.03 | 988 998 1.04 | 1.02
< 1% | 728 716 752 | 1.00 985 1.02 | .990 .987 1.02 | .999
10% | 618 .615 661 | 1.03 1.03 1.06 | 1.01 1.02 1.07 | 1.04
45% | 565 588 .610 | 980 .975 1.01 | .987 989 1.04 | .998
50% | .586 .599 613 | 1.00 1.00 1.03 | 990 988 1.04 | .983
5% | 302 303 322 | 333 327 352 | 328 332 360 | 493
N 1% | 281 278 306 | .338 334 366 | .338 .331 .360 | .599
LN 10% | 262 267 282 | .381 .387 401 | .379 389 404 | .851
45% | 276 278 286 | .419 425 447 | 415 425 453 | 952
50% | .280 .280 .293 | 430 428 450 | 431 435 441 | 977
5% | 283 284 315 | 324 333 361 | 330 335 361 | .486
< 1% | 256 253 279 | .331 .330 361 | .332 331 .361 | .576
10% | .238 238 .254 | .382 388 .404 | 382 .385 402 | .848
45% | 253 253 266 | 412 422 450 | 428 426 444 | 942
50% | .253 .253 268 | 420 425 450 | 418 427 446 | 959
5% | 558 551 593 | 644 651 .675 | 633 .636 .687 | .900
N 1% | 515 506 542 | .655 662 709 | .649 .651 .690 | .948
MG 10% | 451 454 476 | 682 .695 723 | .685 .683 .714 | 1.02
45% | 438 446 458 | 684 692 719 | 694 .682 .698 | 1.01
50% | 433 438 459 | .671 .680 .721 | .667 .697 .710 | 1.00
5% | 554 555 562 | 664 658 .696 | .648 670 .690 | .933
< 1% | .500 .500 .509 | .662 .685 .706 | .672 .659 .698 | .953
10% | .399 408 428 | .658 .654 713 | .673 .660 .690 | .971
45% | 395 397 417 | 666 .684 699 | 673 692 712 | 974
50% | 407 410 428 | 710 .685 712 | .690 .683 .722 | .995
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Table 7: Same as Table@ except that the sampling distributions are truncated: Simulated empirical MSE ratios of the

subsampling LSE ﬁ: using the A-optimal Subsampling to using the Uniform for sample size n = 10° and subsample
sizes r. The residual & was computed using the full sample.
X [ € [ T:n [ ﬁ'g 7Al'1 7}0 [ 7Tl'2 7Tl'1 ﬁ'o [ ﬁ'g 7}1 7~l'0 [ Lev
Truncation 10%
5% | 800 812 .852 ] 985 964 1.03 | 1.00 .994 1.02 | .976
N 1% | 718 740 755 | 961 1.00 1.03 | 985 1.01 1.04 | .994
GA 10% | .646 .646 .680 | 982 1.01 1.04 | 989 1.00 1.04 | 1.00
5% | 744775 788 1 977 981 1.02 | 952 985 1.02 | .973
Z 1% | .668 686 .714 | .964 999 1.03 | 960 .983 1.02 | .996
10% | .595 588 .625 | .995 999 1.04 | 1.01 .995 1.02 | .998
5% | 305 302 322 | 337 330 353 [ 323 320 361 | 438
N 1% | 269 275 286 | .339 329 362 | .331 .336 359 | .569
LN 10% | .260 263 278 | .384 392 402 | .386 .390 .409 | .813
5% | 287 279 303 | 328 327 370 | 324 331 358 | 462
Z 1% | 253 258 277 | 335 340 369 | 331 .334 364 | .580
10% | .247 247 258 | .396 406 425 | 398 391 424 | 840
5% | 545 559 572 ] 637 632 .656 | .633 656 .670 | .888
N 1% | 522 514 556 | .656 674 708 | .661 .688 .705 | .964
MG 10% | 455 449 477 | .692 685 715 | .695 .681 724 | 985
5% | 527 534 558 | 653 638 676 | .636  .650 .684 | .905
Z 1% | 478 476 504 | .664 663 .697 | .649 .665 .687 | .955
10% | 412 416 430 | .680 .671 718 | .676 .664 .695 | .959
Truncation 30%
5% | 753 749 802 ] 980 983 1.02 | 971 1.01 1.02 | 1.01
N 1% | 705 .689 .726 | 970 974 1.01 | 967 980 1.01 | .971
GA 10% | .664 .684 708 | .995 1.01 1.06 | 991 1.03 1.03 | 1.00
5% | 701 712 730 | 978 983 1.01 | .980 989 .999 | .990
Z 1% | 658 .673 .694 | 1.00 1.01 1.02 | .991 1.00 1.02 | 1.01
10% | .612 .619 .638 | 989 983 1.00 | 987 994 1.03 | .998
5% 295 301 330 | 340 334 373 | 344 342 384 | 422
N 1% | 269 266 295 | .326 .332 356 | .323 341 356 | .500
LN 10% | .263 264 280 | .391 394 416 | .393 391 414 | .741
5% 290 291 309 | 348 344 390 | 350 344 376 | 434
Z 1% | 258 257 276 | 331 342 364 | 337 340 362 | 515
10% | .247 251 263 | 403 399 426 | 395 398 423 | .747
5% | 560 546 580 | .646 .645 .659 | .652 651 .666 | .866
N 1% | 504 510 532 | .659 .657 .698 | .667 .656 .692 | .886
MG 10% | 456 466 481 | .685 .681 .733 | .685 .677 709 | .945
5% | 524 535 546 | 655 650 642 | .652 .658 .670 | .861
Z 1% | 468 481 .500 | .660 .663 .688 | .663 .670 .689 | .926
10% | 421 420 439 | .693 .692 710 | .675 .693 724 | 939
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Table 8: The ROE of the subsampling LSE ,8: for sample size n = 10 and subsample sizes r. The residual & was
computed using the full sample.
X [ € [ r:n | Unif Lev o Unif Lev o Unif Lev o
a=0.01 a = 0.05 a=0.10
Truncation 10%
5% | 2524 2522 2013 | 2376 2374 .1896 | .2298 2296 .1834
N 1% | 1784 1783  .1424 | .1680 .1679 .1340 | .1625 .1624 .1297
GA 10% | .0564 .0564 .0450 | .0531 .0531 .0424 | .0514 .0514 .0410
5% | 2534 2531 1938 | 2386 .2383 .1824 | 2308 2305 .1765
Z 1% | 1792 1789  .1370 | .1687 .1685 .1290 | .1632 .1630 .1248
10% | .0567 .0566 .0433 | .0534 .0533 .0408 | .0516 .0515 .0395
5% | .0394 0380 .0204 | .0371 .0358 .0192 | .0359 .0346 .0186
N 1% | .0279 .0269 .0145 | .0262 .0253 .0136 | .0254 .0245 .0132
LN 10% | .0088 .0085 .0046 | .0083 .0080 .0043 | .0080 .0077 .0042
5% | .0395 .0394 .0207 | .0372 .0371 .0195 | .0360 .0358 .0I89
Z 1% | .0279 .0278 .0147 | .0263 .0262 .0138 | .0255 .0253 .0134
10% | .0088 .0088 .0046 | .0083 .0083 .0044 | .0080 .0080 .0042
5% 1 .0699 0696 .0464 | .0659 .0655 .0437 | .0637 .0634 .0423
N 1% | 0495 .0492 .0328 | .0466 .0463 .0309 | .0450 .0448 .0299
MG 10% | .0156 .0156 .0104 | .0147 .0146 .0098 | .0142 .0142 .0095
5% | 0701  .0696 .0445 | .0660 .0656 .0419 | .0638 .0634 .0405
Z 1% | 0495 .0492 .0315 | .0467 .0464 .0296 | .0451 .0448 .0287
10% | .0157 .0156 .0100 | .0148 .0147 .0094 | .0143 .0142 .0091
Truncation 30%
5% | 2524 2518 2054 | 2376 2370 .1934 | 2298 2293 .1871
N 1% | 1784 1780 .1452 | .1680 .1676 .1368 | .1625 .1621 .1323
GA 10% | .0564 .0563 .0459 | .0531 .0530 .0432 | .0514 .0513 .0418
5% | 2534 2527 1974 | 2386 2379 .1859 | 2308 2301 .1798
Z 1% | 1792 1787 1396 | .1687 .1682 .1314 | .1632 .1627 .1271
10% | .0567 .0565 .0441 | .0534 .0532 .0416 | .0516 .0515 .0402
5% | .0394 .0365 .0207 | .0371 .0344 .0195 | .0359 .0333 .0I88
N 1% | .0279 .0258 .0146 | .0262 .0243 .0138 | .0254 .0235 .0133
LN 10% | .0088 .0082 .0046 | .0083 .0077 .0044 | .0080 .0074 .0042
5% | .0395 .0378 .0210 | .0372 .0356 .0198 | .0360 .0344 .0191
Z 1% | .0279 .0267 .0148 | .0263 .0252 .0140 | .0255 .0243 .0135
10% | .0088 .0084 .0047 | .0083 .0080 .0044 | .0080 .0077 .0043
5% | .0699 .0684 .0470 | .0659 .0644 .0442 | .0637 .0623 .0428
N 1% | .0495 .0483 .0332 | .0466 .0455 .0313 | .0450 .0440 .0303
MG 10% | .0156 .0153 .0105 | .0147 .0144 .0099 | .0142 .0139 .0096
5% | 0701 .0684 .0450 | .0660 .0644 .0424 | .0638 .0623 .0410
<z 1% | .0495 .0484 .0318 | .0467 .0456 .0300 | .0451 .0441 .0290
10% | .0157 .0153 .0101 | .0148 .0144 .0095 | .0143 .0139 .0092

15



A PREPRINT - NOVEMBER 9, 2023

Table 9: The ROE of the subsampling LSE B: for sample size n = 10° and subsample sizes . The residual & was
approximated using a uniform pre-subsample X} of size o : n = 10%.
X [ € [ r:n [ T T 0 [ T T ) [ o T o [ Lev
Truncation 10%
5% | 843 814 868 | 985 1.01 1.06 | 1.00 1.01 1.03 | 1.02
N 1% | 730 724 781 | 1.00 984 1.05 | 975 996 1.04 | .994
GA 10% | .649 651 .699 | 1.02 986 1.04 | 996 1.01 1.05 | 1.00
5% | 808 798 846 | 988 1.01 1.04 | 1.02 1.02 1.05 | 1.02
£ 1% | .690 .694 715 | 982 992 1.02 | 977 990 1.03 | 1.00
10% | .593 .603 .631 | .991 1.01 1.05 | 984 1.02 1.03 | .986
5% | 288 287 311 | 320 324 365 | 322 325 353 | 474
N 1% | 268 269 298 | .336 .335 365 | .338 .342 364 | .585
LN 10% | .279 281 .295 | .391 .387 415 | 401 .399 417 | .834
5% | 256 266 286 | 318 316 349 | 312 320 341 | 455
Z 1% | 249 255 277 | 339 340 355 | 335 326 349 | .572
10% | .253 258 270 | .382 391 .407 | .383 .390 .409 | .828
5% | 555 554 587 | 636 .643  .665 | .628 638 .673 | .879
N 1% | 527 533 547 | .660 .669 708 | .676 .681 .690 | .944
MG 10% | 460 466 .491 | .714 701 743 | .697 .707 .745 | 1.02
5% | 531 516 549 | 630 .633 .652 | .632 .640 .661 | .888
Z 1% | 471 483 501 | .650 .652 .674 | .643 .639 679 | .922
10% | 422 420 442 | .670 .673 .691 | .666 .676 .709 | 972
Truncation 30%
5% | 772 781 828 | 1.01 989 1.01 | 1.00 1.01 1.04 | 1.00
N 1% | 694 718 743 | 978 1.01 1.02 | 972 978 1.04 | 1.00
GA 10% | .683 686 .706 | 1.02 1.01 1.03 | 1.03 1.00 1.04 | 1.01
5% | 722 714 739 1 983 996 1.03 | 985 1.01 1.03 | .996
Z 1% | 652 666 .691 | .996 988 1.04 | .993 990 1.02 | 1.01
10% | .614 613 .623 | .987 998 1.02 | 982 .995 1.03 | .998
5% | 288 294 309 | 328 333 368 | 329 337 366 | 413
N 1% | 263 264 283 | .321 346 364 | 336 .338 368 | .510
LN 10% | .279 275 297 | .396 .398 419 | 383 .395 416 | .732
5% | 258 270 294 | 332 336 365 | 332 331 362 | .408
Z 1% | 240 236 .260 | .325 328 376 | .328 .326 .355 | .493
10% | .258 258 275 | .394 406 429 | 395 400 .420 | .753
5% | 555 557 576 | 644 656 .677 | .656 645 .675 | .862
N 1% | 517 510 548 | .677 .675 .689 | .688 .675 .691 | .925
MG 10% | 469 477 491 | .703 706 716 | .694 .696 711 | 977
5% | 515 522 546 | 627 640 .665 | .655 633 .667 | .846
Z 1% | 486 483 508 | .664 .663 703 | .663 671 .684 | .943
10% | .438 438 458 | .717 .701 746 | 701 713 729 | 972
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Table 10: Same as Table @] except that the Scoring Algorithm was used and the sampling distributions were
approximated resulted from approximating (X " X)~! by (X3 X)L
X [ 13 [ r:n [ ﬁ'z 7%1 ﬁ'o [ 7_l'2 7Tl'1 771'0 [ 77l'2 7}1 7~l'0 [ Lev
Truncation 10%
5% | 834 844 869 ] 999 101 1.06 | 1.01 1.01 1.05] .986
N 1% | 740 749 777 | 965 1.01 1.03 | 977 1.03 1.05 | 1.01
GA 10% | .663 .670 709 | 1.03 1.02 1.04 | 1.02 1.01 1.04 | 1.02
5% | 764 779 813 | 976 1.01 1.02 [ 970 995 1.02 | .981
Z 1% | .680 .688 734 | 987 978 1.02 | 994 969 1.01 | .986
10% | .604 .605 .641 | .987 982 1.05 | 1.01 1.02 1.03 | 1.02
5% | 288 280 313 | 340 335 364 | 338 331 357 | 485
N 1% | 274 262 .280 | .358 344 360 | .338 337 .351 | .612
LN 10% | 292 285 301 | 409 404 424 | 394 403 413 | .858
5% | 284 275 308 | 357 348 369 | 341 335 370 | .486
Z 1% | 242 242 258 | 338 334 359 | 332 319 343 | 588
10% | .259 254 262 | .394 385 402 | 381 .387 .394 | .852
5% | 555 550 591 | 619 639 .670 | .632 .630 .667 | .889
N 1% | 534 539 556 | .687 .686 712 | .682 .676 713 | .979
MG 10% | 458 454 475 | .668 .686 .705 | .664 .688 713 | 973
5% | 528 537 560 | 635 641 702 | .639 .643 .669 | .919
Z 1% | 481 497 509 | .657 .662 .681 | .653 .659 .690 | .930
10% | 419 420 442 | .684 672 713 | .676 .687 .712 | .980
Truncation 30%
5% | 782 776 800 | 999 1.02 1.06 | 1.00 1.01 1.03 | .990
N 1% | 726 735 747 | 971 1.01 1.03 | 992 1.02 1.03 | 1.00
GA 10% | .676 .691 715 | 1.03 1.03 1.03 | 1.01 1.03 1.03 | 1.01
5% | 719 716 746 | 978 1.00 1.01 [ 976 996 1.0 | .975
Z 1% | .655 .670 711 | 992 982 1.01 | 992 978 1.01 | .987
10% | .615 617 .642 | 991 985 1.04 | 1.00 1.01 1.01 | 1.01
5% 1302 285 3303 | 357 349 379 | 342 337 358 | 438
N 1% | 274 276 291 | .355 357 382 | .342 345 358 | .544
LN 10% | 288 289 303 | 414 412 431 | 410 .404 .420 | .780
5% | 287 279 302 | 368 352 383 | 359 343 377 | 438
Z 1% | 244 244 253 | 346 342 364 | 335 331 343 | 528
10% | .260 250 .268 | .395 .399 407 | 392 .394 401 | .773
5% | 547 547 5741 629 643  .676 | .652 632 .665 | .866
N 1% | .528 529 536 | .677 .683 713 | .681 .677 .704 | .940
MG 10% | 462 455 483 | .679 .695 .689 | .674 .676 .731 | 936
5% | 528 523 556 | 634 642 674 | 647 639 .662 | .879
Z 1% | 474 471 497 | .656 676 .672 | .657 .664 .682 | .887
10% | 422 429 446 | .675 .665 712 | .679 .683 722 | .939
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Table 11: Same as Table[10[except that the MSE ratios are replaced with the ROE.

X [ € [ r:n | Unif Lev T2 Unif Lev o Unif Lev o
a=0.01 a = 0.05 a=0.10

Truncation 10%
5% | 2524 2522 2024 | 2376 2374 1906 | 2298 2297 .1844
N 1% | .1784 .1783 .1432 | .1680 .1679 .1348 | .1625 .1624 .1304
GA 10% | .0564 .0564 .0453 | .0531 .0531 .0426 | .0514 .0514 .0412
5% | 2534 2531 1951 | 2386 2383 .1836 | .2308 .2305 .1776
< 1% | 1792  .1790 1379 | .1687 .1685 .1299 | .1632 .1630 .1256
10% | .0567 .0566 .0436 | .0534 .0533 .0411 | .0516 .0515 .0397
5% [ .0394 .0388 .0218 | .0371 .0366 .0205 | .0359 .0354 .0198
N 1% | .0279 .0275 .0154 | .0262 .0259 .0145 | .0254 .0250 .0140
LN 10% | .0088 .0087 .0049 | .0083 .0082 .0046 | .0080 .0079 .0044
5% | .0395 .0399 .0220 | .0372 .0376 .0207 | .0360 .0363 .0200
< 1% | .0279 .0282 .0155 | .0263 .0266 .0146 | .0255 .0257 .0141
10% | .0088 .0089 .0049 | .0083 .0084 .0046 | .0080 .0081 .0045
5% [ .0609 .0696 .0470 | .0659 .0655 .0443 | .0637 .0634 .0428
N 1% | .0495 .0492 .0333 | .0466 .0463 .0313 | .0450 .0448 .0303
MG 10% | .0156 .0156 .0105 | .0147 .0146 .0099 | .0142 .0142 .0096
5% | .0701  .0696 .0452 | .0660 .0656 .0426 | .0638 .0634 .0412
4 1% | .0495 .0492 .0320 | .0467 .0464 .0301 | .0451 .0449 .0291
10% | .0157 .0156 .0101 | .0148 .0147 .0095 | .0143 .0142 .0092
Truncation 30%
5% | 2524 2518 2060 | 2376 .2370 .1940 | 2298 2293 .1876
N 1% | .1784 .1780 .1457 | .1680 .1676 .1371 | .1625 .1621 .1327
GA 10% | .0564 .0563 .0461 | .0531 .0530 .0434 | .0514 .0513 .0420
5% | 2534 2527 1981 | 2386 2379 .1865 | .2308 .2301 .1804
< 1% | .1792 .1787 .1401 | .1687 .1682 .1319 | .1632 .1627 .1276
10% | .0567 .0565 .0443 | .0534 .0532 .0417 | .0516 .0515 .0403
5% [ .0394 .0373 .0218 | .0371 .0351 .0205 | .0359 .0339 .0199
N 1% | .0279 0264 .0154 | .0262 .0248 .0145 | .0254 .0240 .0140
LN 10% | .0088 .0083 .0049 | .0083 .0078 .0046 | .0080 .0076 .0044
5% | .0395 .0383 .0220 | .0372 .0361 .0207 | .0360 .0349 .0200
< 1% | .0279 .0271 .0156 | .0263 .0255 .0146 | .0255 .0247 .0142
10% | .0088 .0086 .0049 | .0083 .0081 .0046 | .0080 .0078 .0045
5% [ .0609 .0684 .0474 | .0659 .0644 .0446 | .0637 .0623 .0432
N 1% | .0495 .0483 .0335 | .0466 .0455 .0316 | .0450 .0440 .0305
MG 10% | .0156 .0153 .0106 | .0147 .0144 .0100 | .0142 .0139 .0097
5% | .0701  .0684 .0455 | .0660 .0644 .0428 | .0638 .0623 .0414
< 1% | .0495 .0484 .0322 | .0467 .0456 .0303 | .0451 .0441 .0293
10% | .0157 .0153 .0102 | .0148 .0144 .0096 | .0143 .0139 .0093

Table 12: The running times (in seconds) of the Scoring Algorithm in Fig. |2{and the LSE for sample size n and
subsample sizes r with x ~ GA and e ~ .47(0, 1).
The Scoring Algorithm LSE
n\r .05n .10n .20n .30n 40n .50n n

6+10° | 11.807 12.576 18.671 23276 29.296 30.050 | 36.344
6 % 10° 0.882 0.981 1.502 1.896 2.266 2.784 3.809
6 % 10* 0.116 0.134 0.161 0.175 0.173 0.201 0.234
6% 10° 0.012 0.013 0.017 0.018 0.030 0.029 0.027
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Table 13: Sample sizes using the leverage-scores-based (Lev) and the 7o sampling for sample size n = 105, truncation

at 30%, € and x generated respectively from two and three distributions, and ¢ in P(||5: — B]| > ¢) < .01 chosen such
that the sample sizes using the uniform sampling are 103, 2 - 102, 5 - 10°, 10%, 2 - 104, 5 - 10%.

X GA LN MG

€ 1 Lev Tt ) Lev o ) Lev o
432 986 652 | .062 841 262 | .119 959 445
304 2003 1318 | .044 1665 516 | .084 1915 900
A 192 5021 3298 | .028 4173 1307 | .054 4728 2217
137 9957 6521 | .020 8276 2594 | .038 9399 4397
.096 19904 13113 | .014 16575 5196 | .027 19294 9037
061 49766 32657 | .009 42005 13041 | .017 47872 22397
433 997 600 | .062 906 271 | .120 945 406
.306 2001 1203 | .044 1802 548 | .085 1924 818
Z | 194 4986 3026 | .027 4545 1358 | .054 4738 2036
137 9886 5966 | .019 9010 2741 | .038 9478 4052
.097 20043 11993 | .014 18211 5482 | .027 18986 8093
.061 49805 29906 | .009 45844 13675 | .017 47412 20141

Table 14: Sample sizes determined by [3{and n(MSE) = trace(X)/MSE using the leverage-scores based (Lev) and the
#ro sampling for n = 10°, p = 50, a = 0.05, truncation at 10%, € and x generated respectively from two and three
distributions, and the ROE € was chosen such that the sample sizes using the uniform sampling are 103, 10%.

€ N

x Unif € Lev o MSE Lev o € Lev o MSE Lev o

GA | 10 | .9583 1997 1273 | .0558 1997 1261 | .9584 1995 1170 | .0563 1995 1158
GA | 10% | 9430 9985 6365 | .0112 9985 6304 | 9431 9972 5848 | 0113 9975 5789
LN | 10° | .9234 1862 539 | .0012 1807 514 | 9234 1984 551 | .0012 1950 533
LN | 10* | 9086 9309 2692 | .0002 9034 2566 | 9087 9917 2755 | .0002 9748 2664
MG | 10° | .9340 1979 881 | .0043 1979 872 | 9340 1976 808 | .0043 1975 7799
MG | 10* | .9191 9893 4403 | .0009 9895 4360 | .9191 9876 4037 | .0009 9871 3992
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