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Abstract

In this article, we derive the distribution of partially exchangeable binary random
variables, generalizing the distribution of exchangeable binary random variables and
hence the binomial distribution. The distribution can be viewed as a mixture of
Markov chains. We introduce rectangular complete monotonicity and show that par-
tial exchangebility can be characterized by rectangular complete monotonicity. The
distribution aided with rectangular complete monotonicity can be used to analyze
serially correlated data common in many areas of science.
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1. Introduction

Binary responses commonly arise in many fields of science. The literature de-
scribing the analysis of correlated binary data is extensive. In this article, we propose
to exploit the perception of partial exchangeability to investigate multiple serially
dependent responses.

Introduced by de Finetti in 1938, partial exchangeability was studied by many
authors including Diaconis (1988), Diaconis and Freedman (1980a, b, c), Freedman
(1962a, b), and Zaman (1984). A sequence of binary random variables is partially
exchangeable if the joint distribution of any sub-sequence of the first finite terms is
invariant under permutations that keep the initial state and the numbers of transitions
from i to j for i = 0, 1 unchanged. A more stringent assumption is exchangeability
which requires invariance under any permutation. Also introduced by de Finetti
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in the 1930’s and intensely studied over the past century, exchangeability is meant
to capture the notion of symmetry in a collection of random variables and often
used as an alternative to independence. Partial exchangeability captures symmetry
more generally and grasps dependence in a collection of random variables and can be
utilized as a candidate for dependence.

A model in which an individual binary sequence is assumed to be recurrent and
partially exchangeable is, according to Diaconis and Freedman (1980a, c), a mix-
ture of Markov chains. Whereas the latter, as pointed out by Quintana and Newton
(1998), can be viewed as a random-effects model in which the unobservable latent
transition matrices follow some unknown distribution. Our proposed distribution can
be viewed either as a Markov-chain-mixture model (both parametric and nonpara-
metric), a random-effects model, or a Bayesian model. We represent the distribution
of partially exchangeable binary random variables in moments of the mixing proba-
bility measure, an analog to the formula of the distribution of exchangeable binomial
random variables by Kendall (1967), Chow and Teicher (1997), George and Bow-
man (1995), and Dang, Keeton and Peng (2009) among others. We show that partial
exchangebility can be characterized by rectangular complete monotonicity. The distri-
bution aided with rectangular complete monotonicity can be used to analyze serially
correlated data. Peng, Garner and Dang (2009) used rectangular complete mono-
tonic functions to give a class of parsimonious Markov chain mixtures, and applied
the parsimonious mixtures to analyze two real datasets. Their method is related to
the procedure used in Dang, et al. (2009) in which a unified approach is presented
for analyzing exchangeable binary data with an application in developmental toxicity
studies. By exploiting partial exchangeability, Quintana and Newton (1998) investi-
gated the assessment of the order of serial dependence for multiple binary responses.
Relating to the Pólya sequence from a one-urn model, Quintana and Newton (1999)
constructed a two-urn model for the mixtures of Markov chains, providing interesting
and useful interpretation.

The rest of the article is organized as follows. In Section 2, we derive the distribu-
tion of partial exchangeable binary random variables, discuss the sufficient statistics
of the distribution, and introduce rectangular complete monotonicity to characterize
partial exchangeability. Technical details can be found in the Appendix.

2. The Partially Exchangeable Model and Rectangular Complete Mono-

tonicity

In this section, we first give the distribution of partially exchangeable binary
r.v.’s, followed by rectangular complete monotonicity and characterization of partial
exchangeability.

As Diaconis and Freedman (1980a) elaborated, a sequence of binary r.v.’s B0, B1, ...

are partially exchangeable if for any two binary sequences {bi : i = 0, 1, ..., n} and
{ci : i = 0, 1, ..., n} which have the same initial state and the same transition counts,

P(B0 = b0, B1 = b1, ..., Bn = bn) = P(B0 = c0, B1 = c1, ..., Bn = cn).
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Recall that a sequence of binary r.v.’s B0, B1, ... is recurrent if

P (Bn = B0 for infinitely many n) = 1.

Diaconis and Freedman (1980a) show that if B0, B1, ..., Bn are recurrent and par-
tially exchangeable, then the joint probability of them is a mixture of Markov chains.
Specifically, for the binary {0, 1} state space there exists a unique probability measure
Qb0 on [0, 1]2 such that

P (B0 = b0, B1 = b1, ..., Bn = bn) =

∫ 1

0

∫ 1

0

ut00(1 − u)t01vt11(1 − v)t10 dQb0(u, v), (1)

where tij is the number of transitions from i to j for i, j = 0, 1. From this and the
binomial formula, we have the following result.

Theorem 1. Suppose that B0, B1, B2, ... are recurrent and partially exchangeable.
Then

P(B0 = b0, B1 = b1, ..., Bn = bn) =

t01
∑

i=0

t10
∑

j=0

(−1)i+j

(

t01

i

)(

t10

j

)

λ
(b0)
t00+i,t11+j, (2)

where b0, b1, ..., bn are {0, 1}-valued, and λ
(b0)
i,j is the joint probability that the tran-

sitions 0 → 0 and 1 → 1 in B0, B1, ..., Bn simultaneously occur i and j times with
initial state b0, or symbolically,

λ
(b0)
i,j = P

(

B0 = b0, (0 → 0)i, (1 → 1)j
)

, b0 = 0, 1, 0 ≤ i ≤ t00 + t01, 0 ≤ j ≤ t11 + t10.

We refer (2) the partially exchangeable model and denote it by PE(λ), where

λ = {λ
(b0)
i,j : b0 = 0, 1, i = 0, ..., t00 + t11, j = 0, ..., t11 + t10}. Representation

(2) is an analog to the formula of the distribution of exchangeable binomial random
variables by Kendall (1967), Chow and Teicher (1997), George and Bowman (1995),
and Dang, et al. (2009) among others. It is interesting to observe that a (parametric
or nonparametric) mixture of Markov chains is a parametric model with a sequence
of parameters λ in which the number of parameters increases with the length of
the binary sequence. The following remark describes the relationships among the
distributions of partially exchangeable, exchangeable and independent and identically
distributed r.v.’s.

Remark 1. If B0, ..., Bn are exchangeable, then

λ
(b0)
j,k =

j
∑

i=0

(−1)i

(

j

i

)

π
(b0)
k+i , b0 ∈ {0, 1}, 0 ≤ j ≤ t00 + t01, 0 ≤ k ≤ t11 + t10. (3)

where π
(b0)
i = P (B0 = b0, B1 = 1, ..., Bi = 1), i ≥ 0. Hence

P(B1 = b1, ..., Bn = bn) =

t00+t10
∑

i=0

(−1)i

(

t00 + t10

i

)

πt01+t11+i. (4)
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where πj = P (B0 = 1, B1 = 1, ..., Bj−1 = 1), j ≥ 1 with π0 = 1. This is the
probability under exchangeability, see Dang, et al. (2009). Accordingly, the Bino-
mial distribution is a special case of the partial exchangeable model. Further, under
exchangeability,

π
(0)
j = πj − πj+1, π

(1)
j = πj+1,

where πj = P (B0 = 1, B1 = 1, ..., Bj−1 = 1), j ≥ 1 with π0 = 1.

Remark 2. By Diaconis and Freedman (1980a), the binary state space in Theorem 1
can be generalized to a multi-state space.

The marginal probabilities λ = {λ
(b0)
j,k } are moments of the mixing probability

measure. Specifically,

λ
(b0)
ij =

∫ 1

0

∫ 1

0

uivj dQb0(u, v), b0 = 0, 1, i, j = 0, 1, ....

The moment problem is a folklore in functional analysis and one-dimensional Haus-
dorff moment problem is related to complete monotonicity (CM). Here we extend it
to a two-dimensional sequence, which is related to the two dimensional Hausdorff
moment problem. A finite bivariate sequence {aj,k : 0 ≤ j ≤ J, 0 ≤ k ≤ K} is said
to be (finite) rectangular completely monotone (RCM) if

(−1)r1+r2∆r1

1 ∆r2

2 aj,k ≥ 0, 0 ≤ j + r1 ≤ J, 0 ≤ k + r2 ≤ K, (5)

where ∆1, ∆2 are the (univariate) marginal difference operators, i.e., ∆1aj,k = aj+1,k−
aj,k and ∆2aj,k = aj,k+1 −aj,k with ∆2

1 = ∆1(∆1) and ∆0
1 = ∆0

2 = I being the identity
operator. It is not difficult to verify the useful expansion

∆r
1∆

s
2au,v =

r
∑

j=0

s
∑

k=0

(

r

j

)(

s

k

)

(−1)r+s−j−kau+j,v+k r, s, u, v = 0, 1, ... (6)

for a two-dimensional sequence {aj,k : j, k = 0, 1, ...}. The above expansion can be
used to verify RCM. Applying (6) to (5) for r = s = 1 gives au+1,v+1−au+1,v−au,v+1+
au,v ≥ 0, which motivates us to call rectangular.

It is interesting to observe that the marginal probabilities λ = {λ
(b0)
j,k } are com-

prised of two RCM sequences {λ
(0)
j,k} and {λ

(1)
j,k} satisfying λ

(0)
0,0 +λ

(1)
0,0 = 1. Specifically,

for r1, r2 ≥ 0 and λ
(0)
0,0 + λ

(1)
0,0 = 1,

(−1)r1+r2∆r1

1 ∆r2

2 λ
(b0)
j,k ≥ 0, 0 ≤ j + r1 ≤ t00 + t01, 0 ≤ k + r2 ≤ t11 + t10. (7)

An infinite bivariate sequence {λ̄(i, j) : i, j = 0, 1, ...} with λ̄(0, 0) = 1 is called
infinite rectangular completely monotone (IRCM) if λ̄(i, j) satisfies (5) for all non-
negative integers i, j and r1, r2. IRCM characterizes partial exchangeability as stated
in the following theorem. The simple proof is based on the well-known result in the
two-dimensional Hausdorff moment problem by Haviland (1935) and is relegated in
the Appendix. This characterization is useful in obtaining parsimonious mixtures of
Markov chains, see Peng, Dang and Garner (2009).
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Theorem 2. Two infinite sequences {λ̄(b0)(i, j) : i, j = 0, 1, ...} for b0 = 0, 1 satisfy-
ing λ̄(0)(0, 0) + λ̄(1)(0, 0) = 1 induce a probability distribution (2) if and only if they
are IRCM.

Clearly the matrix t = {tij : i, j = 0, 1} of transition counts and the initial state b0

are sufficient statistics of the PE distribution. The number of the strings B0, B1, ..., Bn

that have a common transition matrix t is
(

n0−1
t00

)(

n1−1
t11

)

, where n0, n1 are the number
of zero’s and one’s respectively. See Quintana and Newton (1998) for details. Let
p(t, b0; λ) be the probability that B0, B1, ..., Bn have a common transition matrix t

with initial state b0. Then by (2),

p(t, b0; λ) =

(

n0 − 1

t00

)(

n1 − 1

t11

) t01
∑

i=0

t10
∑

j=0

(−1)i+j

(

t01

i

)(

t10

j

)

λ
(b0)
t00+i,t11+j. (8)

This formula seems to suggest that the possible values of t00 and t11 with which
{p(t, b0; λ) : b0 = 0, 1, ∀t} constitutes a probability distribution are {0, ..., n0 − 1}
and {0, ..., n1−1} respectively. A further glance reveals that the constraints on t01, t10
are not taken into account, that is, t01, t10 can take at most half the value of the length
n + 1 of the string because the number of transitions from zero to one or from one
to zero is determined by n0 ∧ n1 = min(n0, n1). Indeed, the values of t01 and t10
are equal if the initial state b0 and terminal state bn are identical b0 = bn, otherwise
they differ by one, i.e., t01 − 1 = t10 if b0 = 0, bn = 1 and t10 − 1 = t01 if b0 = 1
and bn = 0. Thus given the initial and terminal states b0, bn, either of t01 and t10
determines the other. Note that the length of the string B0, ..., Bn can be calculated
by n+1 = t00+t01+t10+t11+1. Also n0−1[b0 = 0] = t00+t10, n1−1[b0 = 1] = t11+t01,
and n0 + n1 = n + 1. Thus the pentuple (t, b0) can be equivalently expressed as the
pentuple (s, n0, b0, bn, n + 1) where s is either t01 or t10. In fact, the latter is more
convenient in describing the distribution. For this reason, we shall write p(t, b0; λ) as
p(s, n0, b0, bn, n + 1; λ) or as usual omit n + 1 and write as p(s, n0, b0, bn; λ). We now
derive the formula for p(s, n0, b0, bn; λ). To simplify our description, let us consider
the string starting with state b0 = 0 and denote s = t01. Then n0 − 1 = t00 + t10,
n1 = t11 + t01, and n1 = n + 1 − n0. There are now two cases.
Case 1. The terminal state is 0. Then t01 = t10 = s, t00 = n0 − 1 − s, t11 = n1 − s.
The range of s is the integers in the interval [0, (n0 − 1) ∧ n1].
Case 2. The terminal state is 1. Then t01 = s, t10 = s − 1, t00 = n0 − s, t11 = n1 − s.
The range of s is the integers in the interval [1, n0 ∧ n1].

Accordingly, we have

p(s, n0, 0, bn; λ) =

(

n0 − 1

s − 11

)(

n1 − 1

s − 1

)

×

s
∑

i=0

s−11
∑

j=0

(−1)i+j

(

s

i

)(

s − 11

j

)

λ
(0)
n0−10−s+i, n1−s+j,

bn = 0, 1, n0 = 1, ..., n + 1, s = 11, ..., (n0 − 10) ∧ n1. (9)
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where 11 = 1[bn = 1] and 10 = 1− 11. Here we set
(

m

i

)

= 0 if either i > m, or m < 0
or i < 0 except

(

m

i

)

= 1 when m = i ∈ {0,−1}. Analogously one has the formula for
the string starting with one. The two formulas can be combined in one as follows:

p(s, n0, b0, bn; λ) =

(

n0 − 1

s − 1 + 100

)(

n1 − 1

s − 1 + 111

)

×

s−110
∑

i=0

s−101
∑

j=0

(−1)i+j

(

s − 110

i

)(

s − 101

j

)

λ
(b0)
n00−s+i, n11−s+j,

b0, bn = 0, 1, n0 = i0, ..., n + 1 − i1, s = 101 + 110, ..., n00 ∧ n11, (10)

where 1ij = 1[b0 = i, bn = j], i, j = 0, 1, n00 = n0 − 100, n11 = n1 − 111, i0 = 1[b0 = 0]
and i1 = 1− i0. Since the sum of all the probabilities P (B0 = b0, B1 = b1, ..., Bn = bn)
for b0, ..., bn = 0, 1 is one, it follows

1
∑

b0=0

1
∑

bn=0

n+1−i1
∑

n0=i0

n00∧n11
∑

s=101+110

p(s, n0, b0, bn; λ) = 1. (11)

This shows the following result.

Theorem 3. {p(s, n0, b0, bn; λ) : b0, bn = 0, 1, n0 = i0, ..., n + 1 − i1, s = 101 +
110, ..., n00 ∧ n11} is a probability distribution.

The justification that p(s, n0, b0, bn; λ) constitutes a probability distribution provides
the theoretical basis for the statistical inference with it, such as the use of the log
likelihood as a criterion of model selection, see the application of the distribution in
real data by Peng, et al. (2009).

From the above discussion, it is easily checked these relations:

s = t01i0 + t10i1, n0 = t00 + t10 − i0, bn = 1[t01 = t10]b0 + 1[t01 = t10 + 1].

Let S = B0 + ... + Bn. Then an immediate consequence of the above theorem is

P(S = n + 1 − n0) =
1

∑

b0=0

1
∑

bn=0

n00∧n11
∑

s=101+110

p(s, n0, b0, bn; λ), n0 = 0, 1, ..., n + 1. (12)

This generalizes the binomial distribution under exchangeability and hence under
independence (binomial). The proof of (11) is a probabilistic one. An algebraic proof
is interesting and gives additional insight. Using the integral representation (1), we
have surprisingly found that we can prove the following stronger result:

qn+1(u, v|b0) ≡ 1, b0 = 0, 1, 0 ≤ u, v ≤ 1, (13)

where qn+1(u, v|b0) equals

1
∑

bn=0

n+1
∑

n0=i0

n00∧n11
∑

s=101+110

(

n0 − 1

s − 1 + 100

)(

n1 − 1

s − 1 + 111

)

un00−s(1 − u)s−110vn11−s(1 − v)s−101 .
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The proof of (13) is given in the Appendix. The identity (13) certainly implies (11).
In addition, it is noteworthy to mention that (13) is an identity which generalizes the
binomial identity, i.e., when u + v = 1, it simplifies to the binomial identity

n+1
∑

n0=0

(

n + 1

n0

)

un0vn+1−n0 = (u + v)n+1 = 1.

Appendix: Technical Details

Proof of Theorem 2. We only have to show the sufficiency. It follows from
the case 6 (page 168) of the theorem in Haviland (1935) that an infinite sequence
{λ̄(i, j)} is IRCM if and only if it can be represented as

λ̄(i, j) =

∫

∞

0

∫

∞

0

e−ix−jy dP̄ (x, y), i, j = 0, 1, ...

for a probability P̄ on [0,∞)2. An application of the result to {λ̄(b0, i, j) : i, j =
0, 1, ...} for b0 = 0, 1 and substitution of the representations in (4) yields the desired
result. 2

Proof of Theorem 3. We shall prove (13) for b0 = 0 and the case for b0 = 1
holds by symmetry. Let Fn(u, v) = qn+1(u, v|b0 = 0). Then (13) immediately follows
from the iterative formula:

Fn(u, v) = uFn−1(u, v) + (1 − u)Fn−1(v, u), 0 ≤ u, v ≤ 1, n = 1, 2, ... (14)

We shall prove this by mathematical induction. For n = 2k, we have

F2k(u, v) =
k

∑

m=1

m−1
∑

s=0

(

m − 1

s

)(

2k − m

s − 1

)

um−1−s(1 − u)sv2k+1−m−s(1 − v)s

+
2k+1
∑

m=k+1

2k+1−m
∑

s=0

(

m − 1

s

)(

2k − m

s − 1

)

um−1−s(1 − u)sv2k+1−m−s(1 − v)s

+
k

∑

m=1

m
∑

s=0

(

m − 1

s − 1

)(

2k − m

s − 1

)

um−s(1 − u)sv2k+1−m−s(1 − v)s−1

+
2k

∑

m=k+1

2k+1−m
∑

s=0

(

m − 1

s − 1

)(

2k − m

s − 1

)

um−s(1 − u)sv2k+1−m−s(1 − v)s−1.

Keep in mind that we make use of the convention
(

m

i

)

= 0 if either i > m, or m < 0
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or i < 0 except
(

m

i

)

= 1 when m = i ∈ {0,−1}. For n = 2k + 1, we have

F2k+1(u, v) =
k+1
∑

m=1

m−1
∑

s=0

(

m − 1

s

)(

2k + 1 − m

s − 1

)

um−1−s(1 − u)sv2k+2−m−s(1 − v)s

+
2k+2
∑

m=k+2

2k+2−m
∑

s=0

(

m − 1

s

)(

2k + 1 − m

s − 1

)

um−1−s(1 − u)sv2k+2−m−s(1 − v)s

+
k+1
∑

m=1

m
∑

s=0

(

m − 1

s − 1

)(

2k + 1 − m

s − 1

)

um−s(1 − u)sv2k+2−m−s(1 − v)s−1

+
2k+1
∑

m=k+2

2k+2−m
∑

s=0

(

m − 1

s − 1

)(

2k + 1 − m

s − 1

)

um−s(1 − u)sv2k+2−m−s(1 − v)s−1.

By the identity
(

n

s

)

=
(

n−1
s

)

+
(

n−1
s−1

)

, we have F2k+1(u, v) = D1 + D2, where

D1 =
k+1
∑

m=1

m−1
∑

s=0

(

m − 2

s

)(

2k + 1 − m

s − 1

)

um−1−s(1 − u)sv2k+2−m−s(1 − v)s

+
2k+2
∑

m=k+2

2k+2−m
∑

s=0

(

m − 2

s

)(

2k + 1 − m

s − 1

)

um−1−s(1 − u)sv2k+2−m−s(1 − v)s

+
k+1
∑

m=1

m
∑

s=0

(

m − 2

s − 1

)(

2k + 1 − m

s − 1

)

um−s(1 − u)sv2k+2−m−s(1 − v)s−1

+
2k+1
∑

m=k+2

2k+2−m
∑

s=0

(

m − 2

s − 1

)(

2k + 1 − m

s − 1

)

um−s(1 − u)sv2k+2−m−s(1 − v)s−1

D2 =
k+1
∑

m=1

m−1
∑

s=0

(

m − 2

s − 1

)(

2k + 1 − m

s − 1

)

um−1−s(1 − u)sv2k+2−m−s(1 − v)s

+
2k+1
∑

m=k+2

2k+2−m
∑

s=0

(

m − 2

s − 1

)(

2k + 1 − m

s − 1

)

um−1−s(1 − u)sv2k+2−m−s(1 − v)s

+
k+1
∑

m=1

m
∑

s=0

(

m − 2

s − 2

)(

2k + 1 − m

s − 1

)

um−s(1 − u)sv2k+2−m−s(1 − v)s−1

+
2k+1
∑

m=k+2

2k+2−m
∑

s=0

(

m − 2

s − 2

)(

2k + 1 − m

s − 1

)

um−s(1 − u)sv2k+2−m−s(1 − v)s−1.

8



By the change m − 1 → m of the variable, we have

D1 =
k

∑

m=1

m
∑

s=0

(

m − 1

s

)(

2k − m

s − 1

)

um−s(1 − u)sv2k+1−m−s(1 − v)s

+
2k+1
∑

m=k+1

2k+1−m
∑

s=0

(

m − 1

s

)(

2k − m

s − 1

)

um−s(1 − u)sv2k+1−m−s(1 − v)s

+
k

∑

m=1

m+1
∑

s=0

(

m − 1

s − 1

)(

2k − m

s − 1

)

um+1−s(1 − u)sv2k+1−m−s(1 − v)s−1

+
2k

∑

m=k+1

2k+1−m
∑

s=0

(

m − 1

s − 1

)(

2k − m

s − 1

)

um+1−s(1 − u)sv2k+1−m−s(1 − v)s−1 = uF2k(u, v).

D2 =
k

∑

m=0

m
∑

s=0

(

m − 1

s − 1

)(

2k − m

s − 1

)

um−s(1 − u)sv2k+1−m−s(1 − v)s

+
2k

∑

m=k+1

2k−m+1
∑

s=0

(

m − 1

s − 1

)(

2k − m

s − 1

)

um−s(1 − u)sv2k+1−m−s(1 − v)s

+
k

∑

m=1

m
∑

s=0

(

m − 1

s − 1

)(

2k − m

s

)

um−s(1 − u)s+1v2k−m−s(1 − v)s

+
2k

∑

m=k+1

2k−m
∑

s=0

(

m − 1

s − 1

)(

2k − m

s

)

um−s(1 − u)s+1v2k−m−s(1 − v)s,

Again by the change l = 2k + 1 − m → m of the variable, we have

D2 =
2k+1
∑

l=k+1

2k+1−l
∑

s=0

(

2k − l

s − 1

)(

l − 1

s − 1

)

vl−s(1 − v)su2k+1−l−s(1 − u)s

+
k

∑

l=1

l
∑

s=0

(

2k − l

s − 1

)(

l − 1

s − 1

)

vl−s(1 − v)su2k+1−l−s(1 − u)s

+
2k+1
∑

l=k+1

2k+1−l
∑

s=0

(

2k − l

s − 1

)(

l − 1

s

)

vl−1−s(1 − v)su2k+1−l−s(1 − u)s+1

+
k

∑

l=1

l−1
∑

s=0

(

2k − l

s − 1

)(

l − 1

s

)

vl−1−s(1 − v)su2k+1−l−s(1 − u)s+1 = (1 − u)F2k(v, u).

Thus the iterative formula (14) holds for odd n. Analogously, it holds for even n. 2
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