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Abstract

In this article, we propose the use of the Mahalanobis depth to construct fully

affine equivalent Theil-Sen estimators of parameters in a multiple linear model.

Our construction includes the spatial depth-based Theil-Sen estimators as a special

case. We exhibit that the efficiency of the proposed estimators relative to the least

squares estimators increases with the number of parameters under independent and

identically distributed normal errors. We point out that the estimators are robust

with a possible maximal breakdown point and possess bounded influences. We show

that the estimators are consistent and asymptotic normal for both deterministic and

random covariates under suitable conditions.
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1 Introduction

In a simple linear model, each pair of distinct observations results in an es-

timator of the slope. The median of these slope estimators is known as the

Theil-Sen estimator (Theil, 1950; Sen, 1968). Having a clear geometric inter-

pretation, the Theil-Sen estimator is robust and relatively efficient, so that it

is competitive to other slope estimators such as the least squares estimator.

The Theil-Sen estimator is often included in textbooks about robust statis-

tics (Hollander and Wolfe, 1973, 1999; Rousseeuw and Leroy, 1986; Huber

1977; Dietz, 1989; Wilcox, 1998; Sprent 1993; Jurečková and Picek, 2006; and

Maronna, et al., 2006). It also has important applications, e.g., in astronomy

by Akritas et al. (1995) in censored data, in remote sensing by Fernandes

and Leblanc (2005). Recently, Wang (2005) investigated the asymptotic be-

haviors of the Theil-Sen estimator when covariates are random. When covari-

ates are deterministic, Peng, Wang and Wang (2008) obtained the consistency

and asymptotic distribution of the Theil-Sen estimator, and showed that it

is super-efficient when the error distribution is discontinuous. Chatterjee and

Olkin (2006) proposed nonparametric method for fitting a quadratic regression

by exploiting the idea of the Theil-Sen estimator.

Using the spatial median, Zhou and Serfling (2008) and Wang, Dang, Peng

and Zhang (2009) constructed the multivariate Theil-Sen estimator (MTSE) of

parameters in a multiple linear model, generalizing the (univariate) Theil-Sen

estimator (UTSE). When covariates are random, the asymptotic normality of
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the MTSE can be derived from the spatial quantile theory of Zhou and Ser-

fling. Also for random covariates, Wang, et al. demonstrated that the MTSE’s

are robust with a possible maximal breakdown point, consistent, and asymp-

totically normal under mild conditions. They also conducted simulations to

demonstrate the robustness and efficiency of the MTSE’s and compare them

with the least squares estimators. Busarova, et al. (2006) proposed the mul-

tivariate Theil type estimator of the parameter in a multiple linear model

based on the Oja median and derived the asymptotic normality for random

covariates. When the covariates are deterministic, Shen (2008, 2009) proved

the asymptotic normality using the convexity lemma.

In this article, we will construct the Theil-Sen estimators of parameters in

a multiple linear model based on the Mahalanobis depth function. Our con-

struction is flexible, for example, we can choose the scale matrix in the Maha-

lanobis depth function to be the identity matrix, the resulting estimators are

then the spatial depth-based Theil-Sen estimators given by Zhou and Serfling

(2008) and Wang, et al. (2009). Since the Mahalanobis depth function is fully

affine invariant, the Mahalanobis depth-based Theil-Sen estimators are affine

equivariant. Whereas the spatial depth-based Theil-Sen estimators are only

orthogonally equivariant, since the spatial depth is orthogonally but not affine

invariant. It is worth to note that both Mahalanobis depth and spatial depth

based- Theil-Sen estimators are regression and scale equivarant.

We show that the efficiency of the MTSE’s relative to the least squares estima-

tors increases with the number of parameters and tends to one as the number

of parameters goes to infinity under i.i.d. normal errors. This is an advantage

of the MTSE’s, bearing in mind that the MTSE’s have the desired properties

such as consistency and asymptotic normality under much weaker assump-
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tions than other estimators such as the least squares estimators. In fact, what

is required for the error with the MTSE’s is that it is similar to “angularly

symmetric”, a weaker assumption than the usual symmetry, see Liu (1990).

Whereas the error with the least squares estimator must have mean zero and

second finite moment. Note that the (univariate) sample median is sometimes

described as inefficient, with normal efficiency 2/π = 0.637 compared to the

sample mean. The spatial median generalizes the univariate median to high

dimension. Brown (1983) showed that the efficiency of the spatial median rel-

ative to the sample mean is superior to the efficiency of the univariate median.

Higher dimensional results for spherical symmetric distributions show further

increase in efficiency, which converges to one as the dimension tends to infinity.

Bai, Chen, Miao and Rao (1990) exhibited the asymptotic relative efficiency

of their least distance estimator in a location regression model with normal

errors intends to one as the dimension of the covariate matrices intends to

infinity. Chaudhuri (1992) demonstrated what was observed by Brown (1983)

is also true for his multivariate extension of the Hodges-Lehman estimate.

Our result confirms that what Brown, Bai, et al. and Chaudhuri have found

is also true for a multiple linear regression. This shows that the advantage

in efficiency of the least squares estimator over the the MTSE’s diminishes

as the dimension p gets larger, for very large p, the least squares estimator

practically loses its merit over the MTSE’s. Of course the MTSE’s are much

more difficult to compute than the least squares estimator. This phenomenon

is comparable to the behavior of the well known Stein estimator.

We prove that the MTSE’s are asymptotic normal for both deterministic or

random covariates under suitable conditions. When covariates are determin-

istic, the loss function Ψn(b) (see (3)) that defines the MTSE’s is not a U-
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statistic. This causes us a technical difficulty, that is, we cannot apply the

commonly used theory of U-statistics to derive the asymptotic normality. We

will follow Shen (2009) to overcome this difficulty. Specifically, like Shen, we

will prove the asymptotic normality by using the convexity lemma (Pollard,

1991), the characterization of minimizers of a convex function, and the central

limit theorem for sums of dissociated random variables (Barbour and Eagle-

son, 1985).

The rest of the article is structured as follows. In Section 2, we construct the

Theil-Sen estimators and explore existence, uniqueness and robustness. We

also prove the consistency. In Section 3, we introduce the assumptions and

give the main results. Section 4 is devoted to the comparison of the efficiency

of the MTSE’s with the LSE. Proofs can be found in Section 5.

2 The Theil-Sen Estimators and Existence, Uniqueness, Robust-

ness and Consistency

In this section, we construct the MTSE’s, discuss existence, uniqueness and

robustness. At the end of the section, we give the consistency.

The Multivariate Theil-Sen Estimators. In a multiple linear model, the

response yj and covariate vector xj satisfy

yj = x⊤
j β + εj, j = 1, ..., n, (1)

where β is a p-variate (column) vector of regression parameter, xj’s are (either

random or deterministic) covariates, εj’s are random errors, and xj’s and εj’s

are uncorrelated.
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Let J be a p-subset of {1, ..., n}. Let XJ be the p × p matrix with rows

x⊤
j , j ∈ J and εJ be the column vector with components εj, j ∈ J . Assuming

for now that XJ is invertible. Then an estimate of β can be obtained as the

solution to the p equations

x⊤
j β = yj, j ∈ J. (2)

This estimate is bJ = X−1
J YJ , which is also the least squares estimate (LSE)

of β based on the sub-sample {(xj, yj) : j ∈ J}. Here the sub-sample size

is p. One actually does not have to choose exactly p observations; any m

observations can be chosen as long as m is at least the number of parameters.

Obviously m is at most the sample size n, so p ≤ m ≤ n. For each m-subset J

of {1, ..., n} and the sub-sample with indices in J , an estimate of β is the least

squares estimate b(J) = (X⊤
J XJ)−1X⊤

J YJ , provided XJ has full rank. Let J (n)

be the collection of the m-subsets of {1, ..., n} such that for every J ∈ J (n),

XJ has full rank. Then an estimator β̂n of β is the Mahalanobis depth-based

median, β̂n = MHmed{b(J) : J ∈ J (n)}, which is the minimizer of the loss

function

Ψn(b) ≡
(

n

m

)−1
∑

J∈J (n)

(

‖Σ−1/2
(J) (b − b(J))‖ − ‖Σ−1/2

(J) b(J)‖
)

, b ∈ R
p, (3)

where ‖ · ‖ is the Euclidean norm and Σ(J) is an estimate of the covariance

functional Σ (Serfling, 2008) depending on XJ (which is assumed hereafter),

so that Σ and Σ(J) are symmetric and positive definite. Since the summand

in (3) is bounded by ‖Σ−1/2
(J) b‖ by the triangle inequality, differentiation of

(3) with respect to b can pass the expectation by the dominated convergence

theorem, therefore we see that the minimizer β̂n must satisfy

(

n

m

)−1
∑

J∈J (n)

Σ
−⊤/2
(J) S

(

Σ
−1/2
(J) (b − b(J))

)

= 0, (4)
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under certain assumptions, see Remark 3 and (22) below and the discus-

sions therein. Here S(b) = b/‖b‖, b ∈ R
p is the spatial sign function (Zhou

and Serfling, 2008) or the spatial unit function (Chaudhuri, 1992), whereas

DS(b) = 1 − ‖ES(b − ξ)‖ is termed as the spatial depth function of random

vector ξ. Note when Σ(J) = Im, then β̂n simplifies to the spatial depth-based

MTSE’s proposed by Wang, et al. (2009).

Difference-Based MTSE’s. Taking the pairwise differences of multiple lin-

ear model (1), we eliminate the intercept and obtain

yj − yk = (xj − xk)
⊤β1 + εj − εk, j, k = 1, 2, ..., n, (5)

where β1 is a (p − 1)-variate parameter resulting from β with the first com-

ponent (the intercept) deleted. There are N = n(n − 1)/2 distinct pairwise

differences for n distinct observations. For an integer m between p− 1 param-

eters and the sample size n, let K(n) be the
(

N
m

)

combinations of (j, k) from

▽ ≡ {(j, k) : j < k, j, k = 1, ..., n} and write {(k1,i, k2,i) : i = 1, ..., m}, a

generic element in K(n), Kj = (kj,i : i = 1, ..., m) for j = 1, 2, and write K for

either K1 or K2. Then (5) can be written in matrix form as

YK1,K2 = XK1,K2β1 + εK1,K2 , (K1, K2) ∈ K(n), (6)

where YK1,K2 = YK1 − YK2 , XK1,K2 = XK1 −XK2 and εK1,K2 = εK1 − εK2 with

εK = (εk : k ∈ K)⊤. Let b(K1,K2) be the least squares estimator based on the

subset of the observations with indices in (K1, K2), i.e.,

b(K1,K2) = (XK1,K2

⊤XK1,K2)
−1XK1,K2

⊤YK1,K2 , (K1, K2) ∈ K(n). (7)

Like Zhou and Serfling (2008) and Wang, et al. (2009), we propose an esti-

mator β̂1,n of β1 as the Mahalanobis-depth median, β̂1,n = MHmed{b(K1,K2) :
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(K1, K2) ∈ K(n)
0 }, which is the minimizer of

Ψn,d(b) ≡
(

N

m

)−1
∑

(K1,K2)∈K
(n)
0

(

‖Σ−1/2
(K1,K2) (b − b(K1,K2))‖ − ‖Σ−1/2

(K1,K2) b(K1,K2)‖
)

(8)

for b ∈ R
p−1, where Σ(K1,K2) is an estimate of the covariance functional Σ

depending only on XK1,K2 , which is assumed hereafter. Here K0 is a subset of

K in which all the least squares estimates exist. Note when Σ(K1,K2) = Im, the

proposed estimator β̂1,n simplifies the MTSE’s proposed by Zhou and Serfling

(2008) and Wang, et al. (2009).

The symmetry of εK1,K2 later on is shown to be one of the sufficient conditions

that guarantee the uniqueness of the MTSE’s. Even though each component

of εK1,K2 is symmetric, we do not have the symmetry of εK1,K2 , i.e., εK1,K2

d
=

−εK1,K2 , without the assumption of central symmetry on the error ε. The

reason is that the components of the random vectors εK1,K2 may be correlated,

for instance, ε2 − ε1 and ε3 − ε2 are correlated. One simple remedy to this

problem is to choose its components, the pairwise differences, in a way that

they are not overlapped, for instance, we may choose εK1,K2 = (ε1 − ε2, ε3 −

ε4, ..., ε2m−1 − ε2m)⊤. Specifically, we choose the pairwise differences which

constitute εK1,K2 in such a way that each of K1 and K2 has distinct elements

and K1, K2 have no element in common. We denote the set of all possible such

(K1, K2) as K∗. It is easy to obtain that the total number of (K1, K2) in K∗

is Nn,m =
(

n
2

)(

n−2
2

)

· · ·
(

n−2m+2
2

)

/(2mm!) =
(

n
2m

)

(2m)!/(2mm!). Then following

the above procedure, we construct the non overlapped difference- based MTSE

β̂∗
1,n = MHmed{b(K1,K2) : (K1, K2) ∈ K∗

0}, which is the minimizer of

Ψ∗
n,d(b) ≡ N−1

n,m

∑

(K1,K2)∈K∗
0

(

‖Σ−1/2
(K1,K2) (b − b(K1,K2))‖ − ‖Σ−1/2

(K1,K2) b(K1,K2)‖
)

(9)
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for b ∈ R
p−1. Here K∗

0 is a subset of K∗ in which all the least squares estimates

exist.

Existence and Uniqueness The proposed estimators are the multivariate

medians defined by the Mahalanobis depth function. Kemperman (1987) in-

vestigated the median of a finite measure on a Banach space. Here we review

some of the facts tailored for our application. Let µ be a probability measure

on a Banach space X with norm ||| · |||. The median θ of µ is any minimizer in

X of the loss function

Ψ(y) =
∫

(|||x − y||| − |||x|||) µ(dx), y ∈ X. (10)

Clearly, the integral in (10) is finite as the integrand is bounded by |||y||| for

every y ∈ X. The median θ always exists when X is finite dimensional. Note

that Ψ is strictly convex, hence µ has a unique median if µ is not concentrated

on any straight line in X. A simple calculus shows that θ is a median of µ if

and only if
∫

φθ−x(h) µ(dx) ≥ 0,

where φx(h) = limt↓0(|||x + th||| − |||x|||)/t, x, h ∈ X is the right limit at x. This

limit exists for X = R
p, hence θ is a median if and only if

∫

φθ−x(h)µ(dx) = 0, x, h ∈ X, (11)

provided µ({θ}) = 0. Moreover, a sufficient condition that θ is a median is

that θ satisfies (11). For the Euclidean norm, a sufficient condition that θ is a

spatial median is
∫

S(θ − x) µ(dx) = 0. (12)

It is worth to note that if µ is symmetric about θ0, then θ0 satisfies (12) ((11)).

We now apply the above results to acquire the conditions that ensure the
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existence and uniqueness of the MTSE’s. Let β0 be the true but unknown

parameter value and β1,0 be the true parameter value obtained from β0 with

the first component deleted. There are two cases.

Case i. Random Covariates. We first consider the case that x1, ..., xn are

i.i.d. random covariates. Let Σ1/2 be its square root of a covariance functional

Σ, so that Σ = Σ1/2Σ⊤/2. Since ‖Σ−1/2b‖ is convex in b ∈ R
p, we apply |||b||| =

‖Σ−1/2b‖. Obviously the MTSE’s β̂n (β̂1,n) exists since it is finite dimensional.

By an analogous reasoning to Remark 1 of Wang, et al. (2009), we conclude

that if p ≥ 2 and the error is not point mass, then the MTSE β̂n (β̂1,n) is unique

almost surely for large n. In order that as n tends to infinity the MTSE β̂n(β̂1,n)

will converge to the true parameter value β0(β1,0) respectively, the population

loss function b 7→ E[Ψn(b)] (b 7→ E[Ψn,d(b)]) must be minimized at the true

parameter value β0(β1,0). We now derive an analog of characterization (12).

Since under the true model, b(J) − β0 = (X⊤
J XJ)−1εJ , it follows that β0 is the

minimizer of b 7→ E[Ψn(b)] if

E

{

Σ
−⊤/2
(J0) S

(

Σ
−1/2
(J0) (X⊤

J0
XJ0)

−1εJ0

)}

= 0. (13)

Since xi’s and εi’s are uncorrelated, the above equation is implied by the

following sufficient condition

Assumption 1. The error ε is symmetric about zero.

The analog of (13) for the difference-based MTSE β̂1,n is

E

{

Σ
−⊤/2
(K1,K2)S

(

Σ
−1/2
(K1,K2)((XK1,K2

⊤XK1,K2)
−1XK1,K2

⊤εK1,K2)
)}

= 0,

where (K1, K2) ∈ K0. By Theorem 1 of Wang, et al. (2009), Assumption 1

implies that εK1,K2 is also symmetric about zero for any (K1, K2) ∈ K0. Thus

the above analog is satisfied under Assumption 1. If the pairwise differences
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are not overlapped K1∩K2 = ∅, then εK1,K2 is symmetric about zero, and the

convergence of the non overlapped difference-based MTSE β̂∗
1,n in Theorem 5

to the true parameter value β1,0 is automatic. If we choose Σ
1/2
(J) = X⊤

J XJ ,

then (13) simplifies to

E(S(ε)) = 0. (14)

This means that the error ε is angularly symmetric about zero. Introduced

in Liu (1990), angular symmetry is a weaker symmetry than the usual cen-

tral symmetry, i.e., central symmetry implies angular symmetry. A systematic

discussion about various types of symmetry can be found in Serfling (2006).

Case ii. Deterministic Covariates. We now consider the case that x1, ..., xn

are deterministic. Analogous to the reasoning of the existence of Kemperman

(pages 218-219, 1987) and the uniqueness of Wang, et al. (2009), we can show

that there exists a minimizer for E[Ψn(b)] in b ∈ R
p, and this minimizer is

unique if p ≥ 2 and the error ε is not point mass. In order that the MTSE’s

β̂n, β̂1,n will converge to the true parameter values β0, β1,0 respectively, we need

the following assumption and its analogous version for Ψn,d(b) and Ψ∗
n,d(b).

Assumption 2. For each b ∈ R
p in a neighborhood of the true parameter

value β0, there exists an finite constant Ψ̄(b) such that as n tends to infinity,

EΨn(b) → Ψ̄(b). Further,

Ψ̄(b) = 0 (15)

has a unique solution b = β0.

The above assumption is mild. In fact, Assumption 1 implies that β0 satisfies

(15), whereas the uniqueness in (15) follows from the positive definiteness of

matrix D in Assumption 3.

Remark 1. Assumption 2 is implied by Assumptions 1, 3 and the existence
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of the finite limit Ψ̄(b) for b in a neighborhood of β0.

Consistency. From the above discussion and Corollary II.2 of Andersen and

Gill (1982), we can prove the consistency of the MTSE’s. The following The-

orem 1 is a generalization of convergence from an average of independent

random variables in Theorem 2.24 and Corollary 2.26 of Kemperman (1987)

to an average of dissociated random variables (Barbour and Eegleson, 1985).

Theorem 1. Suppose that the error ε is not point mass and p ≥ 2.

Case i. Covariates xi’s are random. (i.1) Suppose b 7→ E[Ψn(b)], b ∈ R
p

(b 7→ E[Ψn,d(b)], b ∈ R
p−1) is strictly convex. If Assumption 1 holds, then

β̂n(β̂1,n) will converge in probability to the true parameter value β0(β1,0), i.e.,

β̂n
P−→ β0 (β̂1,n

P−→ β1,0). (i.2) If b 7→ E[Ψ∗
n,d(b)], b ∈ R

p−1 is strictly convex,

then β̂∗
1,n

P−→ β1,0.

Case ii. Covariates xi’s are deterministic. (ii.1) If Assumption 2 and its

analogs hold, respectively, then β̂n
P−→ β0, β̂1,n

P−→ β1,0 and β̂∗
1,n

P−→ β1,0,

respectively.

The strict convexity in Case i and the uniqueness of one solution (zero point)

in Case ii are guaranteed by the positive definiteness of D in Assumption 3

and the analog of D in Assumption 5. Note also that with non-overlapped

differences, symmetry Assumption 1 is not required for the consistency, and

this is also true for the asymptotic normality. More discussions can be found

in Wang, et al. (2009).

Robustness. Kemperman (1987) shows that the median has a maximal break-

down point 50%. Further, a median will not change if transporting mass along

open half lines (rays) with the median as endpoint, leaving any mass at the

median unchanged.
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Remark 2. Instead of the least squares estimate, we use a robust estimate

with maximal breakdown point to construct the MTSE’s, then the MTSE’s has

a maximal breakdown point, see Wang, et al. (2009).

3 Asymptotic Normality

In this section, we first introduce the assumptions. We then give the asymp-

totic normality of the MTSE’s for deterministic and random covariates, and

the difference-based MTSE.

The MTSE β̂n is the minimizer of the convex loss function (3). For deter-

ministic covariates, Ψn(b) is not a U-statistic, so we cannot apply the elegant

theory of U-statistics. Like Shen (2009), we will exploit the convexity (Pol-

lard, 1992), the characterization of minimizers of a convex function, and the

central limit theorem for sums of dissociated random variables (Barbour and

Eagleson, 1985) to derive the asymptotic normality of the MTSE’s. We need

the following assumptions.

Assumption 3. EΨn(β) has continuous second derivative ∇2
EΨn(β) with

respect to β in a neighborhood of the true parameter value β0 such that

lim
n→∞

∇2
E(Ψn(β0)) = D, lim

n→∞
n Var(∇Ψn(β0)) = V (16)

for some positive definite matrices D and V .

A simple calculus shows

∇Ψn(b) =

(

n

m

)−1
∑

J∈J (n)

Σ
−⊤/2
(J) S

(

Σ
−1/2
(J) (b − b(J))

)

(17)
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and

∇2Ψn(b) =

(

n

m

)−1
∑

J∈J (n)

Σ
−⊤/2
(J) S(1)

(

Σ
−1/2
(J) (b − b(J))

)

Σ
−1/2
(J) , (18)

where S(1)(b) = (Ip − S⊗2(b))/‖b‖, b 6= 0, b ∈ R
p and S(1)(0) = 0.

In view of Assumption 3.1 and Lemma 5.3 of Chaudhuri (1992), we have a

sufficient condition for Assumption 3.

Remark 3. A sufficient condition for Assumption 3 to hold is that the random

errors ε1, ..., εn are i.i.d. with an absolutely continuous distribution (w.r.t. the

Lebesgue measure) having a density such that it is bounded on any compact

subset of the real line R; E(Σ
−1/2
J ) is nonsingular for every J ∈ J (n); p ≥ 2;

the second limit in (16) exists for some positive definite matrix V when the

covariates xi’s are random, and when the covariates are deterministic both

limits in (16) exist for some positive definite matrices D and V .

Under the assumptions in Remark 3, we have

∇E [Ψn(b)] =

(

n

m

)−1
∑

J∈J (n)

E

[

Σ
−⊤/2
(J) S

(

Σ
−1/2
(J) (b − b(J))

)]

(19)

and

∇2
E [Ψn(b)] =

(

n

m

)−1
∑

J∈J (n)

E

[

Σ
−⊤/2
(J) S(1)

(

Σ
−1/2
(J) (b − b(J))

)

Σ
−1/2
(J)

]

. (20)

If, further, covariates x1, ..., xn are i.i.d., then we have

E

(

Σ
−⊤/2
(J0) S(1)(Σ

−1/2
(J0) (β0 − b(J0)))Σ

−1/2
(J0)

)

= D(β0) = D (21)

for some positive definite D. The positive definiteness of D is ensured by the

assumptions in Remark 3, more details can be found Lemma 5.3 of Chaudhuri

(1992). However, if the covariates xi’s are deterministic, we need assume the

limit of (19) exists as n tends to infinity and D is positive definite. Analogous
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to the discussion in Chaudhuri (page 900, 1992), the MTSE β̂n must satisfy

∇E [Ψn(b)] =

(

n

m

)−1
∑

J∈J (n)

E

[

Σ
−⊤/2
(J) S

(

Σ
−1/2
(J) (b − b(J))

)]

= 0. (22)

Clearly (4) is the sample equation of (22).

From now on, we assume m = p and m = p − 1 for the difference-based

MTSE’s.

Assumption 4. The random error ε and deterministic covariates x1, ..., xn

satisfy
(

n

m

)−1
∑

J∈J (n)

λ−1
min(Σ(J))E({a2

(J)ε
−2} ∧ n) = o(n), (23)

and
(

n

m

)−1
∑

J∈J (n)

λ
−3/2
min (Σ(J)) = o(n1/2), (24)

where a(J) = λ
−1/2
min (Σ(J))λ

1/2
max(Σ(J)(X

⊤
J XJ)), λmin(M)(λmax(M)) denotes the

smallest (largest) eigenvalue of matrix M , and a ∧ b = min(a, b).

Since E({a2
(J)ε

−2} ∧ n) = n P(|ε| ≤ a(J)n
−1/2) + E(a2

(J)ε
−21[|ε| > a(J)n

−1/2]),

it follows that if the error ε has a density bounded in a neighborhood of the

origin, then

E({a2
(J)ε

−2} ∧ n) ≤ c a(J)n
1/2,

for some constant c. While a mean is highly sensitive to outliers, a median is

upset by the mass in the neighborhood of the median. Less mass in a neighbor-

hood will result in more variation of the median estimator. The boundedness

of the density in a neighborhood of a median (the origin) is a typical condition

that regulates the behavior of the median. Bai, Chen, Miao and Rao (1990)

imposed boundedness in a neighborhood of the origin on the error distribution

in assumption (a). Therefore, we give the following sufficient condition.

Remark 4. Suppose that the density of the random error ε is bounded in a
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neighborhood of the origin. Then (23) is implied by

(

n

m

)−1
∑

J∈J (n)

λ
−3/2
min (Σ(J))λ

1/2
max(Σ(J)(X

⊤
J XJ)) = o(n1/2). (25)

Conditions (25) and (24) are mild assumptions. In fact, if Σ(J) = Im and

the covariates are in the magnitude of o(n1/2), then both (25) and (24) are

satisfied. An important special case of this situation is that the covariates are

bounded and Σ(J) = (X⊤
J XJ)−1, then Assumption 4 is satisfied. We now give

our main theorem.

Theorem 2. Suppose that the error ε is not point mass and p ≥ 2. Sup-

pose Assumptions 1, 3 and 4 hold. Then β̂n has a bounded influence function

D−1Σ
−⊤/2
(J) S and satisfies the stochastic expansion:

β̂n = β0 +

(

n

m

)−1
∑

J∈J (n)

D−1Σ
−⊤/2
(J) S

(

Σ
−1/2
(J) (b(J) − β0)

)

+ op(n
−1/2). (26)

Hence, n1/2(β̂n − β0) =⇒ N (0, D−1V D−⊤).

I.I.D. Random Covariates. When covariates x1, ..., xn are independent and

identically distributed random vectors, Wang and et al. (2008) have proved

the asymptotic normality of the spatial depth-based multivariate Theil-Sen

estimators using the theory of U-statistics. With the aid of the convexity

lemma (Pollard, 1991) and following the proof of Theorem 2, we can obtain

a simple proof for the asymptotic normality of the MTSE. We will introduce

the assumptions and give results below with the details of the proof omitted.

Note when x1, ..., xn are i.i.d., Assumption 4 is simplified to

E

(

λ−1
min(Σ(J0))[{λ−1

min(Σ(J0))λmax(Σ(J0)(X
⊤
J0

XJ0))ε
−2} ∧ n]

)

= o(n), (27)
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and

E

(

λ
−3/2
min (Σ(J0))

)

= o(n1/2). (28)

Remark 4 is reduced to

Remark 5. Suppose that the density of the random error ε is bounded in a

neighborhood of the origin. Then (27) is implied by

E

(

λ
−3/2
min (Σ(J0))λ

1/2
max(Σ(J0)(X

⊤
J0

XJ0))
)

= o(n1/2). (29)

We are now ready to give the theorem with the proof omitted.

Theorem 3. Suppose that the error ε is not point mass and p ≥ 2. Sup-

pose that the covariates x1, ..., xn in multiple linear model (1) are i.i.d. ran-

dom vectors. Assume Assumptions 1, 3 hold. If (27) and (28) are satisfied,

then the multivariate Theil-Sen estimator β̂n has bounded influence function

Dr
−1Σ

−⊤/2
(J) S and satisfies the stochastic expansion:

β̂n = β0 +

(

n

m

)−1
∑

J∈J (n)

Dr
−1Σ

−⊤/2
(J) S(Σ

−1/2
(J) (b(J) − β0)) + op(n

−1/2). (30)

Hence, n1/2(β̂n − β0) =⇒ N (0, Dr
−1VrDr

−⊤), where Dr = D(β0), Vr = V (β0)

computed in (21) and (35).

The Difference-Based MTSE. In a simple linear regression model with

deterministic covariates, Peng, Wang and Wang (2008) studied the Theil-Sen

estimator under no assumption on the distribution of the error. They showed

that the TSE is strongly consistent and has an asymptotic distribution un-

der mild conditions. Wang, et al. (2009) extended these results to the spatial

depth-based MTSE’s and gave the asymptotic normality when covariates are

random. Here we will investigate the asymptotic behaviors of the Mahalanobis

depth-based MTSE’s when covariates are deterministic. Our consideration in-

cludes the spatial depth-based MTSE’s as a special case.
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The proof of the asymptotic normality of β̂1,n is analogous to the proof of

Theorem 2, and we give the sketches where major differences occur. One of

the differences in the proof is that we cannot directly apply Theorem 2.1

of Barbour and Eagleson (1985) to claim the asymptotic normality. What

happens is that the sum of random variables defining our estimate β̂1,n is

not dissociated, that is, b(K1,K2), b(K3,K4) are not independent when the indices

(K1, K2), (K3, K4) are disjoint, while Theorem 2.1 gives the asymptotic nor-

mality of a sum of dissociated random variables. This technical difficulty can

be circumvented by combining the like terms, see details in the proof below.

We need the following assumptions.

Assumption 5. Assumption 3 is satisfied for Ψn(b) = Ψn,d(b) given in (8).

Under difference model (5), using an analogous reasoning leading (24), (39)

and (40) to Assumption 4, we introduce the following assumption.

Assumption 6.

(

N

m

)−1
∑

(K1,K2)∈K
(n)
0

λ−1
min(Σ(K1,K2)) ×

E

(

{λ−1
min(Σ(K1,K2))λmax(Σ(K1,K2)(X

⊤
K1,K2

XK1,K2))(ε1 − ε2)
−2} ∧ n

)

= o(n)

(

N

m

)−1
∑

(K1,K2)∈K
(n)
0

λ
−3/2
min (Σ(K1,K2)) = o(n1/2). (31)

Similarly, we give a sufficient condition below.

Remark 6. Suppose the convolution of the density of the random error ε is

bounded in a neighborhood of the origin. Then (31) is implied by

(

N

m

)−1
∑

(K1,K2)∈K
(n)
0

λ
−3/2
min (Σ(K1,K2))λ

1/2
max(Σ(K1,K2)(X

⊤
K1,K2

XK1,K2)) = o(n1/2).

(32)
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With the pairwise differences, the symmetry of the error is still indispensable

for the asymptotic normality, see Wang, et al. (2009).

Theorem 4. Suppose p ≥ 3 and ε is not point mass. Suppose Assumptions 1,

5 and 6 hold. Then β̂1,n has a bounded influence function Dd
−1Σ

−⊤/2
(K1,K2)S and

satisfies the stochastic expansion:

β̂1,n = β1,0+

(

N

m

)−1
∑

(K1,K2)∈K
(n)
0

Dd
−1Σ

−⊤/2
(K1,K2)S

(

Σ
−1/2
(K1,K2)(b(K1,K2) − β1,0)

)

+op(n
−1/2).

(33)

Hence, n1/2(β̂1,n−β1,0) =⇒ N (0, Dd
−1VdDd

−⊤), where Dd and Vd are similarly

defined as D and V .

If the differences are not overlapped, then the symmetry of the error is no

longer required. With a similar proof in Theorem 4, we derive

Theorem 5. Suppose p ≥ 3 and ε is not point mass. Suppose analogs of As-

sumptions 5 and 6 hold. Then β̂∗
1,n has a bounded influence function D−1

∗ Σ
−⊤/2
(K1,K2)S

and satisfies the stochastic expansion:

β̂∗
1,n = β1,0+N−1

n,m

∑

(K1,K2)∈K∗
0

D−1
∗ Σ

−⊤/2
(K1,K2)S

(

Σ
−1/2
(K1,K2)(b(K1,K2) − β1,0)

)

+op(n
−1/2).

(34)

Hence, n1/2(β̂∗
1,n − β1,0) =⇒ N (0, D−1

∗ V∗D
−⊤
∗ ), where D∗, V∗ are similarly

defined as D,V .

4 Efficiency Consideration

In this section, we compare the efficiency of the MTSE’s with that of the LSE

when the random errors are from normal distribution.

To calculate the asymptotic covariance matrix of the MTSE, we need com-
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pute V and D. Let us first calculate V . To this end, we must calculate the

covariance of the average in (17). Note that this average is not a multi-

variate U-statistic (vector of U-statistic) since the summand in the average

Z(J) = Σ
−⊤/2
(J) S(Σ

−1/2
(J) (b − b(J))) is not a symmetric kernel in its arguments.

Thus we cannot directly apply the formula of the variance of a U-statistic.

Instead, we will exploit the technique used in computing the variance of a U-

statistic, see, e.g., van der Vaart (1998). Specifically, since Cov(Z(I), Z(J)) = 0

if J1 ∩ J2 = ∅ and the limiting distribution is non-degenerate, the leading

terms contributing to the covariance are those Cov(Z(I), Z(J)) whose indices

I = {I1 < ... < Im} and J = {J1 < ... < Jm} have only one common index.

More specifically, for i, j = 1, ..., m, we compute those indices (I, J) such that

I i = J j and I ∩ J = {I i}. It then can be seen

V = lim
n→∞

n
(

n
m

)2

m
∑

i,j=1

∑

I,J∈J(n), Ii=Jj , I∩J={Ii}

E(ZIZ
⊤
J )

= lim
n→∞

n
(

n
m

)2

m
∑

i,j=1

n−2p+i+j
∑

Ii=i+j−1

[(

I i − 1

i − 1

)(

I i − i

j − 1

)(

n − I i

p − i

)(

n − I i − p + i

p − j

)

×

E[E(ZJ0|xi, εi)E(Z⊤
Ji,j

|xi, εi)]
]

where J0 = (1, 2, ..., m) and Ji,j is the m-subset resulting from augmenting

(m + 1, ..., 2m − 1) with i inserted so that the j-th component equal i for

i, j = 1, ...m. By Karamta theorem,

n−2m+2
∑

l=1

(l + i + j − 3)!

(l − 1)!

(n − l − i − j + 2)!

(n − l − 2m + 2)!
∼

n−2m+2
∑

l=1

li+j−2(n − l)2m−i−j

∼n2m−1
∫ 1

0
xi+j−2(1 − x)2m−i−j dx,

so that we have
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n−2m+i+j
∑

Ii=i+j−1

(

I i − 1

i − 1

)(

I i − i

j − 1

)(

n − I i

m − i

)(

n − I i − m + i

m − j

)

∼ n2m−1

(i − 1)!(j − 1)!(m − i)!(m − j)!

∫ 1

0
xi+j−2(1 − x)2m−i−j dx

=
n2m−1

(2m − 1)!

(

i + j − 2

i − 1

)(

2m − i − j

m − i

)

.

Hence,

V = lim
n→∞

n2m

(

n
m

)2
(2m − 1)!

m
∑

i,j=1

(

i + j − 2

i − 1

)(

2m − i − j

m − i

)

E[E(ZJ0|xi, εi)E(Z⊤
Ji,j

|xi, εi)]

=
(m!)2

(2m − 1)!

m
∑

i,j=1

(

i + j − 2

i − 1

)(

2m − i − j

m − i

)

E[E(ZJ0|xi, εi)E(Z⊤
Ji,j

|xi, εi)] (35)

It can be verified

(m!)2

(2m − 1)!

m
∑

i=1

m
∑

j=1

(

i + j − 2

i − 1

)(

2m − i − j

m − i

)

= m2. (36)

If ZJ is symmetric in its arguments, then we obtain a U-statistic vector and

V indeed boils down to be the usual variance formula of a U-statistic, namely,

V = m2
E[E(ZJ0|x1, ε1)E(Z⊤

J0
|x1, ε1)].

Case 1. In this case, we assume the covariates are deterministic and XJ ≡ Ip.

Also we assume the errors follow normal distribution with mean 0 and variance

σ2. To keep the notation simple, we assume σ2 = 1. We choose the scale matrix

Σ(J) = (X⊤
J XJ)−1 = Ip. Then the proposed MTSE is the spatial median of

the
(

n
p

)

least squares estimators. We now compute D and V in Theorem 2.

It can be seen that Σ
−1/2
J (β0−bJ) = −εJ has a spherically symmetric p-variable

normal distribution around the origin. By a similar argument to Brown (1983),

D =
(p − 1)Γ(p−1

2
)

p
√

2Γ(p
2
)

Ip.

21



Now compute V via (35). Since ZJ = −εJ/‖εJ‖, it follows

E(ZJ0|xi, εi) = −E(εi‖εJ0‖−1 |εi)1i, E(Z⊤
Ji,j

|xi, εi) = −E(εi‖εJ0‖−1 |εi)1
⊤
j .

where 1i is the p-dimensional vector with all zero components except for the

i-th unit component. Hence,

E[E(ZJ0|xi, εi)E(Z⊤
Ji,j

|xi, εi)] = E[{E(εi‖εJ0‖−1|εi)}2]1i1
⊤
j

≤E[{E(ε2
i ‖εJ0‖−2|εi)}]1i1

⊤
j = p−11i1

⊤
j

and V = (Vi,j)p×p with

Vi,j ≤
(p!)2

(

i+j−2
i−1

)(

2p−i−j
p−i

)

p (2p − 1)!
.

Hence, the asymptotic covariance matrix of the proposed MTSE is

D−1V D−T =

(

(p − 1)Γ(p−1
2

)

p
√

2Γ(p
2
)

)−2

V.

Define ‖M‖a =
∑m

i,j=1 |Mi,j| as the norm of the covariance matrix M . Notice

that this norm is more conservative in a sense that ‖M‖a ≥ GV (M), where

GV (M) is the Generalized Variance that is defined to be the sum of variances

of each random variables. By (36),

‖D−1V D−⊤‖a =

(

(p − 1)Γ(p−1
2

)

p
√

2Γ(p
2
)

)−2 p
∑

i,j=1

Vi,j

≤
(

(p − 1)Γ(p−1
2

)

p
√

2Γ(p
2
)

)−2 p
∑

i,j=1

(p!)2
(

i+j−2
i−1

)(

2p−i−j
p−i

)

p (2p − 1)!

= p

(

(p − 1)Γ(p−1
2

)

p
√

2Γ(p
2
)

)−2

(37)

The covariance matrix of the least square estimator is pIp with ‖pIp‖a = p2.

The asymptotic relative efficiency (ARE) of the MTSE relative to the LSE is

the ratio of the norm of the covariance matrix of the LSE to the MTSE. Then
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it can be seen that the ARE satisfies

ARE(p) =
‖pIp‖a

‖D−1V D−⊤‖a

≥ 1

p

(

(p − 1)Γ(p−1
2

)

p
√

2Γ(p
2
)

)2

→ 1, p → ∞.

As in Brown (1983) and Chaudhuri (1992), the ARE increases with the number

of regression parameters. Table 1 reports the above lower bound for several

values of p.

Table 1

p 2 3 4 5 6 7 8 9 10

ARE ≥ 0.785 0.849 0.884 0.905 0.920 0.931 0.946 0.951 0.956

Case 2. In this case, we assume that the covariates xn’s are i.i.d random

vectors and the errors εi’s follow the standard normal distribution. This case

was studied by Wang, et al. (2009) and corresponds to our Theorem 3. We

now calculate the Dr, Vr in Theorem 3. It can be seen that under the true

model, Σ
−1/2
J (β0 − bJ) = −(X⊤

J XJ)−1/2X⊤
J εJ has a spherically symmetric p-

variable normal distribution around the origin. Again as in case 1, with a

similar argument in Brown (1983), we have

Dr =
(p − 1)Γ(p−1

2
)

p
√

2Γ(p
2
)

E(X⊤
J0

XJ0) = p
(p − 1)Γ(p−1

2
)

p
√

2Γ(p
2
)

E(x1x
⊤
1 ).

Since the covariate X and error ε are uncorrelated. Since ZJ = X⊤
J εJ/‖εJ‖,

it follows

E(ZJ0|xi, εi) =−E(X⊤
J0
|xi)E(εJ0‖εJ0‖−1|εi)

=−E ((x1, ..., xp)|xi) E(εi‖εJ0‖−1|εi)1i = −E(εi‖εJ0‖−1|εi)xi.

Hence,

E[E(ZJ0|xi, εi)E(Z⊤
Ji,j

|xi, εi)] = p2
E[(E(εi‖εJ0‖−1|εi))

2]E(x1x
⊤
1 )
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By (35) and (36), we have

Vr = p2
E[(E(εi‖εJ0‖−1|εi))

2]E(x1x
⊤
1 ).

Hence, the asymptotic covariance matrix of the MTSE is

D−1
r VrD

−⊤
r =

(

(p − 1)Γ(p−1
2

)

p
√

2Γ(p
2
)

)−2

E[(E(εi‖εJ0‖−1|εi))
2]
(

E(x1x
⊤
1 )
)−1

.

so that the norm is

‖D−1
r VrD

−⊤
r ‖a =

(

(p − 1)Γ(p−1
2

)

p
√

2Γ(p
2
)

)−2

E[(E(εi‖εJ0‖−1|εi))
2] ‖(E(x1x

⊤
1 ))−1‖a

≤ 1

p

(

(p − 1)Γ(p−1
2

)

p
√

2Γ(p
2
)

)−2

‖(E(x1x
⊤
1 ))−1‖a. (38)

The covariance matrix of the LSE is n(E(X⊤
n Xn))−1 = (E(x1x

⊤
1 ))−1 and its

norm is ‖(E(x1x
⊤
1 ))−1‖a. Thus, we have obtained the same conclusion as in

Case 1. That is, the asymptotic relative efficiency of the MTSE relative to the

LSE satisfies

ARE ≥ 1

p

(

(p − 1)Γ(p−1
2

)

p
√

2Γ(p
2
)

)−2

.

5 Proofs

In this section, we provide the proofs.

Proof of Theorem 2. Let

Rn(α) = n{Ψn(β0 + n−1/2α) − Ψn(β0) − n−1/2α⊤∇Ψn(β0)}, α ∈ R
p,

We show next Var(Rn(α)) → 0 for each α ∈ R
p. Let αn = n−1/2α and

denote γ(J) = ‖Σ−1/2
(J) (β0 − b(J))‖ and δ(J) = ‖Σ−1/2

(J) (αn + β0 − b(J))‖. Using

‖a + b‖ − ‖b‖ = (‖a + b‖2 − ‖b‖2)/(‖a + b‖ + ‖b‖), we have
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Rn(α) = n

(

n

m

)−1
∑

J∈J (n)

(

δ(J) − γ(J) − α⊤
n Σ

−⊤/2
(J) S(Σ

−1/2
(J) (β0 − b(J)))

)

= n

(

n

m

)−1
∑

J∈J (n)

(‖Σ−1/2
(J) αn‖2 + 2α⊤

n Σ−1
(J)(β0 − b(J))

δ(J) + γ(J)

−α⊤
n Σ

−⊤/2
(J) S(Σ

−1/2
(J) (β0 − b(J)))

)

= n

(

n

m

)−1
∑

J∈J (n)

(‖Σ−1/2
(J) αn‖2

δ(J) + γ(J)

+
γ(J) − δ(J)

δ(J) + γ(J)

α⊤
n Σ

−⊤/2
(J) S(Σ

−1/2
(J) (β0 − b(J)))

)

= n

(

n

m

)−1
∑

J∈J (n)

C(J), say.

Clearly Cov(C(J1), C(J2)) = 0 if J1∩J2 = ∅, and 2 Cov(C(J1), C(J2)) ≤ Var(C(J1))+

Var(C(J2)), J1, J2 ∈ J (n). Hence, for large n,

Var(Rn(α))≤n2

(

n

m

)−2 m
∑

i=1

(

m

i

)(

n − m

m − i

)

∑

J∈J (n)

Var(C(J)))

≤ cn

(

n

m

)−1
∑

J∈J (n)

E(C2
(J)),

where c is a constant independent of n. Since the spatial sign function S(·) is

bounded by one and |γ(J) − δ(J)| ≤ ‖Σ−1/2
(J) αn‖, it follows

|C(J)| ≤ 2
‖Σ−1/2

(J) αn‖2

γ(J) + δ(J)

≤ 2
‖Σ−1/2

(J) αn‖2

γ(J) ∨ ‖Σ−1/2
(J) αn‖

.

Accordingly, Var(Rn(α)) → 0, α ∈ R
q if we show

(

n

m

)−1
∑

J∈J (n)

λ−1
min(Σ(J))E

(

{λ−1
min(Σ(J))γ

−2
(J)} ∧ n

)

= o(n). (39)

Under the true model, b(J) = β0 + (X⊤
J XJ)−1X⊤

J εJ . Let Γ be an orthogo-

nal matrix such that ΓXJ(X⊤
J XJ)−1Σ−1

(J)(X
⊤
J XJ)−1X⊤

J Γ⊤ = Λ, where Λ is

a diagonal matrix whose diagonal elements are the eigenvalues of M(J) =

XJ(X⊤
J XJ)−1Σ−1

(J)(X
⊤
J XJ)−1X⊤

J . Then

γ2
(J) = ‖Σ−1/2

(J) (β0 − b(J))‖2 = ε⊤J M(J)εJ = ε⊤J Γ⊤ΛΓεJ ≥ λmin(M(J))‖εJ‖2.
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Therefore, in view of ‖εJ‖ ≥ |εj| for j ∈ J , (39) follows from

(

n

m

)−1
∑

J∈J (n)

λ−1
min(Σ(J))E

(

{λ−1
min(Σ(J))λ

−1
min(M(J))ε

−2
1 } ∧ n

)

= o(n), (40)

provided that covariates Xj’s and errors εj’s are uncorrelated, which holds if

the covariates are deterministic. Since λ−1
min(M(J)) = λ−1

min((X
⊤
J XJ)−1Σ−1

(J)) =

λmax(Σ(J)(X
⊤
J XJ)), it follows that (40) is implied by (23). Hence Rn(α) −

E(Rn(α)) → 0 in probability for α ∈ R
q. By Assumption 3,

E(Rn(α)) =
1

2
α⊤Dα + o(1), (41)

where D is given in Assumption 3. Therefore,

n{Ψn(β0 + n−1/2α)−Ψn(β0)− n−1/2α⊤∇Ψn(β0)} =
1

2
α⊤Dα + op(1), α ∈ R

p.

Since the summand in Ψn(β) is convex in β, it follows from the convexity

lemma (Pollard, 1991) that for any M > 0,

sup
‖α‖≤M

∣

∣

∣

∣

n{Ψn(β0 + n−1/2α) − Ψn(β0) − n−1/2α⊤∇Ψn(β0)} −
1

2
α⊤Dα

∣

∣

∣

∣

= op(1),

(42)

Let ∆n(α) = n[Ψn(β0 +n−1/2α)−Ψn(β0)] and α̂n = arg minα∈Rq ∆n(α). Then

α̂n = n1/2(β̂n−β0). Further, for any random variable γn bounded in probability,

it follows from (42) that

∆n(γn) = γ⊤
n n1/2∇Ψn(β0) +

1

2
γ⊤

n Dγn + op(1). (43)

This shows that ∆n(γn) can be approximated by a quadratic function in γn,

which is uniquely minimized at γ̂n = −D−1n1/2∇Ψn(β0). Like Shen (2009),

we shall use the convexity of the criterion function and characterization of

a minimizer to show that γ̂n and α̂n are equivalent. Arbitrarily fix ǫ > 0. If

‖α̂n− γ̂n‖ > ǫ, then there exists γ̂∗
n on the line segment joining α̂n and γ̂n such
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that ‖γ̂∗
n − γ̂n‖ = ǫ. Clearly γ̂∗

n = Op(1). Substituting it in (43), we obtain

∆n(γ̂∗
n) = ∆n(γ̂n) +

1

2
(γ̂∗

n − γ̂n)⊤D(γ̂∗
n − γ̂n) + op(1).

Since ∆n(·) is convex and ∆n(α̂n) ≤ ∆n(γ̂n), it follows ∆n(γ̂∗
n) ≤ ∆n(γ̂n), so

that

1

2
ǫ2λmin(D) + op(1) ≤ 1

2
(γ̂∗

n − γ̂n)⊤D(γ̂∗
n − γ̂n) + op(1) ≤ 0.

This shows

P(‖α̂n − γ̂n‖ > ǫ) ≤ P (∆n(γ̂∗
n) ≤ ∆n(γ̂n)) ≤ P

(1

2
ǫ2λmin(D) + op(1) ≤ 0

)

.

The last probability converges to zero as n tends to infinity by Assumption 3,

and this gives the desired equivalence α̂n − γ̂n → 0 in probability. We now

apply the central limit theorem of U-statistics to determine the asymptotic

distribution of γ̂n. By the Cramér-Wold device and Assumption 3, it suffices

to show

c⊤n1/2∇Ψn(β0) =⇒ N (0, c⊤V c) (44)

for every c ∈ R
p. We shall apply Theorem 2.1 of Barbour and Eagleson (1985)

to prove (44). To this end, we verify their condition (2.7) for

X
(n)
J := n1/2

(

n

m

)−1

c⊤Σ
−⊤/2
(J) S(Σ

−1/2
(J) (β − b(J))).

Let (s(n))2 := Var[c⊤n1/2∇Ψn(β0)] = Var
[

∑

J∈J(n) X
(n)
J

]

. Then by Assump-

tion 3, (s(n))2 → c⊤V c as n tends to infinity. This together with (24) gives

n2m−2(s(n))−3
∑

J∈J(n)

E|X(n)
J |3 ≤ n2m−2(s(n))−3n3/2

(

n

m

)−3
∑

J∈J(n)

‖Σ−1/2
(J) c‖3

= O
(

n−1/2

(

n

m

)−1
∑

J∈J(n)

λ
−3/2
min (Σ(J))

)

→ 0.

This verifies their (27) and hence shows the desired (44). 2
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Proof of Theorem 4. First, as in the proof of Theorem 2, we have for α ∈ R
q

that

Rn,d(α) := n{Ψn,d(β1,0 + n−1/2α) − Ψn,d(β0) − n−1/2α⊤∇Ψn,d(β1,0)},

=
n
(

N
m

)

∑

(K1,K2)∈K
(n)
0

( ‖Σ−1/2
(K1,K2)αn‖2

γ(K1,K2) + δ(K1,K2)

+
α⊤

n Σ
−⊤/2
(K1,K2)Σ

−1/2
(K1,K2)(β0 − b(K1,K2))(γK1,K2 − δ(K1,K2))

(γ(K1,K2) + δ(K1,K2))γ(K1,K2)

)

,

where γ(K1,K2) = ‖Σ−1/2
(K1,K2)(β1,0−b(K1,K2))‖ and δ(K1,K2) = ‖Σ−1/2

(K1,K2)(αn+β1,0−

b(K1,K2))‖. Denote the summand by C(K1,K2). Then Cov(C(K1,K2), C(K′
1,K′

2)) = 0

if {K1, K2} ∩ {K ′
1, K

′
2} = ∅, and 2 Cov(C(K1,K2), C(K′

1,K′
2)) ≤ Var(C(K1,K2)) +

Var(C(K′
1,K′

2)) for (K1, K2), (K
′
1, K

′
2) ∈ K(n)

0 . Since for each (K1, K2) ∈ K(n)
0 ,

there are at most (2n − 2m − 1)m possible (j, k)’s from ▽ that {j, k} ∩

{K1, K2} 6= ∅, it follows that Var(Rn(α)) is bounded by

n2

(

N
m

)2

m
∑

i=1

(

(2n − 2m − 1)m

i

)(

N − (2n − 2m − 1)m

m − i

)

∑

(K1,K2)∈K
(n)
0

Var(C(K1,K2))

≤ cn

(

N

m

)−1
∑

(K1,K2)∈K
(n)
0

E(C2
(K1,K2)),

for large n, where c is a constant independent of n. Arguing as in (39), we

derive Var(Rn,d(α)) → 0 for α ∈ R
q if we can show

(

N

m

)−1
∑

(K1,K2)∈K
(n)
0

λ−1
min

(

Σ
1/2
(K1,K2)

)

×

E

(

{λ−1
min

(

Σ
1/2
(K1,K2)

)

‖Σ−1/2
(K1,K2)(β1,0 − b(K1,K2))‖−2} ∧ n

)

= o(n). (45)

Under the true model (5), b(K1,K2) = β1,0 + (XK1,K2

⊤XK1,K2)
−1XK1,K2

⊤εK1,K2 ,

so that

‖Σ−1/2
(K1,K2)(β1,0 − b(K1,K2))‖2 ≥λmin(M(K1,K2))‖εK1,K2‖2,
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where M(K1,K2) = (XK1,K2

⊤XK1,K2)
−1Σ−1

(K1,K2). Further,

λ−1
min(M(K1,K2)) = λmax(Σ(K1,K2)(XK1,K2

⊤XK1,K2)).

In view of ‖εK1,K2‖ > |εi − εj| for some i ∈ k1, j ∈ k2 with i 6= j, we see that

(45) is implied by (31). Analogously, we derive α̂n − γ̂n → 0 in probability,

where α̂n = n1/2(β̂1,n − β1,0) for β̂1,n given in Section 2, and

γ̂n =−D−1n1/2∇Ψn,d(β1,0)

=−D−1n1/2

(

N

m

)−1
∑

(K1,K2)∈K
(n)
0

Σ
−⊤/2
(K1,K2)S

(

Σ
−1/2
(K1,K2)(β1,0 − b(K1,K2))

)

.

Next we will prove the asymptotic normality of γ̂n, so that we obtain the

asymptotic normality of β̂1,n. First, let I(n) be the collection of the 2m-subsets

of {1, ..., n}. There are in total
(

n
2m

)

such subsets. Then, we do a matching,

for each (K1, K2) ∈ K(n)
0 , we match it with one of the 2m-subset I ∈ I(n) such

that K1 ∪ K2 ⊆ I, and we denote the match by (K1, K2) →֒ I. Note, for each

I, the number of (K1, K2) that are matched is bounded by a constant, c(m),

depending only upon m. Now for any c ∈ R
p−1, we have

c⊤n1/2∇Ψn,d(β0)

= n1/2

(

N

m

)−1
∑

(K1,K2)∈K
(n)
0

c⊤Σ
−⊤/2
(K1,K2)S

(

Σ
−1/2
(K1,K2)(b − b(K1,K2))

)

=
∑

I∈I(n)

n1/2

(

N

m

)−1
∑

(K1, K2) ∈ K
(n)
0

(K1, K2) →֒ I

c⊤Σ
−⊤/2
(K1,K2)S

(

Σ
−1/2
(K1,K2)(b − b(K1,K2))

)

≡
∑

I∈I(n)

WI , say.

The last sum is a sum of dissociated random variables, that is, WI and WJ

are independent if I and J are disjoint. Thus, we can apply Theorem 2.1 of

Barbour and Eagleson (1985) to prove the asymptotic normality of γ̂n. To do
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so, it suffices to verify their condition (2.7) for X
(n)
I = WI and k = 2m. By

Assumption 5, (s(n))2 ≡ Var[c⊤n1/2∇Ψn,d(β0)] → c⊤V c. Thus,

n2(2m)−2{s(n)}−3
∑

I∈I(n)

|WI |3

= n4m−2{s(n)}−3n3/2 1
(

N
m

)3

∑

I∈I(n)

∣

∣

∣

∑

(K1, K2) ∈ K
(n)
0

(K1, K2) →֒ I

c⊤Σ
−⊤/2
(K1,K2) ×

S
(

Σ
−1/2
(K1,K2)(β1,0 − b(K1,K2))

) ∣

∣

∣

3

≤ cn4m−2{s(n)}−3n3/2 1
(

N
m

)3

∑

I∈I(n)

∑

(K1, K2) ∈ K
(n)
0

(K1, K2) →֒ I

∣

∣

∣c⊤Σ
−⊤/2
(K1,K2) ×

S
(

Σ
−1/2
(K1,K2)(β1,0 − b(K1,K2))

)∣

∣

∣

3

≤ cn4m−2{s(n)}−3n3/2 1
(

N
m

)3

∑

(K1,K2)∈K
(n)
0

λ
−3/2
min

(

Σ(K1,K2)

)

= O
(

n−1/2 1
(

N
m

)

∑

(K1,K2)∈K
(n)
0

λ
−3/2
min

(

Σ(K1,K2)

)

)

→ 0,

by Assumption 6. This verifies their condition (2.7), so that we obtain the

asymptotic normality of c⊤n1/2∇Ψn,d(β1,0) for any c ∈ R
p−1 and hence γ̂n.

Combining with the established equivalence α̂n−γ̂n = n1/2(β̂1,n−β1,0)−γ̂n → 0

in probability, we obtain the desired asymptotic normality of the difference-

based MTSE β̂1,n. 2
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