Exercises to Accompany

Lectures on Composition Operators on Spaces of Analytic Functions

Carl C. Cowen

IUPUI

(Indiana University Purdue University Indianapolis)

Universidad Complutense de Madrid, Otoño 2012

Exercise 1: Prove that $L^1([0,1])$ is *not* a functional Banach space with X = [0,1] and the obvious identification of integrable functions as vectors in L^1 :

The continuous functions on [0,1] are a dense subset of $L^1([0,1])$ in the L^1 norm and if f is a continuous function on [0,1] then f(1/2) is defined. Even more, for a continuous function on [0,1], the value of f at x=1/2 cannot be changed and still have f continuous at x=1/2.

Show that, considering the continuous functions on [0,1] as a vector subspace of $L^1([0,1])$, the linear functional on this subset $f \mapsto f(1/2)$ is *not* bounded.

Exercise 2: Prove that the Bergman space is a Hilbert space, that is, that it is a *complete* inner product space. Equivalently, since it is obvious that $A^2(\mathbb{D}) \subset L^2(\mathbb{D})$ and we know L^2 , it is enough to show that $A^2(\mathbb{D})$ is a closed subset of $L^2(\mathbb{D})$. That is, show that if f_n is a sequence of functions in $A^2(\mathbb{D})$, and $\lim_{n\to\infty} f_n = f$ in L^2 , then actually f is analytic also and is $A^2(\mathbb{D})$.

Exercise 3: Just as for $H^2(\mathbb{D})$, we want another way to think about $A^2(\mathbb{D})$.

- (a) Show that the set $\{z^n\}_{n=0}^{\infty}$ is an *orthogonal* basis for $A^2(\mathbb{D})$.
- (b) Find the norm of z^n in $A^2(\mathbb{D})$ for each non-negative integer n.
- (c) Find a condition (*) on the coefficients a_n so that if f is an analytic function on the disk with $f(z) = \sum_{n=0}^{\infty} a_n z^n$, then f is in $A^2(\mathbb{D})$ if and only if (*).
- (d) Use the ideas of (a)–(c) to show that for α in the disk, the function K_{α} in $A^{2}(\mathbb{D})$ so that $\langle f, K_{\alpha} \rangle = f(\alpha)$ for every f in $A^{2}(\mathbb{D})$ is

1

$$K_{\alpha}(z) = \frac{1}{(1 - \overline{\alpha}z)^2}$$

(e) Conclude that $A^2(\mathbb{D})$ is a functional Hilbert space.

Exercise 4: For the Hardy space H^2 , find the kernel function $K_{\alpha}^{(1)}$ in H^2 so that for each f in H^2 and each α in the disk, $f'(\alpha) = \langle f, K_{\alpha}^{(1)} \rangle$. Check your answer by using the formula you got for $K_{\alpha}^{(1)}$ to find $K_0^{(1)}$ the kernel for evaluating the derivative of a function in H^2 at $\alpha = 0$, which should look familiar to you.

Exercise 5: Find all the fixed points of the listed functions and their derivatives there. Then find the Denjoy-Wolff point. ($\sqrt{}$ means the branch of the square root that is positive on the positive axis.)

(a)
$$\varphi(z) = \exp((z+1)/(z-1))$$

(b)
$$\varphi(z) = \left(\frac{z + 1/3}{1 + z/3}\right)^2$$

(c) $\varphi(z) = w^{-1}(\psi(w(z)))$ where w(z) = (1+z)/(1-z) maps the disk to the right halfplane and $\psi(w) = \sqrt{4w^2 + 3}$ maps the right half plane to itself.

(d)
$$\varphi(z) = \frac{1+z+2\sqrt{1-z^2}}{3-z+2\sqrt{1-z^2}}$$

Exercise 6: For the maps in Exercise 5, find the Case of φ , that is, decide, for each φ , if φ is in the plane dilation, half-plane dilation, plane translation, or half-plane translation case.

Exercise 7: For the maps in Exercise 5, find the spectral radius of C_{φ} as an operator on H^2 .

Exercise 8: Consider the map $\varphi(z) = z/2 + z^2/3$.

- (a) Show that φ maps the disk into the disk.
- (b) Explain why C_{φ} is compact on H^2 .
- (c) Find the spectrum of C_{φ} .
- (d) According to the theory, the eigenvectors are multiples of powers of the Koenigs' function σ , which is also the map in the model for the function φ . In this case, we know $\sigma(\varphi(z)) = \lambda \sigma(z)$ and $0 < |\lambda| < 1$, and this $|\lambda|$ is the largest possible eigenvalue, with $|\lambda| < 1$. Find λ in this case, and find the first 7 Taylor coefficients, i.e. up to a_6 , the coefficient of z^6 , of σ explicitly. Looking at these Taylor coefficients, can you find σ explicitly, that is, can you guess the rest of the coefficients and write down σ as an elementary function?

Exercise 9: For the maps in Exercise 5, find the spectrum of C_{φ} as an operator on H^2 if you can, or to the extent that you can.

Exercise 10: For each of the following maps φ , say as much as you can about C_{φ} and the spectrum of C_{φ} .

- (a) $\varphi(z) = z^2/3 + z/2 + 1/6$.
- (b) $\varphi(z) = z^2/2 z/3 + 1/6$.
- (c) $\varphi(z) = z^2/6 + 2z/3 + 1/6$.
- (d) $\varphi(z) = z^2/6 + z/3 + 1/2$.

Exercise 11: In the Theorem for the model for iteration in the case in which the Denjoy-Wolff point, a, is inside the disk, the hypothesis is $\varphi'(a) \neq 0$. Using $\varphi(z) = z^2$, which has Denjoy-Wolff point a = 0 and $\varphi'(a) = \varphi'(0) = 0$, explain why the hypothesis is what it is by finding possible analytic functions f and numbers λ so that $f(\varphi(z)) = \lambda f(z)$ in a neighborhood of 0.

Exercise 12: If φ maps the disk into itself and has Denjoy-Wolff point 1 with $\varphi'(1) = .5$, the theory says that the inductively defined sequence $z_{n+1} = \varphi(z_n)$ starting with any point z_0 in the disk is an interpolating sequence. For the function $\varphi(z) = .5z + .5$, find z_n explicitly satisfying $z_{n+1} = \varphi(z_n)$ starting with $z_0 = 0$. Show that, at least, $\{z_n\}$ is a Blaschke sequence, that is, that $\sum (1 - |z_n|) < \infty$, so that there are analytic functions f with $f(z_n) = 0$ for all n but f is not the zero function.

Exercise 13: Let φ be an analytic function mapping the unit disk into itself, with $\varphi(1)=1$ and $\varphi'(1)=s$ where 0< s<1. According to the theory, φ is in the half-plane dilation case and there is σ analytic, mapping $\mathbb D$ into the right half plane $H_+=\{z:\operatorname{Re} z>0\}$ where $\Phi(w)=sw$ and $\Phi\circ\sigma=\sigma\circ\varphi$. Suppose, in addition, φ is real on the real axis. Using the functions $\widetilde{\varphi}(z)=\overline{\varphi(\overline{z})},\ \widetilde{\Phi}(z)=\overline{\Phi(\overline{z})},\ \text{and}\ \widetilde{\sigma}(z)=\overline{\sigma(\overline{z})},\ \text{show that}\ \sigma$ is real on the real axis as well.

Exercise 14: Let φ be an analytic function mapping the unit disk into itself. If Φ is an automorphism mapping Ω onto itself, and σ maps the disk into Ω such that $\Phi \circ \sigma = \sigma \circ \varphi$, then it must be the case that σ maps the fixed points of φ to the fixed points of Φ in such a way that the attracting fixed point of φ , the Denjoy-Wolff point of φ , is mapped to the attracting fixed point of Φ and the other fixed points of φ are mapped to the other fixed point of Φ , or at least the iterates of φ leaving a fixed point of φ are mapped to iterates of Φ leaving a fixed point of Φ . Moreover, if φ maps a point of the circle to the circle, then σ must map that point to a point of the boundary of $\sigma(\mathbb{D})$ that Φ maps to a point of the boundary of $\sigma(\mathbb{D})$. Use these ideas to draw a connected, simply connected domain U in the complex plane that U contains 0, so that z in U implies z/2 is in U, and so that if σ is the Riemann map of \mathbb{D} onto U that takes 0 to 0 and has $\sigma'(0) > 0$, then using $\Phi(w) = w/2$, the map $\varphi(z) = \sigma^{-1}(\Phi(\sigma(z)))$ has $\varphi(0) = 0$, $\varphi'(0) = 1/2$, and 1 and -1 as fixed points of φ . Can you describe explicitly, a map, φ , of \mathbb{D} into \mathbb{D} with $\varphi(0) = 0$, $\varphi'(0) = 1/2$, $\varphi(1) = 1$, and $\varphi(-1) = -1$?