Invariant Subspaces for Composition Operators

Carl C. Cowen

IUPUI

(Indiana University Purdue University Indianapolis)

Special Session on Operator Theory on Analytic Spaces

JMM Boston, January 7, 2012

If φ is an analytic function of \mathbb{D} into itself,

and \mathcal{H} is a Hilbert space of analytic functions on \mathbb{D} ,

then the composition operator C_{φ} on \mathcal{H} is the operator

$$C_{\varphi}f = f \circ \varphi \quad \text{for} \quad f \in \mathcal{H}$$

Usual spaces: f analytic in \mathbb{D} , with $f(z) = \sum_{n=0}^{\infty} a_n z^n$

Hardy:
$$H^2(\mathbb{D}) = H^2 = \{f : ||f||^2 = \sum_{n=0}^{\infty} |a_n|^2 < \infty\}$$

Bergman:
$$A^2(\mathbb{D}) = A^2 = \{f : ||f||^2 = \int_{\mathbb{D}} |f(z)|^2 \frac{dA(z)}{\pi} < \infty\}$$

weighted Bergman
$$(\alpha > 0)$$
: $A_{\alpha}^2 = \{f : ||f||^2 = \int_{\mathbb{D}} |f(z)|^2 (1 - |z|^2)^{\alpha} \frac{dA(z)}{\pi} < \infty \}$

weighted Hardy (
$$||z^n|| = \beta_n > 0$$
): $H^2(\beta) = \{f : ||f||^2 = \sum_{n=0}^{\infty} |a_n|^2 \beta_n^2 < \infty \}$

Recall: For w in \mathbb{D} , the reproducing kernel function for \mathcal{H} is K_w in \mathcal{H} with

$$\langle f, K_w \rangle = f(w)$$
 for all $f \in \mathcal{H}$

For H^2 , we have $K_w(z) = (1 - \overline{w}z)^{-1}$

For A^2 , we have $K_w(z) = (1 - \overline{w}z)^{-2}$

In this talk, we will consider spaces $H^2(\beta_{\kappa})$ for $\kappa \geq 1$ which are the weighted Hardy spaces with

$$K_w(z) = (1 - \overline{w}z)^{-\kappa}$$

The spaces $H^2(\beta_{\kappa})$ include the usual Hardy and Bergman spaces and all the weighted Bergman spaces ($\alpha = \kappa + 2$).

On all of these spaces, for any φ analytic map of \mathbb{D} into itself, the composition operator C_{φ} is a bounded operator and for all w in \mathbb{D}

$$C_{\varphi}^* K_w = K_{\varphi(w)}$$

For A a bounded operator on \mathcal{H} , a (closed) subspace M is called a (non-trivial) invariant subspace of A if $M \neq 0$ and $M \neq \mathcal{H}$ and $v \in M$ implies $Av \in M$ also.

In finite dimensional spaces, every operator has invariant subspaces
and understanding the structure of the invariant subspaces
has been critical in understanding the structure of the operators.

Want the same for operators on infinite dimensional spaces!

Invariant Subspace Problem:

Does every bounded operator have a (non-trivial) invariant subspace?

No! in general, for Banach spaces! (C. J. Read and others 1984–)
Still open for Hilbert spaces!

BUT,

for Hilbert space operator for which the lattice of invariant subspaces is known, we feel we have a basic understanding of the structure of the operator!

Goal today:

Outline three sets of ideas about invariant subspaces of composition operators and thereby persuade you that now is a good time to think about this topic!

BUT,

for Hilbert space operator for which the lattice of invariant subspaces is known, we feel we have a basic understanding of the structure of the operator!

Goal today:

Outline three sets of ideas about invariant subspaces of composition operators and thereby persuade you that now is a good time to think about this topic!

A Digression!

One of the first times that invariant subspaces were mentioned in connection with composition operators was in a paper [NRW] of Nordgren, Rosenthal, and Wintrobe: "Invertible Composition Operators on H^p "

J. Func. Anal. **73**(1987), 324–344.

Definition:

An operator U is called universal if for every operator T, some multiple of T is similar to the restriction of U to one of its invariant subspaces.

Caradus (1969) showed that

An operator is universal if it is onto and has an infinite dimensional kernel and [NRW] showed that

For
$$\varphi(z) = \frac{2z-1}{2-z}$$
 the operator $C_{\varphi} - I$ is universal.

End of Digression!

BUT,

for Hilbert space operator for which the lattice of invariant subspaces is known, we feel we have a basic understanding of the structure of the operator!

Beurling's Theorem (1949):

Let S be the operator of multiplication by z on $H^2(\mathbb{D})$. A closed subspace M of $H^2(\mathbb{D})$ is invariant for S if and only if there is an inner function ψ such that $M = \psi H^2(\mathbb{D})$.

First Example: A complete lattice!

Theorem (Montes-Rodríguez, Ponce-Escudero, & Shkarin, 2010)

For $\operatorname{Re} a > 0$, let

$$\varphi_a(z) = \frac{(2-a)z + a}{-az + 2 + a}$$

A closed subspace M of $H^2(\mathbb{D})$ is invariant for C_{φ_a} if and only if there is a closed set F of $[0, \infty)$ such that

$$M = \operatorname{closed span}\{e^{t\frac{z+1}{z-1}} : t \in F\}$$

The relevance of the functions $e^{t\frac{z+1}{z-1}}$ is that they are eigenvectors for C_{φ_a} :

$$C_{\varphi_a}\left(e^{t\frac{z+1}{z-1}}\right) = e^{-at}e^{t\frac{z+1}{z-1}}$$

In other words, each of the invariant subspaces for C_{φ_a} is the closed span of a collection of eigenvectors.

Theorem (Montes-Rodríguez, Ponce-Escudero, & Shkarin, 2010)

For $\operatorname{Re} a > 0$, let

$$\varphi_a(z) = \frac{(2-a)z + a}{-az + 2 + a}$$

A closed subspace M of $H^2(\mathbb{D})$ is invariant for C_{φ_a} if and only if there is a closed set F of $[0, \infty)$ such that

$$M = \operatorname{closed span}\{e^{t\frac{z+1}{z-1}} : t \in F\}$$

Corollary

If $\operatorname{Re} a > 0$ and $\operatorname{Re} b > 0$,

then the lattices of invariant subspaces for C_{φ_a} and for C_{φ_b} are the same.

Corollary

If Re a > 0, then C_{φ_a} has no (non-trivial) reducing subspaces.

Their proof is based on two quite different ideas.

First, suppose \mathcal{A} is a Banach algebra. If τ is in \mathcal{A} , we say τ is a cyclic element if the algebra generated by τ is dense in \mathcal{A} .

Let M_{τ} be the operator on \mathcal{A} of multiplication by τ , that is,

$$M_{\tau}\omega = \tau\omega$$
 for ω in \mathcal{A} .

Proposition

If τ is a cyclic element in the Banach algebra \mathcal{A} ,

then the invariant subspaces of M_{τ} are the closed ideals of \mathcal{A} .

Let $W^{1,2}[0,\infty)$ be the Sobolev space with inner product

$$\langle f, g \rangle_{1,2} = \frac{1}{2} \int_0^\infty f(t) \overline{g(t)} + f'(t) \overline{g'(t)} dt$$

where f and g are functions in $L^2[0,\infty)$ that are absolutely continuous on each bounded subinterval of $[0,\infty)$ and whose derivatives f' and g' are in $L^2[0,\infty)$.

They give a unitary equivalence between $H^2(\mathbb{D})$ and the Sobolev space and they show that $W^{1,2}[0,\infty)$ is a Banach algebra.

Finally, they show that the unitary equivalence of these spaces carries the adjoints of the composition operators to multiplication by cyclic elements of the Banach algebra to which they can apply the Proposition.

Second Example:

Invariant subspaces with application to function theory

Let φ be an analytic map of \mathbb{D} into itself and let ψ be analytic on \mathbb{D} .

The weighted composition operator $W_{\psi,\varphi}$ is the operator on $H^2(\beta_{\kappa})$ given by

$$(W_{\psi,\varphi}f)(z) = \psi(z)f(\varphi(z))$$
 for z in \mathbb{D}

Since $H^2(\beta_{\kappa})$ contains the constants,

if $W_{\psi,\varphi}$ is bounded, then $\psi = W_{\psi,\varphi}(1)$ is in $H^2(\beta_{\kappa})$.

Clearly, if ψ is in $H^{\infty}(\mathbb{D})$ then $W_{\psi,\varphi}$ is a bounded operator on $H^2(\beta_{\kappa})$ and

$$||W_{\psi,\varphi}|| \le ||\psi||_{\infty} ||C_{\varphi}||$$

BUT, it is not necessary for ψ to be bounded for $W_{\psi,\varphi}$ to be bounded.

Theorem. (Ko & C. for $H^2(\mathbb{D})$ and Gunatillake, Ko, and C. for $H^2(\beta_{\kappa})$)

For $\kappa \geq 1$,

 $W_{\psi,\varphi}$ is a bounded Hermitian weighted composition operator if and only if

$$\psi(z) = c(1 - \overline{a_0}z)^{-\kappa}$$
 and $\varphi(z) = a_0 + \frac{a_1z}{1 - \overline{a_0}z}$

where $c = \psi(0)$ and $a_1 = \varphi'(0)$ are real numbers

and a_1 and $a_0 = \varphi(0)$ are such that φ maps the unit disk into itself.

Without loss of generality, $0 < a_0 < 1$, and then the most interesting case comes when $a_1 = (1 - a_0)^2$ which means that $\varphi(1) = \varphi'(1) = 1$.

Writing $t = a_0/(1 - a_0)$, each such $W_{\psi,\varphi}$ is a multiple of $A_t = W_{\psi_t,\varphi_t}$ where

$$\psi_t(z) = (1 + t - tz)^{-\kappa}$$
 and $\varphi_t(z) = (t + (1 - t)z)/(1 + t - tz)$

For $\kappa \geq 1$ and $0 \leq t < \infty$, let $A_t = W_{\psi_t, \varphi_t}$ where

$$\psi_t(z) = (1 + t - tz)^{-\kappa}$$
 and $\varphi_t(z) = (t + (1 - t)z)/(1 + t - tz)$

The A_t form a strongly continuous semigroup of Hermitian weighted composition operators on $H^2(\beta_{\kappa})$. If Δ is the infinitesimal generator of this semigroup, $\mathcal{D}_A = \{ f \in H^2(\beta_{\kappa}) : (z-1)^2 f' \in H^2(\beta_{\kappa}) \}$ is the domain of Δ and $(\Delta f)(z) = (z-1)^2 f'(z) + \kappa(z-1) f(z)$ for f in \mathcal{D}_A .

Corollary.

For $\kappa \geq 1$ and for t > 0, the operator A_t on $H^2(\beta_{\kappa})$ has no eigenvalues.

Proof: There are no non-zero functions in $H^2(\beta_{\kappa})$ that satisfy

$$(z-1)^2 f' + \kappa (z-1)f = \lambda f$$

For $\kappa \geq 1$ and $0 \leq t < \infty$, let $A_t = W_{\psi_t, \varphi_t}$ where

$$\psi_t(z) = (1 + t - tz)^{-\kappa}$$
 and $\varphi_t(z) = (t + (1 - t)z)/(1 + t - tz)$

For each t > 0, the operator A_t is a cyclic Hermitian weighted composition operator on $H^2(\beta_{\kappa})$. Indeed, the vector 1 is a cyclic vector for A_t .

If μ is the absolutely continuous probability measure given by

$$d\mu = \frac{(\log(1/x))^{\kappa - 1}}{\Gamma(\kappa)} dx$$

the operator U given by $U(\psi_t) = x^t$ for $0 \le t < \infty$ is a unitary map of $H^2(\beta_{\kappa})$ onto $L^2([0,1],\mu)$ and satisfies $UA_t = M_{x^t}U$.

In particular, for each t > 0, these operators satisfy $||A_t|| = 1$ and have spectrum $\sigma(A_t) = [0, 1]$.

We define subspaces H_c of $H^2(\beta_{\kappa}) = A_{\kappa-2}^2$ as follows:

Let $H_0 = H^2(\beta_{\kappa})$. For c < 0, define the subspace H_c by

$$H_c = \operatorname{closure} \{ e^{c\frac{1+z}{1-z}} f : f \in H^2(\beta_{\kappa}) \}$$

For $0 \le t$ and $c \le 0$, the subspace H_c is invariant for A_t .

For $0 \le \delta \le 1$ define the subspace L_{δ} of $L^{2}([0,1],\mu)$ by

$$L_{\delta} = \{ f \in L^2([0,1], \mu) : f(x) = 0 \text{ for } \delta < x \le 1 \}$$

These are the spectral subspaces of the multiplication operators M_{x^t} .

Theorem.

If U gives the unitary equavalence from A_t on $H^2(\beta_{\kappa})$ to M_{x^t} on $L^2([0,1],\mu)$,

then
$$U^*L_{\delta} = H_{(\log \delta)/2}$$
 or equivalently $UH_c = L_{e^{2c}}$

Suppose N is a subspace of $H^2(\beta_{\kappa})$ that is invariant for the operator of multiplication by z.

If there is f in N with $f(0) \neq 0$ and G is a function of N so that $||G|| = 1 \quad \text{and} \quad G(0) = \sup\{\text{Re}\, f(0) : f \in N \quad \text{and} \quad ||f|| = 1\}$ then we say G solves the extremal problem for the invariant subspace N.

Subspaces H_c are spectral subspaces for A_t , but more interestingly, they are invariant subspaces for M_z on $H^2(\beta_{\kappa})$ generated by atomic inner functions!

The unitary equivalence between the subspaces H_c in $H^2(\beta_{\kappa})$ and L_{δ} in $L^2([0,1],\mu)$ gives an opportunity to compute the extremal functions for L_{δ} and translate the answer back to $H_c!!$

Our computation requires the use of the *incomplete Gamma function*

$$\Gamma(a, w) = \int_{w}^{\infty} t^{a-1} e^{-t} dt$$

where a is a complex parameter and w is a real parameter. An alternate definition in which both a and w are complex parameters is

$$\Gamma(a, w) = e^{-w} w^a \int_0^\infty e^{-wu} (1+u)^{a-1} du$$

Theorem.

For c < 0, if H_c is the invariant subspace for M_z in $H^2(\beta_{\kappa})$ defined by

$$H_c = \operatorname{closure} \{ e^{c\frac{1+z}{1-z}} f : f \in H^2(\beta_{\kappa}) \}$$

then the extremal function for H_c is

$$G_c(z) = \frac{\Gamma(\kappa, -2c/(1-z))}{\Gamma(\kappa)\Gamma(\kappa, -2c)}$$

For 0 < r < 1, let P_r be the orthogonal projection onto the subspace $H_{(\log r)/2}$ in $H^2(\beta_{\kappa})$. If u is any point of the open disk, then for $K_u(z) = (1 - \overline{u}z)^{-\kappa}$

$$(P_r K_u)(z) = \frac{1}{\Gamma(\kappa)(1 - \overline{u}z)^{\kappa}} \Gamma\left(\kappa, -\frac{(\log r)(1 - \overline{u}z)}{(1 - \overline{u})(1 - z)}\right)$$

This gives the kernel functions for the invariant subspaces H_c in $H^2(\beta_{\kappa})$, including for the usual Bergman space ($\kappa = 2$).

This result generalizes the formula for the usual Bergman space computed in a different way by W. Yang in his thesis.

Third Example:

Common invariant subspaces for C_{φ} and S, multiplication by z (Wahl & C., 2011)

Let φ be an analytic map of \mathbb{D} into itself.

We say b is a fixed point of φ if $\varphi(b) = b$ (when |b| < 1), or if $\lim_{r \to 1^-} \varphi(rb) = b$ (when |b| = 1).

Julia-Carathéodory Theorem implies

If b is a fixed point of φ with |b| = 1, then $\lim_{r \to 1^-} \varphi'(rb)$ exists (call it $\varphi'(b)$) and $0 < \varphi'(b) \le \infty$.

Denjoy-Wolff Theorem (1926).

If φ is an analytic map of $\mathbb D$ into itself (not an elliptic automorphism), there is a unique fixed point, a, of φ in $\overline{\mathbb D}$ such that $|\varphi'(a)| \leq 1$.

Moreover, the sequence of iterates, (φ_n) , converges to a uniformly on compact subsets of \mathbb{D} , and this distinguished fixed point is called the *Denjoy-Wolff point*.

Analytic self-maps (not elliptic automorphisms) of \mathbb{D} divide into distinct classes based on linear fractional models for iteration:

- (Plane/Dilation): |a| < 1 and $0 < |\varphi'(a)| < 1$
- (Half-Plane/Dilation): |a| = 1 and $0 < \varphi'(a) < 1$
- (Half-Plane/Translation): |a| = 1 and $\varphi'(a) = 1$, and $\{\varphi_n(z)\}$ interpolating
- (Plane/Translation): |a| = 1 and $\varphi'(a) = 1$, and $\{\varphi_n(z)\}$ not interpolating
- (no LF model): |a| < 1 and $\varphi'(a) = 0$

Always assume that φ is non-constant and not an elliptic automorphism.

Without loss of generality, if a, the Denjoy-Wolff point of φ , is in \mathbb{D} , we can assume a=0 and if |a|=1, we can assume a=1.

For simplicity, we will assume that the Hilbert space is $H^2(\mathbb{D})$, although many of the results hold for $H^2(\beta_{\kappa})$. When weighted composition operators, $W_{\psi,\varphi}$, are discussed, we will assume that ψ is in $H^{\infty}(\mathbb{D})$.

Theorem.

If φ is an analytic map of \mathbb{D} into itself, ψ is in H^{∞} , and M is an invariant subspace for C_{φ} and for S, then M is an invariant subspace for $W_{\psi,\varphi}$.

Conversely, if ψ^{-1} is in H^{∞} and M is an invariant subspace for $W_{\psi,\varphi}$ and for S, then M is invariant for C_{φ} .

If φ is an analytic map of the unit disk into itself with $\varphi(1) = 1$ and $\varphi'(1) \leq 1$, then $e^{\alpha \frac{z+1}{z-1}}H^2$ is an invariant subspace for C_{φ} when $\alpha > 0$.

Outline of Proof:

Use Julia's Lemma to prove the following:

Let φ be an analytic map of the unit disk into itself with $\varphi(1) = 1$ and

$$\varphi'(1) \le 1$$
. Then for z in \mathbb{D} , Re $\left(\frac{\varphi(z)+1}{\varphi(z)-1} - \frac{z+1}{z-1}\right) \le 0$

For
$$g$$
 in H^2 , $C_{\varphi}(e^{\alpha \frac{z+1}{z-1}}g)(z) = e^{\alpha \frac{\varphi(z)+1}{\varphi(z)-1}}g(\varphi(z))$

$$= \left(e^{\alpha \frac{z+1}{z-1}}e^{\alpha \left(\frac{\varphi(z)+1}{\varphi(z)-1}-\frac{z+1}{z-1}\right)}\right)g(\varphi(z))$$

$$= e^{\alpha \frac{z+1}{z-1}}\left(e^{\alpha \left(\frac{\varphi(z)+1}{\varphi(z)-1}-\frac{z+1}{z-1}\right)}g(\varphi(z))\right)$$

If φ is an analytic map of the unit disk into itself with $\varphi(1) = 1$ and $\varphi'(1) \leq 1$, then $e^{\alpha \frac{z+1}{z-1}}H^2$ is an invariant subspace for C_{φ} when $\alpha > 0$.

Conversely, if φ is an analytic map of the disk into itself and $e^{\alpha \frac{z+1}{z-1}}H^2$ is an invariant subspace for C_{φ} for some $\alpha > 0$, then $\varphi(1) = 1$ and $\varphi'(1) \leq 1$.

Conversely, if φ is an analytic map of the disk into itself and $e^{\alpha \frac{z+1}{z-1}}H^2$ is an invariant subspace for C_{φ} for some $\alpha > 0$, then $\varphi(1) = 1$ and $\varphi'(1) \leq 1$.

Outline of Proof of Converse:

Let $M = e^{\alpha \frac{z+1}{z-1}} H^2$. Now, $e^{\alpha \frac{z+1}{z-1}}$ in M implies $e^{\alpha \frac{\varphi(z)+1}{\varphi(z)-1}}$ is in M also. This means $\lim_{r\to 1^-} e^{\alpha \frac{\varphi(z)+1}{\varphi(z)-1}} = 0$ so that $\varphi(1) = 1$.

Using the Julia-Carathéodory Theorem, we see $e^{\alpha \frac{\varphi(z)+1}{\varphi(z)-1}}$ in $e^{\alpha \frac{z+1}{z-1}}H^2$ implies $\varphi'(1) \leq 1$.

Conclusion:

Suppose φ maps the disk into itself and $\alpha > 0$. Then the subspace $e^{\alpha \frac{z+1}{z-1}}H^2$ is invariant for C_{φ} if and only if 1 is the Denjoy-Wolff point of φ .

For $|\lambda| = 1$ and z_j for $j = 1, 2, \dots$, points in \mathbb{D} satisfying $\sum_j (1 - |z_j|) < \infty$, the function

$$B(z) = \lambda \prod_{j} \frac{|z_{j}|}{z_{j}} \frac{z_{j} - z}{1 - \overline{z_{j}} z}$$

is a Blaschke product. The zero set, $\{z_j\}$, for B is denoted Z(B).

Lemma.

Let C_{φ} be a composition operator on H^2 . Then BH^2 is invariant for C_{φ} if and only if z_j in Z(B) implies $\varphi_n(z_j)$ is in Z(B) for all non-negative integers j and n and if w is in Z(B), then multiplicity $\varphi(w) \geq$ multiplicity w.

Outline of Proof.

 BH^2 invariant for C_{φ} ensures that there is g in H^2 so that $C_{\varphi}B = Bg$. Thus, $C_{\varphi}B = 0$ whenever B = 0, so z_j in Z(B) implies $0 = (C_{\varphi}B)(z_j) = B(\varphi(z_j))$, that is, $\varphi(z_j)$ is in Z(B) also.

Suppose C_{φ} is a composition operator on H^2 with $\varphi(a) = a$ for a in \mathbb{D} .

If BH^2 is a non-trivial invariant subspace for C_{φ} , then

(i) a is in Z(B)and (ii) for every z_j in Z(B), there is an integer n_j so that $\varphi(z_{n_j}) = a$.

Outline of Proof.

If w is in Z(B), then, by the Lemma, $\varphi_k(w)$ is in Z(B) for all k, but $\lim_{k\to\infty} \varphi_k(w) = a$. If there were infinitely many points $\varphi_k(w)$, then $B \equiv 0$, which is not the case, so there are only finitely many and there is n so that $\varphi_n(w) = a$. This means a is in Z(B).

Suppose C_{φ} is a composition operator on H^2 with $\varphi(a) = a$ for a in \mathbb{D} .

If BH^2 is a non-trivial invariant subspace for C_{φ} , then

- (i) a is in Z(B)
- and (ii) for every z_j in Z(B), there is an integer n_j so that $\varphi(z_{n_j}) = a$.

Corollary.

Let φ be a univalent analytic function mapping the disk into itself with $\varphi(a) = a$ for some a in \mathbb{D} .

Then the subspaces $\left(\frac{z-a}{1-\overline{a}z}\right)^k H^2$ are the only non-trivial

Blaschke-product induced subspaces invariant for both C_{φ} and S.

Corollary.

Let φ be a univalent analytic function mapping the disk into itself with $\varphi(a) = a$ for some a in \mathbb{D} .

Then the subspaces $\left(\frac{z-a}{1-\overline{a}z}\right)^k H^2$ are the only non-trivial

Blaschke-product induced subspaces invariant for both C_{φ} and S.

Outline of Proof.

If B were a Blaschke product with a zero $w \neq a$ with BH^2 invariant for C_{φ} , then $\varphi_n(w) = a$ for some n. Because φ is univalent, φ_n is univalent for each n. But, because $\varphi_n(a) = a$ for each n, we see $\varphi_n(w) \neq a$ for any n.

This contradiction means that the only zero of B is a.

Let φ be an analytic function mapping the disk into itself with Denjoy-Wolff point on the unit circle.

If B is a Blaschke product and BH^2 is invariant for C_{φ} , then for each w in Z(B), the set $\{\varphi_n(w) : n \in \mathbb{N}\}$ is an infinite set in Z(B).

Proof.

The function φ has no fixed points in \mathbb{D} , so each of the points $\varphi_n(w)$ are distinct, for n in \mathbb{N} .

Let φ be an analytic function mapping the disk into itself with Denjoy-Wolff point on the unit circle.

If B is a Blaschke product and BH^2 is invariant for C_{φ} , then for each w in Z(B), the set $\{\varphi_n(w) : n \in \mathbb{N}\}$ is an infinite set in Z(B).

Corollary.

Let φ be an analytic function mapping the disk into itself with Denjoy-Wolff point on the unit circle.

Then there are no finite Blaschke products B so that BH^2 is a (non-trivial) invariant subspace for C_{φ} .

Let φ be an analytic function mapping the disk into itself with Denjoy-Wolff point 1 on the unit circle.

If B is a Blaschke product and BH^2 is invariant for C_{φ} , then for each w in Z(B), the set $\{\varphi_n(w) : n \in \mathbb{N}\}$ is an infinite set in Z(B).

Corollary.

Let φ be an analytic function mapping the disk into itself with Denjoy-Wolff point $1 = \varphi(1)$ on the unit circle and suppose φ is in the half-plane translation or half-plane dilation case.

Then if B_0 is any finite Blaschke product, there is a Blaschke product B so that B_0 divides B and BH^2 is an invariant subspace for C_{φ} .

Outline of Proof.

In these cases, if w is a zero of B_0 , then $\{\varphi_n(w)\}$ is a Blaschke sequence.

Let φ be an analytic function mapping the disk into itself with Denjoy-Wolff point 1 on the unit circle.

If B is a Blaschke product and BH^2 is invariant for C_{φ} , then for each w in Z(B), the set $\{\varphi_n(w) : n \in \mathbb{N}\}$ is an infinite set in Z(B).

Example.

Let $\varphi(z) = 1/(2-z)$. Then φ maps the disk into itself, and $\varphi(1) = \varphi'(1) = 1$, but φ is in the plane translation case. There is NO Blaschke product B so that BH^2 is an invariant subspace for C_{φ} .

Outline of Proof.

In this case, if w is in \mathbb{D} , then $\{\varphi_n(w)\}$ is NOT a Blaschke sequence.

There is space between our results: If J is a singular inner function whose singular measure has no atom, then our work says nothing about possible non-trivial spaces of the form JH^2 that are invariant for C_{φ} !

THANK YOU!

http://www.math.iupui.edu/~ccowen/Downloads.html