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Themes:

•Math is unified – Divisions are artificial!

⇒ Need to know about everything!

•NOT Need to know everything! (Impossible)

• Develop Intuition! Trust Intuition!

•Math is growing, Math is changing – THIS IS THE 21st CENTURY!!

⇒ Computers will be in your life; Computers will be in your MATH life!

– Prepare yourself by learning to use computers to help your math.

⇒ STOCHASTICITY is everywhere!! including in MATH !

– Prepare yourself by learning (more than basic) probability,

and maybe statistics, too.
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Except for required courses and qualifying exams,

I was fairly successful in avoiding ALGEBRA in graduate school,

But, I was required to know what a group is!!



At the time of this work, I was an ANALYST :

complex analysis and linear algebra in infinite dimensional Euclidean spaces

Except for required courses and qualifying exams,

I was fairly successful in avoiding ALGEBRA in graduate school,

But, I was required to know what a group is!!

The group in the title was unexpected because,

for me, EVERY group is unexpected!!



The topic of my talk arises from a problem in analysis: a question

concerning linear transformations on infinite dimensional Euclidean space.

Problem is about polynomials considered as functions of a complex variable:

Solution uses techniques from theory of surfaces in four-dimensional space,

from complex function theory, and from topology to discover a group

then, the answer to the question is stated in terms of properties of the group.

If I had not been forced to learn about groups,

I would probably not have recognized this one when I saw it!!

Be Inspired by the interconnectivity of mathematics to become aware of

many widely different subdisciplines that you can see in graduate school!



I discovered this group while working on my thesis – naturally, I was very

excited about it!

In my first public talk about the result, Joe Doob (an expert in probability

and analysis) suggested it might have been discovered before. He was right:

J. F. Ritt: Transactions of the American Math. Soc. 23(1922) 51–66.
Transactions of the American Math. Soc. 25(1923) 399–448.



A polynomial in one variable with complex coefficients is a object

p(z) = anz
n + an−1z

n−1 + · · · + a2z
2 + a1z + a0

where the aj are complex numbers, i.e. aj is in C for j = 0, 1, 2, · · · , n.

The set of such polynomials is called by algebraists

the ring of polynomials in one variable and the ‘z’ is a place-holder.

But, we regard C[z] as set of functions from the complex plane C into itself!

If z is any number in C, then p(z) is in C also.



Fundamental Theorem of Algebra:

If p is not constant, for each w in C, there is z in C so that p(z) = w.

In fact, when p has degree n, there are actually n such z’s.

This says, as a function,

A polynomial of degree n is an n-to-1 mapping of C onto itself.



In addition to adding and multiplying polynomials, we can compose them:

If q is a polynomial, and r is a polynomial, then we define the polynomial

q ◦ r by

q ◦ r(z) = q(r(z))

For example, if q(z) = z2 − 2z + 3 and r(z) = z3 − 1, then

q(r(z)) = (z3 − 1)2 − 2(z3 − 1) + 3 = z6 − 2z3 + 1− 2z3 + 2 + 3

= z6 − 4z3 + 6

Clearly, if r is polynomial of degree m and q is polynomial of degree n,

then q ◦ r is a polynomial of degree mn.
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If we know p = q ◦ r for some q and r,

how do we decide what q and r actually are?



Questions:

Can every polynomial of degree mn be written as

the composition of a polynomial of degree m and a polynomial of degree n?

If not, how can we determine whether a given polynomial

CAN or CANNOT be written as such a composition?

If we know p = q ◦ r for some q and r,

how do we decide what q and r actually are?

It is not hard to see that if m = 1 or n = 1 then the problem is easily

yes and uninteresting:

it is just a change of variables in the domain plane or the range plane,

and we will call polynomials of degree 1 “trivial polynomials”.



An Example:

Let p(z) = z4 + 2z3 − 5z2 − 6z + 5

Facts about p:

Roots: x1 ≈ −2.8, x2 ≈ −1.6, x3 ≈ 0.6, and x4 ≈ 1.8

Derivative:

p′(z) = 4z3 + 6z2 − 10z − 6 = 4(x +
1

2
)(x +

1 +
√

13

2
)(x +

1−
√

13

2
)

Critical points: −1

2
, −1 +

√
13

2
≈ −2.3,

−1 +
√

13

2
≈ 1.3

Critical values: p

(
−1

2

)
=

105

16
, p

(
−1 +

√
13

2

)
= p

(
−1 +

√
13

2

)
= −4
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Complete Pullbacks of Negative and Positive Real Axis

Complete Pullbacks of Upper (+) and Lower (−) Half-planes



If F is a function or mapping of some ‘Domain’ onto some ‘Image’,

then the ‘Pullback’ of a curve or set in the Image is the curve or set that

F maps into the set in the Image.

In our case, p : C 7→ C and we are calling the two copies of the complex

plane the ‘Domain Plane’ and the ‘Image Plane’.

Because p is a four-to-one map of the plane onto the plane, the Pullback of

the upper half-plane in the Image plane is four separate pieces in the

Domain plane bounded by curves that are mapped by p onto the real axis.

Inverse image, Lift, and Pullback are closely related ideas that might be

used in different contexts.



A Path going into lower half-plane of the Image Plane

Four Lifts in the Domain Plane of the Path in the Image Plane



A Loop is a path whose beginning point and whose end point

are the same point.

A Pullback, or Lift, of a Loop can be a loop or a path with distinct

endpoints.



A Loop going into lower half-plane of the Image Plane

Four Lifts in the Domain Plane of the Loop in the Image Plane



In the previous picture, the loop in the Image Plane starts and ends at 0

and goes around the Critical Value p

(
−1

2

)
=

105

16
.

A lift of this loop must have end points that p maps to 0, that is, the end

points must be roots of p.

One lift of the loop is a loop with end points x1 and going around the point

of the real axis to the left of x1 that gets mapped by p to
105

16
and

another is a loop with end points x4 and going around a point to the

right of x4 that also is mapped by p to
105

16
.

The other two lifts of the loop are paths from x3 to x2 and from x2 to x3.



The critical observation here is that this loop in the Image Plane, starting

and ending at 0, and encircling the critical value 105/16 once

counterclockwise, is lifted to paths that give a permutation of the roots x1,

x2, x3, and x4: namely the permutation produced is:

x1 → x1 x2 → x3 x3 → x2 x4 → x4



Recall that in algebra, a Group is a set G together with an operation • on

the set combining order pairs of elements of G to produce an element of G,

such that • is associative, there is a special element e such that

e • ζ = ζ • e = ζ for each ζ in G, and for each ζ in G, there is is η in G so

that ζ • η = η • ζ = e.

Easy examples are the integers under addition or the set of invertible n× n

matrices under multiplication.

The integers under multiplication, however, do not form a group because

there are not inverses under multiplication for most integers.

A more important example for us is the set of permutations, Sn, of a finite

set with n elements.



Labeled Loops at 0 in the Image Plane

Labeled Lifts in the Domain Plane of the Loops in the Image Plane



In this picture, the original loop is labeled γ1, and we have seen it is

associated with a permutation, which we will call γ∗1 , of the roots of p:

γ∗1 : x1 → x1 x2 → x3 x3 → x2 x4 → x4

In the same way, the loop, γ2, which has starting and ending point 0 and

encircles the critical value −4 once counterclockwise, is lifted to paths that

give a permutation of the roots x1, x2, x3, and x4: namely the permutation

produced is:

γ∗2 : x1 → x2 x2 → x1 x3 → x4 x4 → x3



Similarly, every loop starting and ending at 0, not passing through either

critical value, can be associated with a permutation of the zeros of p. These

permutations form a group, Gp, which is a subgroup of the group of

permutations of the set of roots, in this case, a subgroup of S4.

For example, starting with loop γ2, then following it with γ1, which is a loop

going counterclockwise around first −4 and then 105/16, gives the

permutation (γ2γ1)
∗ = γ∗1 γ∗2 :

x1 → x2 → x3 x2 → x1 → x1 x3 → x4 → x4 x4 → x3 → x2

In this case, computing all possible loops starting at 0, we find the group Gp

is isomorphic to the group D4, the set of symmetries of the square.



Thus, we have seen how a polynomial, p, of degree n, using a set of paths in

the plane, can be associated with a group, Gp, that is a subgroup of the

group Sn viewed as a group of permutations of the roots of p.

Now, the question is:

What happens if p is a composition of two, non-trivial, polynomials?



If p is a polynomial that is a composition of two polynomials, p = q ◦ r,

then the chain rule says

p′(z) = q′(r(z))r′(z)

This means that, if r(z) is a critical point of q so that q′(r(z)) = 0, then

p′(z) = 0 and z is a critical point of p.

And, in this case, w = q(r(z)) is a critical value of q, that is,

w = q(r(z)) = p(z) is a critical value of p.



If p is a polynomial that is a composition of two polynomials, p = q ◦ r,

then the chain rule says

p′(z) = q′(r(z))r′(z)

This means that, if r(z) is a critical point of q so that q′(r(z)) = 0, then

p′(z) = 0 and z is a critical point of p.

And, in this case, w = q(r(z)) is a critical value of q, that is,

w = q(r(z)) = p(z) is a critical value of p.

In other words, if p is a composition, p = q ◦ r, then the set of critical values

of q is a subset of the critcal values of p.



If p = q ◦ r is a polynomial, the fact that the critical values of q are all

critical values of p means that the paths associated with the group Gp allow

association of paths to Gq also.

The connection of the paths with the groups allows us to create a

homomorphism π of Gp onto Gq. In particular, Gq = Gp/ker(π), so

p = q ◦ r in a non-trivial way implies Gp has a non-trivial normal subgroup.



If S is a set, a partition of S , is a collection S1,S2, · · · ,Sk of disjoint

subsets of S so that S = S1 ∪ S2 ∪ · · · ∪ Sk.

If η is a permutation of S and S1,S2, · · · ,Sk is a partition of S , we say

η respects the partition of S if x ∈ Sj implies η(x) ∈ Sj for all x in S .

For a given polynomial p, we have associated a group Gp such that each

element of Gp is associated with a permutation of the roots of p.

Now, each normal subgroup N of Gp is associated with a partition of the

roots of p such that the elements of N respect the partition and the

elements of N act transitively each set Sj in the partition.



Main Theorem:

Let p be a polynomial with distinct roots, let Gp be the group associated

with p, and let N be a normal subgroup of Gp. Then N is associated with a

partition of the roots of p

{x1, · · · xk}, {xk+1, · · · x2k}, · · · , {x(`−1)k+1, · · · x`k}

for which the degree of p is `k. Let r be the polynomial with roots x1, x2,

· · ·, xk, and q be the polynomial with roots r(xk), r(x2k), · · ·, r(x`k). Then

p = q ◦ r.

Conversely, if p = q ◦ r, there is a homomorphism π : Gp 7→ Gq so that

Gq ≈ Gp/ker(π). Constructing r̃ from ker(π) as above and q̃ from p and r̃,

gives p = q̃ ◦ r̃ as a compositional factorization of p that is equivalent to

p = q ◦ r.



Since Gp is a finite group, it has only finitely many normal subgroups. For

each normal subgroup, in principle, the calculations in the Main Theorem

can be made. For some (non-trivial) normal subgroups, the compositional

factorizations might be trivial. But, if any are non-trivial, then p has a

non-trivial compositional factorization, and if none are, then p does not

have a non-trivial compositional factorization.

Corollary:

If N is a normal subgroup of Gp with the order of N less than

the degree of p, then there is a non-trivial factorization of p = q ◦ r.



Our Example:

We had p(z) = z4 + 2z3 − 5z2 − 6z + 5

Roots: x1 ≈ −2.8, x2 ≈ −1.6, x3 ≈ 0.6, and x4 ≈ 1.8

From the loops γ1 and γ2, we found permutations γ∗1 and γ∗2 that generated

Gp which was isomorphic to D4, the group of symmetries of the square.

In fact, Gp = {e, γ∗1 , γ∗2 , γ∗1 γ∗2 , γ∗2 γ∗1 , γ∗1 γ∗2 γ∗1 , γ∗2 γ∗1 γ∗2 , γ∗1 γ∗2 γ∗1 γ∗2 }

The six normal subgroups of Gp are {e}; Gp; C = {e, γ∗1 γ∗2 γ∗1 γ∗2 };

N1 = {e, γ∗1 γ∗2 γ∗1 γ∗2 , γ∗1 , γ∗2 γ∗1 γ∗2 }; N2 = {e, γ∗1 γ∗2 γ∗1 γ∗2 , γ∗2 , γ∗1 γ∗2 γ∗1 };

and N3 = {e, γ∗1 γ∗2 γ∗1 γ∗2 , γ∗1 γ∗2 , γ∗2 γ∗1 }.



Now, the normal subgroup {e} acts trivially and the subgroups Gp, N2, and

N3 act transitively on the set of roots. This means each of these normal

subgroups gives a trivial compositional factorization of the polynomial p.

On the other hand, the normal subgroups C and N1 each respect the

partition {x1, x4}, {x2, x3}.

According to the main theorem, we may take

r(z) = (z − x1)(z − x4) = z2 + z − 1

and, because r(x1) = r(x4) = 0 and r(x2) = r(x3) = 4, we may take

q(z) = (z − 0)(z − 4) = z2 − 4z

As expected,

q(r(z)) = (z2 + z − 1)2 − 4(z2 + z − 1) = z4 + 2z3 − 5z2 − 6z + 5 = p(z)



The normal subgroups C and N1 each respect the partition

{x1, x4}, {x2, x3}.

Also, according to the main theorem, we may take

r̃(z) = (z − x2)(z − x3) = z2 + z − 5

and, because r̃(x2) = r̃(x3) = 0 and r̃(x1) = r̃(x4) = −4, we may take

q̃(z) = (z − 0)(z − (−4)) = z2 + 4z

As expected,

q̃(r̃(z)) = (z2 + z − 5)2 + 4(z2 + z − 5) = z4 + 2z3 − 5z2 − 6z + 5 = p(z)



To summarize:

Mathematics is deeply unified and interconnected:

Beginning with a problem in complex analysis, using ideas from

complex analysis, the theory of Riemann surfaces, and topology,

a group is created. Ideas from group theory, involving normal subgroups

and their actions, produced a solution the original problem!
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To summarize:

Mathematics is deeply unified and interconnected:

Beginning with a problem in complex analysis, using ideas from

complex analysis, the theory of Riemann surfaces, and topology,

a group is created. Ideas from group theory, involving normal subgroups

and their actions, produced a solution the original problem!

Realization: It helps to know about a lot of ideas!

I wouldn’t have found this solution if I had not, against my inclination,

learned some mathematics others thought important.

Satisfaction!

I was pleased to have used something I had thought impossible to

understand to solve an interesting problem.

In time, I have forgiven Ritt for doing it first!
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THANK YOU!

Slides: http://www.math.iupui.edu/˜ccowen/


