Composition Operators on Spaces of Analytic Functions, III

Carl C. Cowen

IUPUI

(Indiana University Purdue University Indianapolis)

Spring School of Functional Analysis, Rabat, 22 May 2009

www.math.iupui.edu/~ccowen/EPAF09.html

Today, we want to consider more recent developments, some specific unsolved problems, and future directions in the subject.

Circular Symmetry

Wednesday we discussed spectra of composition operators in the various cases. In many of the non-compact cases, there is considerable circular symmetry in the spectra, in fact, all cases except the plane translation case.

• In the non-compact cases with a fixed point inside, the spectra were circularly symmetric except for finitely many points. When the Denjoy-Wolff point is on the boundary, spectra exhibit circular symmetry, except in the plane translation case.

- In one case, (half-plane dilation) the operator is similar to rotates of itself. In the other half-plane case, some parts of spectra have circular symmetry.
- If $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \cdots$ are points of disk satisfying $\varphi(\alpha_k) = \alpha_{k+1}$, then $C_{\varphi}^*\left(\frac{1}{\|K_{\alpha_k}\|}K_{\alpha_k}\right) = \frac{1}{\|K_{\alpha_k}\|}K_{\alpha_{k+1}} = \left(\frac{\|K_{\alpha_{k+1}}\|}{\|K_{\alpha_k}\|}\right)\left(\frac{1}{\|K_{\alpha_{k+1}}\|}K_{\alpha_{k+1}}\right)$ so $\overline{\operatorname{span}\{K_{\alpha_k}\}}$ is an invariant subspace for C_{φ}^* and it looks like C_{φ}^* is a weighted shift on this subspace

In half-plane cases, this can be made into a proof that the restriction of C_{φ} to an invariant subspace is similar to every rotate of itself.

Conjecture (C. & MacCluer, 1998)

If φ has a fixed point in D and the essential spectral radius of C_{φ} is positive, there is an invariant subspace for C_{φ} on which the restriction of C_{φ} is similar to rotates of itself.

Confirmed in some special cases by R. Wahl, thesis, 1997.

Other Problems

- Hyponormality and subnormality of C_{φ} or C_{φ}^{*}
- Equivalence (unitary equivalence or similarity)
- Commutant of C_{φ}

Weighted Composition Operators

For φ an analytic map of the disk into itself and ψ a analytic function of the disk into \mathbb{C} the *weighted composition operator* $W_{\psi,\varphi}$ is the operator on $H^2(\mathbb{D})$ given by

$$(W_{\psi,\varphi}f)(z) = \psi(z)f(\varphi(z))$$

for z in \mathbb{D} .

Weighted composition operators are an extension of the idea of composition operator, but also have a claim to be more basic because they arose before composition operators in some natural contexts. The weighted composition operator $W_{\psi,\varphi}$ is the operator on H^2 given by

$$(W_{\psi,\varphi}f)(z) = \psi(z)f(\varphi(z))$$

for z in \mathbb{D} .

Clearly, if ψ is in $H^{\infty}(\mathbb{D})$ and φ maps the disk into the disk, then $W_{\psi,\varphi}$ is bounded and if ψ is in H^{∞} and C_{φ} is compact, then $W_{\psi,\varphi}$ is compact also.

Perhaps, surprisingly, these conditions are not necessary!

Because $W_{\psi,\varphi} 1 = \psi$, the multiplier ψ must be in H^2 ,

but it is possible for ψ to be unbounded in H^2 and C_{φ} non-compact and have $W_{\psi,\varphi}$ bounded or compact. Considered: conditions for $W_{\psi,\varphi}$ bounded, compact, or self-adjoint, spectra of compact or self-adjoint weighted composition operators, \cdots

Study of weighted composition operators just begun in an organized way \cdots

Problems

- Characterizations of boundedness and compactness are not yet in an easily applicable form
- Fredholm weighted composition operators not characterized; same for other classes except self adjoint
- Spectra of compact and self adjoint weighted composition operators completely understood, but no other spectra have been analyzed except special cases.

Adjoints

Descriptions of adjoints of operators are standard parts of the general description of operators.

While the relation $C^*_{\varphi}(K_{\alpha}) = K_{\varphi(\alpha)}$ is very useful,

it does not extend easily to a formula for C_{φ}^*

Theorem (C, 1988).

If $\varphi(z) = \frac{az+b}{cz+d}$ is a non-constant linear fractional map of the unit disk into itself, then

$$C_{\varphi}^* = T_g C_{\sigma} T_h^*$$

where
$$\sigma(z) = \frac{\overline{a}z - \overline{c}}{-\overline{b}z + \overline{d}}$$
, $g(z) = \frac{1}{-\overline{b}z + \overline{d}}$, and $h(z) = cz + d$.

Inner functions can be handled

 C_{φ}^{*} can be explicitly described as an integral operator, it is a "folk theorem"

For z in \mathbb{D} ,

$$(C_{\varphi}^{*}f)(z) = \langle C_{\varphi}^{*}f, K_{z} \rangle = \langle f, C_{\varphi}K_{z} \rangle = \int_{0}^{2\pi} \frac{f(e^{i\theta})}{1 - \overline{\varphi(e^{i\theta})}z} \frac{d\theta}{2\pi}$$

Inner functions can be handled

 C_{φ}^{*} can be described as an integral operator, explicitly, it is a "folk theorem"

For z in \mathbb{D} ,

$$(C_{\varphi}^*f)(z) = \langle C_{\varphi}^*f, K_z \rangle = \langle f, C_{\varphi}K_z \rangle = \int_0^{2\pi} \frac{f(e^{i\theta})}{1 - \overline{\varphi(e^{i\theta})}z} \frac{d\theta}{2\pi}$$

This "formula" is very difficult to actually use \cdots

 C_{φ}^* can be described as an integral operator, explicitly,

it is a "folk theorem"

For z in \mathbb{D} ,

$$(C_{\varphi}^*f)(z) = \langle C_{\varphi}^*f, K_z \rangle = \langle f, C_{\varphi}K_z \rangle = \int_0^{2\pi} \frac{f(e^{i\theta})}{1 - \overline{\varphi(e^{i\theta})}z} \frac{d\theta}{2\pi}$$

This "formula" is very difficult to actually use \cdots but it was this that allowed me to discover the formula for the linear fractional case.

It worked because linear fractional maps are rational functions and univalent \cdots

In the past decade or so, with contributions from several mathematicians, published and not published, we now have a formula for the adjoints of composition operators with symbol a rational function.

Wahl, 1997
Gallardo-Gutiérrez & Montes-Rodríguez, 2003
C. & Gallardo-Gutiérrez, 2005, 2006
Martín & Vukotić, 2006
Hammond, Morehouse, & Robbins, 2008
Bourdon & Shapiro, preprint 2008

We were able to find a formula for C_{φ}^* for $\varphi(z) = (z + z^2)/2$:

$$(C_{\varphi}^{*}f)(z) = \frac{z + \sqrt{z^{2} + 8z}}{2\sqrt{z^{2} + 8z}} f\left(\frac{z + \sqrt{z^{2} + 8z}}{4}\right) - \frac{z - \sqrt{z^{2} + 8z}}{2\sqrt{z^{2} + 8z}} f\left(\frac{z - \sqrt{z^{2} + 8z}}{4}\right)$$

BUT, this does not make sense!

We were able to find a formula for C_{φ}^* for $\varphi(z) = (z + z^2)/2$:

$$(C_{\varphi}^{*}f)(z) = \frac{z + \sqrt{z^{2} + 8z}}{2\sqrt{z^{2} + 8z}} f\left(\frac{z + \sqrt{z^{2} + 8z}}{4}\right) - \frac{z - \sqrt{z^{2} + 8z}}{2\sqrt{z^{2} + 8z}} f\left(\frac{z - \sqrt{z^{2} + 8z}}{4}\right)$$

BUT, this does not make sense because $\sqrt{z^2 + 8z}$ has a singularity at z = 0.

We were able to find a formula for C_{φ}^* for $\varphi(z) = (z + z^2)/2$:

$$(C_{\varphi}^{*}f)(z) = \frac{z + \sqrt{z^{2} + 8z}}{2\sqrt{z^{2} + 8z}} f\left(\frac{z + \sqrt{z^{2} + 8z}}{4}\right) - \frac{z - \sqrt{z^{2} + 8z}}{2\sqrt{z^{2} + 8z}} f\left(\frac{z - \sqrt{z^{2} + 8z}}{4}\right)$$

BUT, this does not make sense because $\sqrt{z^2 + 8z}$ has a singularity at z = 0.

On the other hand, the formula as a whole DOES make sense for every f in H^2 and defines $C_{\varphi}^* f$ as a single-valued analytic function!

Definition. (C. & Gallardo-Gutiérrez, 2006)

Let K be a finite subset of \mathbb{D} . Suppose σ is an n-valued function that is arbitrarily continuable in $\mathbb{D} \setminus K$ and takes values in \mathbb{D} . Suppose ψ is an m-valued analytic function defined and arbitrarily continuable in $\mathbb{D} \setminus K$ with values in \mathbb{C} and bounded.

Plus compatibility condition.

Plus finiteness condition.

The multiple valued weighted composition operator $W_{\psi,\sigma}$ is defined by

$$(W_{\psi,\sigma}f)(z) = \sum_{all \ branches} \psi(z)f(\sigma(z))$$

for z in $\mathbb{D} \setminus K$ and extended to \mathbb{D} .

Definition. (C. & Gallardo-Gutiérrez, 2006)

Let K be a finite subset of \mathbb{D} . Suppose σ is an n-valued function that is arbitrarily continuable in $\mathbb{D} \setminus K$ and takes values in \mathbb{D} . Suppose ψ is an m-valued analytic function defined and arbitrarily continuable in $\mathbb{D} \setminus K$ with values in \mathbb{C} and bounded.

Plus compatibility condition. Plus finiteness condition.

The multiple valued weighted composition operator $W_{\psi,\sigma}$ is defined by

$$(W_{\psi,\sigma}f)(z) = \sum_{all \ branches} \psi(z)f(\sigma(z))$$

for z in $\mathbb{D} \setminus K$ and extended to \mathbb{D} .

In the example,
$$\psi(z) = \frac{z \pm \sqrt{z^2 + 8z}}{\pm 2\sqrt{z^2 + 8z}}$$
 and $\sigma(z) = \frac{z \pm \sqrt{z^2 + 8z}}{4}$

These conditions ensure that $(W_{\psi,\sigma}f)(z)$ is bounded on every compact subset of \mathbb{D} and therefore that all the singularities at points of K are removable so that $W_{\psi,\sigma}f$ is analytic in \mathbb{D} .

Moreover, if ψ is bounded, that is, there is $M < \infty$ so that

 $\limsup_{|z| \to 1^-} |\psi_j(z)| \le M$

for each branch of ψ , then $W_{\psi,\sigma}$ is bounded on H^2 and

$$||W_{\psi,\sigma}|| \le M \sqrt{n \sum \frac{1 + |\sigma(0)|}{1 - |\sigma(0)|}}$$

Theorem. (C. 1978)

Suppose φ is a finite Blaschke product and let

$$K = \{ \beta \in \mathbb{D} : \varphi(\beta) = \varphi(\alpha) \quad and \quad \varphi'(\alpha) = 0 \}$$

If S is a bounded operator on H^2 such that $ST_{\varphi} = T_{\varphi}S$, then $S = W_{\psi,\eta}$ where $\eta = \varphi^{-1} \circ \varphi$ and $\psi = G\eta'/\varphi'$ for some G multiple valued, bounded, analytic function on $\mathbb{D} \setminus K$.

Conversely, if G is a multiple valued, bounded, analytic function on $\mathbb{D} \setminus K$, $\eta = \varphi^{-1} \circ \varphi$, $\psi = G\eta'/\varphi'$, and $S = W_{\psi,\eta}$, then $ST_{\varphi} = T_{\varphi}S$.

Theorem. (version of Hammond, Moorhouse, Robbins)

Let φ be a rational map of \mathbb{D} into itself. Then for any f in H^2

$$(C_{\varphi}^*f)(z) = (W_{\psi,\sigma}f)(z) + \frac{f(0)}{1 + \overline{\varphi(\infty)}z}$$

where $W_{\psi,\sigma}$ is multiple valued weighted composition operator induced by

$$\sigma(z) = \left(\overline{\varphi^{-1}(1/\overline{z})}\right)^{-1} \quad and \quad \psi(z) = \frac{z\sigma'(z)}{\sigma(z)}$$
$$and \ \varphi(\infty) = \lim_{|w| \to \infty} \varphi(w)$$

Study of multiple valued weighted composition operators has not begun in an organized way \cdots

Nothing is known beyond these two examples, nor are other examples related to other parts of functional analysis known.

Composition Operators in Several Variables

Hardy Hilbert space in the ball, $H^2(\mathbf{B}_N)$ where

$$\mathbf{B}_N = \{ z \in \mathbb{C}^N : |z| < 1 \}$$

Let σ denote normalized surface measure on the sphere, $\{z \in \mathbb{C}^N : |z| = 1\}$.

$$H^{2}(\mathbf{B}_{N}) = \{ f \text{ analytic in } \mathbf{B}_{N} : \sup_{0 < r < 1} \int |f(r\zeta)|^{2} d\sigma(\zeta) < \infty \}$$

If φ is a map of \mathbf{B}_N into \mathbf{B}_N , define C_{φ} on $H^2(\mathbf{B}_N)$ by

$$(C_{\varphi}f)(z) = f(\varphi(z))$$

Not all maps φ of \mathbf{B}_N into \mathbf{B}_N give bounded composition operators!

There are even polynomial maps φ for which C_{φ} is not bounded! For example, for

$$\varphi(z_1, z_2) = (2z_1 z_2, 0)$$

 C_{φ} is unbounded on $H^2(\mathbf{B}_N)$.

While there are Carleson conditions for boundedness and compactness, these questions are not satisfactorily resolved.

If C_{φ} is compact on \mathbf{B}_N , there is an attracting fixed point a for φ in \mathbf{B}_N and

 $\sigma(C_{\varphi}) = \{0, 1\} \cup \{\lambda : \lambda = \text{ a product of eigenvalues of } \varphi'(a)\}$

Biggest problem is that we don't know enough functions in several variables.

Theorem. (C. & MacCluer 1994)

Suppose φ is a holomorphic map of \mathbf{B}_N into \mathbf{B}_N that is univalent, $\varphi(0) = 0$, and φ is not unitary on any slice of \mathbf{B}_N . If $\Omega < \infty$, then the spectrum of C_{φ} as an operator on $H^2(\mathbf{B}_N)$ includes the disk

$$\left\{\lambda: |\lambda| \le \frac{\tilde{\rho}^N}{\Omega^{N/2}}\right\}$$

where $\tilde{\rho}$ is the essential spectral radius of C_{φ} on $H^2(\mathbf{B}_N)$ and

$$\Omega = \sup\{\|\varphi'(z)\|^2 / |J_{\varphi}(z)|^2 : z \in B_N\}$$

Theorem.

Suppose φ is a holomorphic map of \mathbf{B}_N into \mathbf{B}_N , $\varphi(0) = 0$, and φ is not unitary on any slice of \mathbf{B}_N . If C_{φ} is bounded on $H^2(\mathbf{B}_N)$ then 1 and each number $\overline{\lambda}$ for λ a product of eigenvalues of $\varphi'(0)$ is an eigenvalue of C_{φ}^* .

Definition.

A map φ will be called a *linear fractional map* if

$$\varphi(z) = (Az + B)(\langle z, C \rangle + D)^{-1}$$

where A is an $N \times N$ matrix, B and C are (column) vectors in \mathbb{C}^N , and D is a complex number. We will regard z as a column vector also and $\langle \cdot, \cdot \rangle$ denotes the usual Euclidean inner product on \mathbb{C}^N .

Clearly, this is analytic except for z in the hyperplane $\langle z, C \rangle = -D$.

Every automorphism of the ball is a linear fractional map with this definition.

For a linear fractional map $\varphi(z) = (az + b)/(cz + d)$, associate

$$m_{\varphi} = \left(\begin{array}{cc} a & b \\ & \\ c & d \end{array}\right)$$

In several variables, for $\varphi(z) = (Az + B)(\langle C, z \rangle + D)^{-1}$, associate

$$m_{\varphi} = \left(\begin{array}{cc} A & B \\ C^* & D \end{array}\right)$$

In both cases, $m_{\varphi}m_{\psi} = m_{\varphi\circ\psi}$, so we use this as a tool.

If φ is a linear fractional map of \mathbf{B}_N into itself, then C_{φ} is bounded operator on $H^2(\mathbf{B}_N)$ and compact iff $\overline{\varphi(\mathbf{B}_N)} \subset \mathbf{B}_N$.

The theorem on adjoints of C_{φ} for φ a linear fractional map of the ball carries over exactly as in one variable.

Problems

- Can every map of the ball to the ball be modeled by a linear fractional map? If not, which can be? Are they special in any way?
- Find spectra, even in special cases.
- Little known about composition operators on other spaces, for example, $H^2(\mathbb{D} \times \mathbb{D})$, or the analogue of the Bergman space.

Composition Operators on Spaces of Analytic Functions

Carl C. Cowen

Spring School of Functional Analysis, Rabat, 18–22 May 2009

Slides posted on webpage:

www.math.iupui.edu/~ccowen/EPAF09.html