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If ϕ is analytic map of D into itself,

and H is Hilbert space of analytic functions on D,

then composition operator Cϕ on H is operator

Cϕf = f ◦ ϕ for f ∈ H

Usual spaces: f analytic in D, with f (z) =
∑∞

n=0 anz
n

Hardy: H2(D) = H2 = {f : ‖f‖2 =

∞∑
n=0

|an|2 <∞}

Bergman: A2(D) = A2 = {f : ‖f‖2 =

∫
D
|f (z)|2 dA(z)

π
<∞}

weighted Bergman (α > 0): {f : ‖f‖2 =

∫
D
|f (z)|2(1−|z|2)α dA(z)

π
<∞}

weighted Hardy (‖zn‖ = βn > 0): H2(β) = {f : ‖f‖2 =

∞∑
n=0

|an|2

β2
n

<∞}



Recall: for w in D, the reproducing kernel function for H is Kw in H with

〈f,Kw〉 = f (w) for all f ∈ H

For H2, we have Kw(z) = (1− wz)−1

For A2, we have Kw(z) = (1− wz)−2

In this talk, we will consider spaces H2(βκ) for κ ≥ 1 which are the

weighted Hardy spaces with

Kw(z) = (1− wz)−κ

Spaces H2(βκ) include the usual Hardy and Bergman spaces and

all of the weighted Bergman spaces (α = κ + 2).

On all of these spaces, for any ϕ analytic map of D into itself,

the composition operator Cϕ is a bounded operator and for all α in D

C∗ϕKw = Kϕ(w)



For A a bounded operator on H, a (closed) subspace M will be called

a (non-trivial) invariant subspace of A if M 6= 0 and M 6= H and

v ∈M implies Av ∈M

In finite dimensional spaces, every operator has invariant subspaces,

and understanding the structure of the invariant subspaces

has been critical in understanding the structure of the operators.

Want the same for operators on infinite dimensional spaces!

Invariant Subspace Problem:

Does every bounded operator have a (non-trivial) invariant subspace?

No! in general, for Banach spaces! (C.J. Read and others 1984–. . . )

Still open for Hilbert space!



But,

for Hilbert space operator for which lattice of invariant subspaces is known,

we feel we have a basic understanding of the structure of the operator!!

Goal today:

Outline three sets of ideas about invariant subspaces of composition ops

and thereby persuade you that now is good time to think about the topic!



But,

for Hilbert space operator for which lattice of invariant subspaces is known,

we feel we have a basic understanding of the structure of the operator!!

Goal today:

Outline three sets of ideas about invariant subspaces of composition ops

and thereby persuade you that now is good time to think about the topic!

A Digression!



One of the first times that invariant subspaces were mentioned in connection

with composition operators was in a paper [NRW] of Nordgren, Rosenthal,

and Wintrobe: “ Invertible Composition Operators on Hp ”

J. Func. Anal. 73(1987), 324–344.

Definition:

An operator U is called universal if for every operator T , some multiple of

T is similar to the restriction of U to one of its invariant subspaces.

Caradus (1969) showed that

an operator is universal if it is onto and has an infinite dimensional kernel

and

[NRW] showed that for ϕ(z) =
2z − 1

2− z
the operator Cϕ− I is universal.



End of Digression!

But,

for Hilbert space operator for which lattice of invariant subspaces is known,

we feel we have a basic understanding of the structure of the operator!!

Beurling’s Theorem (1949)

Let S be the operator of multiplication by z on H2(D). A closed subspace

M of H2(D) is invariant for S if and only if there is an inner function ψ

such that M = ψH2(D).



First Example: A complete lattice!

Theorem (Montes-Rodŕıguez, Ponce-Escudero, & Shkarin, 2010)

For Re a > 0, let

ϕa(z) =
(2− a)z + a

−az + 2 + a

A closed subspace M of H2(D) is invariant for Cϕa if and only if there is

a closed set F of [0,∞) such that

M = closed span{et
z+1
z−1 : t ∈ F}

The relevance of the functions et
z+1
z−1 is that they are eigenvectors for Cϕa:

Cϕa

(
et

z+1
z−1
)

= e−atet
z+1
z−1

In other words, each of the invariant subspaces for Cϕa is the closed span of

a collection of eigenvectors.



Theorem (Montes-Rodŕıguez, Ponce-Escudero, & Shkarin, 2010)

For Re a > 0, let

ϕa(z) =
(2− a)z + a

−az + 2 + a

A closed subspace M of H2(D) is invariant for Cϕa if and only if there is

a closed set F of [0,∞) such that

M = closed span{et
z+1
z−1 : t ∈ F}

Corollary

If Re a > 0 and Re b > 0,

then the lattice of invariant subspaces of Cϕa and Cϕb are the same.

Corollary

If Re a > 0, then Cϕa has no non-trivial reducing subspaces.



Their proof is based on two quite different ideas.

First, suppose A is a Banach algebra. If τ is in A, we say τ is cyclic if the

algebra generated by τ is dense in A. Let Mτ be the operator on A of

multiplication by τ , that is, Mτω = τω for ω in A.

Proposition

If τ be a cyclic element in the Banach algebra A,

then the invariant subspaces of Mτ are the closed ideals of A.



Let W 1,2[0,∞) be the Sobolev space with inner product

〈f, g〉1,2 =
1

2

∫ ∞
0

f (t)g(t) + f ′(t)g′(t) dt

where f and g functions in L2[0,∞) that are absolutely continuous on each

bounded subinterval of [0,∞) and whose derivatives are in L2[0,∞).

Second, they give a unitary equivalence between H2(D) and W 1,2[0,∞) and

they show that W 1,2[0,∞) is a Banach algebra.

Then they show that the unitary equivalence of the spaces carries

adjoints of the composition operators to operators of multiplication by cyclic

elements of the Banach algebra to which they can apply the Proposition.



Second Example:

Invariant subspaces with application to function theory

Let ϕ be an analytic map of D into itself and ψ be analytic on D.

Weighted composition operator Wψ,ϕ is the operator on H2(βκ) given by

(Wψ,ϕf )(z) = ψ(z)f (ϕ(z))
for z in D.

Since H2(βκ) contains the constants,

if Wψ,ϕ is bounded, then ψ = Wψ,ϕ(1) is in H2(βκ).

Clearly, if ψ is in H∞(D), then Wψ,ϕ is bounded on H2(βκ) and

‖Wψ,ϕ‖ ≤ ‖ψ‖∞‖Cϕ‖

BUT, it is not necessary for ψ to be bounded for Wψ,ϕ to be bounded.



Theorem. (Ko & C. for H2(D); Gunatillake, Ko, & C. for H2(βκ))

For κ ≥ 1,

Wψ,ϕ is a bounded Hermitian weighted composition operator on H2(βκ),

if and only if

ψ(z) = c(1− a0z)−κ and ϕ(z) = a0 +
a1z

1− a0z

where c = ψ(0) and a1 = ϕ′(0) are real numbers

and a1 and a0 = ϕ(0) are such that ϕ maps the unit disk into itself.

Without loss of generality, 0 < a0 < 1, and then the most interesting case

occurs when a1 = (1− a0)2 which means ϕ(1) = ϕ′(1) = 1.

Writing t = a0/(1− a0), each such Wψ,ϕ is a multiple of At = Wψt,ϕt where

ψt = (1 + t− tz)−κ and ϕt = (t + (1− t)z)/(1 + t− tz)



Theorem.

For κ ≥ 1 and 0 ≤ t <∞, let At = Wψt,ϕt where

ψt = (1 + t− tz)−κ and ϕt = (t + (1− t)z)/(1 + t− tz)

The At form a strongly continuous semigroup of Hermitian weighted

composition operators on H2(βκ). If ∆ is the infinitesimal generator of

this semigroup, DA = {f ∈ H2(βκ) : (z − 1)2f ′ ∈ H2(βκ)} is the domain

of ∆ and ∆(f )(z) = (z − 1)2f ′(z) + κ(z − 1)f (z) for f in DA.



Theorem.

For κ ≥ 1 and 0 ≤ t <∞, let At = Wψt,ϕt where

ψt = (1 + t− tz)−κ and ϕt = (t + (1− t)z)/(1 + t− tz)

The At form a strongly continuous semigroup of Hermitian weighted

composition operators on H2(βκ). If ∆ is the infinitesimal generator of

this semigroup, DA = {f ∈ H2(βκ) : (z − 1)2f ′ ∈ H2(βκ)} is the domain

of ∆ and ∆(f )(z) = (z − 1)2f ′(z) + κ(z − 1)f (z) for f in DA.

Corollary.

For κ ≥ 1 and for t > 0, the operator At on H2(βκ) has no eigenvalues.

Proof: There are no non-zero functions in H2(βκ) that satisfy

(z − 1)2f ′ + κ(z − 1)f = λf (z)



Theorem.

For κ ≥ 1 and 0 ≤ t <∞, let At = Wψt,ϕt where

ψt = (1 + t− tz)−κ and ϕt = (t + (1− t)z)/(1 + t− tz)

For each t, the operator At is a cyclic Hermitian weighted composition

operator on H2(βκ). Indeed, the vector 1 is a cyclic vector for At.

If µ is the absolutely continuous probability measure given by

dµ =
(ln(1/x))κ−1

Γ(κ)
dx

the operator U given by U(ψt) = xt for 0 ≤ t <∞, is a unitary map

of H2(βκ) onto L2([0, 1], µ) and satisfies UAt = MxtU .

In particular, for each t > 0, these operators satisfy ‖At‖ = 1 and

have spectrum σ(At) = [0, 1].



We define subspaces Hc of H2(βκ) = A2
κ−2 as follows:

Let H0 = H2(βκ). For c < 0, define the subspace Hc by

Hc = closure {ec
1+z
1−zf : f ∈ H2(βκ)}

For 0 ≤ t and c ≤ 0, the subspace Hc is invariant for At.



We define subspaces Hc of H2(βκ) = A2
κ−2 as follows:

Let H0 = H2(βκ). For c < 0, define the subspace Hc by

Hc = closure {ec
1+z
1−zf : f ∈ H2(βκ)}

For 0 ≤ t and c ≤ 0, the subspace Hc is invariant for At.

For 0 ≤ δ ≤ 1 define the subspace Lδ of L2([0, 1], µ) by

Lδ = {f ∈ L2([0, 1], µ) : f (x) = 0 for δ < x ≤ 1}

These are spectral subspaces of the multiplication operators Mxt



We define subspaces Hc of H2(βκ) = A2
κ−2 as follows:

Let H0 = H2(βκ). For c < 0, define the subspace Hc by

Hc = closure {ec
1+z
1−zf : f ∈ H2(βκ)}

For 0 ≤ t and c ≤ 0, the subspace Hc is invariant for At.

For 0 ≤ δ ≤ 1 define the subspace Lδ of L2([0, 1], µ) by

Lδ = {f ∈ L2([0, 1], µ) : f (x) = 0 for δ < x ≤ 1}

These are spectral subspaces of the multiplication operators Mxt

Theorem.

If U gives unitary equivalence from At on H2(βκ) to Mxt on L2([0, 1], µ),

then U∗Lδ = H(ln δ)/2 or equivalently UHc = Le2c



Suppose N is a subspace of H2(βκ) that is invariant for the operator of

multiplication by z.

If there is f in N with f (0) 6= 0 and G is a function of N so that

‖G‖ = 1 and G(0) = sup{Re f (0) : f ∈ N and ‖f‖ = 1}

then we say G solves the extremal problem for the invariant subspace N .



Suppose N is a subspace of H2(βκ) that is invariant for the operator of

multiplication by z.

If there is f in N with f (0) 6= 0 and G is a function of N so that

‖G‖ = 1 and G(0) = sup{Re f (0) : f ∈ N and ‖f‖ = 1}

then we say G solves the extremal problem for the invariant subspace N .

Subspaces Hc are spectral subspaces for At, but more interestingly, they are

invariant subspaces for Mz on H2(βκ) generated by atomic inner functions!

The unitary equivalence between the subspaces Hc in H2(βκ) and Lδ in

L2([0, 1], µ) gives an opportunity to compute the extremal functions for Lδ

and translate the answer back to Hc!!



Our computation requires the use of the incomplete Gamma function

Γ(a, w) =

∫ ∞
w

ta−1e−t dt

where a is a complex parameter and w is a real parameter. An alternate

definition in which both a and w are complex parameters is

Γ(a, w) = e−wwa

∫ ∞
0

e−wu(1 + u)a−1 du

Theorem.

For c < 0, if Hc is the invariant subspace of H2(βκ) defined by

Hc = closure{ec
1+z
1−zf : f ∈ H2(βκ)}

then the extremal function for Hc is

Gc(z) =
Γ(κ,−2c/(1− z))√

Γ(κ)
√

Γ(κ,−2c)



Theorem.

For 0 < r < 1, let Pr be the orthogonal projection onto the subspace

H(ln r)/2 in H2(βκ). If u is any point of the open unit disk, then for

Ku(z) = (1− uz)−κ

(PrKu)(z) =
1

Γ(κ)(1− uz)κ
Γ

(
κ,− (ln r)(1− uz)

(1− u)(1− z)

)

This gives the kernel functions for the invariant subspaces Hc in H2(βκ),

including for the usual Bergman space (κ = 2).

This result generalizes the formula for the usual Bergman space

computed in a different way by W. Yang in his thesis.



Third Example:

Common invariant subspaces for Cϕ and S, multiplication by z

(Wahl & C.)

Let ϕ be analytic map of D into itself.

We say b is a fixed point of ϕ if ϕ(b) = b (when |b| < 1)

or limr→1− ϕ(rb) = b (when |b| = 1).

Julia-Carathéordory Theorem implies

If b is a fixed point of ϕ with |b| = 1, then limr→1− ϕ
′(rb) exists

(call it ϕ′(b)) and 0 < ϕ′(b) ≤ ∞.



Denjoy-Wolff Theorem (1926)

If ϕ is an analytic map of D into itself (not an elliptic automorphism of D),

there is a unique fixed point, a, of ϕ in D such that |ϕ′(a)| ≤ 1.

Moreover, the sequence of iterates, ϕn, converges to a uniformly on

compact subsets of D, so for all points, limn→∞ϕn(z) = a.

Analytic self-maps (not elliptic automorphisms) of D divide into distinct

classes based on linear fractional models for iteration:

• (Plane/Dilation): |a| < 1 and 0 < |ϕ′(a)| < 1

• (Half-Plane/Dilation): |a| = 1 and 0 < ϕ′(a) < 1

• (Half-Plane/Translation): |a| = 1, ϕ′(a) = 1, and ϕn(z) interpolating

• (Plane/Translation): |a| = 1, ϕ′(a) = 1, and ϕn(z) not interpolating

• (no LF model): |a| < 1 and ϕ′(a) = 0



Without loss of generality, if a, the Denjoy-Wolff point of ϕ,

is in D, we can assume a = 0, and if |a| = 1, we can assume a = 1.

For simplicity, we will assume that the Hilbert space is H2(D), and when

weighted composition operators Wψ,ϕ are discussed, that ψ is in H∞(D).

Theorem:

If ϕ is an analytic map of D into itself, ψ is in H∞, and M is an invariant

subspace for Cϕ and S, then M is an invariant subspace for Wψ,ϕ.

Conversely, if ψ−1 is in H∞ and M is an invariant subspace

for Wψ,ϕ and S, then M invariant for Cϕ.



Theorem:

If ϕ is an analytic map of the unit disk into itself with ϕ(1) = 1 and

ϕ′(1) ≤ 1, then eα
z+1
z−1H2(D) is an invariant subspace for Cϕ whenever α > 0.

Outline of Proof:

Use Julia’s Lemma to prove the following:

Let ϕ be an analytic map of the unit disk into itself such that ϕ(1) = 1

and ϕ′(1) ≤ 1. Then, for z in D,

Re

(
ϕ(z) + 1

ϕ(z)− 1
− z + 1

z − 1

)
≤ 0

For g in H2,

Cϕ(eα
z+1
z−1g(z)) = e

α
ϕ(z)+1
ϕ(z)−1 (g ◦ ϕ) (z)

=

(
eα

z+1
z−1e

α
(
ϕ(z)+1
ϕ(z)−1−

z+1
z−1

))
(g ◦ ϕ) (z)

= eα
z+1
z−1

(
e
α
(
ϕ(z)+1
ϕ(z)−1−

z+1
z−1

)
(g ◦ ϕ) (z)

)



Theorem:

If ϕ is an analytic map of the unit disk into itself and M = eα
z+1
z−1H2(D) is

an invariant subspace for Cϕ for some α > 0, then ϕ(1) = 1 and ϕ′(1) ≤ 1.

Outline of Proof:

eα
z+1
z−1 in M implies e

α
ϕ(z)+1
ϕ(z)−1 is in M which means limr→1− e

α
ϕ(r)+1
ϕ(r)−1 = 0

which means ϕ(1) = 1.

Using the Julia-Carathéordory Theorem, we see e
α
ϕ(z)+1
ϕ(z)−1 in eα

z+1
z−1H2(D)

implies ϕ′(1) ≤ 1.

Corollary:

The subspace M = eα
z+1
z−1H2(D) is invariant for Cϕ for α > 0 if and only if

1 is the Denjoy-Wolff point of ϕ.



For |λ| = 1 and zj, j = 1, 2, . . ., points in D satisfying
∑

j(1− |zj|) <∞,

the function

B(z) = λ
∏
j

|zj|
zj

zj − z
1− zjz

is a Blaschke product. The zero set, {zj}, for B is denoted by Z(B).

Lemma:

Let Cϕ be a composition operator on H2(D). Then BH2(D) is Cϕ-invariant

if and only if zj ∈ Z(B) implies ϕn(zj) ∈ Z(B) for all non-negative integers

j and n and if w ∈ Z(B), then multiplicity ϕ(w) ≥ multiplicity w.

Outline of Proof:

BH2(D) invariant for Cϕ insures there is g in H2 such that CϕB = Bg.

Thus, CϕB = 0 whenever B = 0, so zj in Z(B) implies

CϕB(zj) = B(ϕ(zj)) = 0, that is, ϕ(zj) is in Z(B) also.



Theorem:

Let Cϕ be a composition operator on H2(D) with ϕ(a) = a for a in D.

If BH2(D) is Cϕ-invariant and non-trivial, then (i) a ∈ Z(B) and

(ii) for every zj ∈ Z(B), there exists an integer nj such that ϕnj(zj) = a.

Outline of Proof:

If w is in Z(B), then ϕk(w) is in Z(B) for all k, but limk→∞ϕk(w) = a.

If there were infinitely many points ϕk(w), then B ≡ 0, so there are only

finitely many and there is n so that ϕn(w) = a. This means a is in Z(B).



Theorem:

Let Cϕ be a composition operator on H2(D) with ϕ(a) = a for a in D.

If BH2(D) is Cϕ-invariant and non-trivial, then (i) a ∈ Z(B) and

(ii) for every zj ∈ Z(B), there exists an integer nj such that ϕnj(zj) = a.

Corollary:

Let ϕ be a univalent analytic function mapping the unit disk into itself with

ϕ(a) = a for some a in D and Cϕ be the composition operator on H2(D).

Then the subspaces

(
z − a
1− az

)k
H2(D) are the only non-trivial

Blaschke product induced subspaces invariant for both Cϕ and S.

Outline of Proof:

If B were a Blaschke product with a zero w 6= a with BH2(D) invariant,

then ϕn(w) ∈ Z(B) for all n, but ϕn(w) 6= a for any n because ϕ is

univalent. This means B ≡ 0. Thus, the only zero of B is a.



Theorem:

Let Cϕ be a composition operator on H2(D) and suppose the Denjoy-Wolff

point of ϕ is a = 1. If BH2(D) is Cϕ-invariant and non-trivial, and

w ∈ Z(B), then the infinite set {ϕn(w) : n ∈ N} ⊂ Z(B).

Corollary:

If Cϕ is a composition operator on H2(D) and the Denjoy-Wolff point of ϕ

is a = 1, then there are no finite Blaschke products B so that BH2(D) is

Cϕ-invariant and non-trivial.



Theorem:

Let Cϕ be a composition operator on H2(D) and suppose the Denjoy-Wolff

point of ϕ is a = 1. If BH2(D) is Cϕ-invariant and non-trivial, and

w ∈ Z(B), then the infinite set {ϕn(w) : n ∈ N} ⊂ Z(B).

Corollary:

If Cϕ is a composition operator on H2(D), the Denjoy-Wolff point of ϕ is

a = 1, and

either • ϕ′(1) < 1

or • ϕ′(1) = 1 and ϕ is in the half-plane translation case,

then for any finite Blaschke product B0, there is an infinite Blaschke product

B so that B0 divides B and BH2(D) is Cϕ-invariant and non-trivial.

Outline of Proof:

In these cases, if w is a zero of B0, then {ϕn(w)} is a Blaschke sequence.



Theorem:

Let Cϕ be a composition operator on H2(D) and suppose the Denjoy-Wolff

point of ϕ is a = 1. If BH2(D) is Cϕ-invariant and non-trivial, and

w ∈ Z(B), then the infinite set {ϕn(w) : n ∈ N} ⊂ Z(B).

Example:

If ϕ(z) =
1

2− z
, which has ϕ(1) = ϕ′(1) = 1 but ϕ is in the plane

translation case, then there is no Blaschke product for which BH2(D) is

Cϕ-invariant and non-trivial.

Outline of Proof:

If w is any point of D, then {ϕn(w)} is a NOT a Blaschke sequence.



There is space between our results: If J is a singular inner function whose

singular measure has no atom, then our work says nothing about possible

non-trivial spaces of the form JH2(D) that are Cϕ-invariant!



¡Muchas Gracias!

http://www.math.iupui.edu/˜ccowen/Downloads.html


