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Exercise 1: Prove that L1([0, 1]) is not a functional Banach space with X = [0, 1] and the

obvious identification of integrable functions as vectors in L1:

The continuous functions on [0, 1] are a dense subset of L1([0, 1]) in the L1 norm and if f is

a continuous function on [0, 1] then f(1/2) is defined. Even more, for a continuous function on

[0, 1], the value of f at x = 1/2 cannot be changed and still have f continuous at x = 1/2.

Show that, considering the continuous functions on [0, 1] as a vector subspace of L1([0, 1]),

the linear functional on this subset f 7→ f(1/2) is not bounded.

Exercise 2: Prove that the Bergman space is a Hilbert space, that is, that it is a complete inner

product space. Equivalently, since it is obvious that A2(D) ⊂ L2(D) and we know L2, it is

enough to show that A2(D) is a closed subset of L2(D). That is, show that if fn is a sequence

of functions in A2(D), and limn→∞ fn = f in L2, then actually f is analytic also and is A2(D).

Exercise 3: Just as for H2(D), we want another way to think about A2(D).

(a) Show that the set {zn}∞n=0 is an orthogonal basis for A2(D).

(b) Find the norm of zn in A2(D) for each non-negative integer n.

(c) Find a condition (∗) on the coefficients an so that if f is an analytic function on the disk

with f(z) =
∑∞
n=0 anz

n, then f is in A2(D) if and only if (∗).

(d) Use the ideas of (a)–(c) to show that for α in the disk, the function Kα in A2(D) so that

〈f,Kα〉 = f(α) for every f in A2(D) is

Kα(z) =
1

(1− αz)2

(e) Conclude that A2(D) is a functional Hilbert space.
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Exercise 4: For the Hardy space H2, find the kernel function K
(1)
α in H2 so that for each f in H2

and each α in the disk, f ′(α) = 〈f,K(1)
α 〉. Check your answer by using the formula you got for

K
(1)
α to find K

(1)
0 the kernel for evaluating the derivative of a function in H2 at α = 0, which

should look familiar to you.

Exercise 5: Find all the fixed points of the listed functions and their derivatives there. Then find

the Denjoy–Wolff point. (
√

means the branch of the square root that is positive on the

positive axis.)

(a) ϕ(z) = exp((z + 1)/(z − 1))

(b) ϕ(z) =

(
z + 1/3

1 + z/3

)2

(c) ϕ(z) = w−1(ψ(w(z)) where w(z) = (1 + z)/(1− z) maps the disk to the right halfplane

and ψ(w) =
√

4w2 + 3 maps the right half plane to itself.

(d) ϕ(z) =
1 + z + 2

√
1− z2

3− z + 2
√

1− z2

Exercise 6: For the maps in Exercise 5, find the Case of ϕ, that is, decide, for each ϕ, if ϕ is in

the plane dilation, half-plane dilation, plane translation, or half-plane translation case.

Exercise 7: For the maps in Exercise 5, find the spectral radius of Cϕ as an operator on H2.

Exercise 8: Consider the map ϕ(z) = z/2 + z2/3.

(a) Show that ϕ maps the disk into the disk.

(b) Explain why Cϕ is compact on H2.

(c) Find the spectrum of Cϕ.

(d) According to the theory, the eigenvectors are multiples of powers of the Koenigs’ function

σ, which is also the map in the model for the function ϕ. In this case, we know

σ(ϕ(z)) = λσ(z) and 0 < |λ| < 1, and this |λ| is the largest possible eigenvalue, with

|λ| < 1. Find λ in this case, and find the first 7 Taylor coefficients, i.e. up to a6, the

coefficient of z6, of σ explicitly. Looking at these Taylor coefficients, can you find σ

explicitly, that is, can you guess the rest of the coefficients and write down σ as an

elementary function?
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Exercise 9: For the maps in Exercise 5, find the spectrum of Cϕ as an operator on H2 if you can,

or to the extent that you can.

Exercise 10: For each of the following maps ϕ, say as much as you can about Cϕ and the

spectrum of Cϕ.

• (a) ϕ(z) = z2/3 + z/2 + 1/6.

• (b) ϕ(z) = z2/2− z/3 + 1/6.

• (c) ϕ(z) = z2/6 + 2z/3 + 1/6.

• (d) ϕ(z) = z2/6 + z/3 + 1/2.

Exercise 11: In the Theorem for the model for iteration in the case in which the Denjoy-Wolff

point, a, is inside the disk, the hypothesis is ϕ′(a) 6= 0. Using ϕ(z) = z2, which has

Denjoy-Wolff point a = 0 and ϕ′(a) = ϕ′(0) = 0, explain why the hypothesis is what it is by

finding possible analytic functions f and numbers λ so that f(ϕ(z)) = λf(z) in a neighborhood

of 0.

Exercise 12: If ϕ maps the disk into itself and has Denjoy-Wolff point 1 with ϕ′(1) = .5, the

theory says that the inductively defined sequence zn+1 = ϕ(zn) starting with any point z0 in

the disk is an interpolating sequence. For the function ϕ(z) = .5z + .5, find zn explicitly

satisfying zn+1 = ϕ(zn) starting with z0 = 0. Show that, at least, {zn} is a Blaschke sequence,

that is, that
∑

(1− |zn|) <∞, so that there are analytic functions f with f(zn) = 0 for all n

but f is not the zero function.

Exercise 13: Let ϕ be an analytic function mapping the unit disk into itself, with ϕ(1) = 1 and

ϕ′(1) = s where 0 < s < 1. According to the theory, ϕ is in the half-plane dilation case and

there is σ analytic, mapping D into the right half plane H+ = {z : Re z > 0} where Φ(w) = sw

and Φ ◦ σ = σ ◦ ϕ. Suppose, in addition, ϕ is real on the real axis. Using the functions

ϕ̃(z) = ϕ(z), Φ̃(z) = Φ(z), and σ̃(z) = σ(z), show that σ is real on the real axis as well.
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Exercise 14: Let ϕ be an analytic function mapping the unit disk into itself. If Φ is an

automorphism mapping Ω onto itself, and σ maps the disk into Ω such that Φ ◦ σ = σ ◦ ϕ, then

it must be the case that σ maps the fixed points of ϕ to the fixed points of Φ in such a way

that the attracting fixed point of ϕ, the Denjoy-Wolff point of ϕ, is mapped to the attracting

fixed point of Φ and the other fixed points of ϕ are mapped to the other fixed point of Φ, or at

least the iterates of ϕ leaving a fixed point of ϕ are mapped to iterates of Φ leaving a fixed

point of Φ. Moreover, if ϕ maps a point of the circle to the circle, then σ must map that point

to a point of the boundary of σ(D) that Φ maps to a point of the boundary of σ(D). Use these

ideas to draw a connected, simply connected domain U in the complex plane that U contains 0,

so that z in U implies z/2 is in U , and so that if σ is the Riemann map of D onto U that takes

0 to 0 and has σ′(0) > 0, then using Φ(w) = w/2, the map ϕ(z) = σ−1(Φ(σ(z))) has ϕ(0) = 0,

ϕ′(0) = 1/2, and 1 and −1 as fixed points of ϕ. Can you describe explicitly, a map, ϕ, of D into

D with ϕ(0) = 0, ϕ′(0) = 1/2, ϕ(1) = 1, and ϕ(−1) = −1?
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