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Today, we want to consider the spectral theory of composition operators.

We finished yesterday with the introduction of the linear fractional model

for iteration and Koenigs’ construction which gives the model

in the plane dilation case.

We begin with the spectrum for compact composition operators,

as was historically first.

Recall that if A is an operator, the spectrum of A is the set

σ(A) = {λ ∈ C : A− λI does not have a continuous inverse}



Suppose ϕ is an analytic map of D into itself and Cϕ is compact on H2(D).

The compactness of Cϕ implies that the Denjoy-Wolff point, a, is in D.

Let ψ(z) =
a− z

1− az
It is easy to check that ψ is an automorphism of D

such that ψ(a) = 0, ψ(0) = a, and ψ(ψ(z)) = z, so ψ = ψ−1

The map ψ ◦ ϕ ◦ ψ is therefore a map of D into itself such that

ψ ◦ ϕ ◦ ψ(0) = 0. Moreover,

Cψ◦ϕ◦ψ = CψCϕCψ = (Cψ)−1CϕCψ

so that Cψ◦ϕ◦ψ is similar to Cϕ.

This means that Cψ◦ϕ◦ψ is also compact and σ(Cψ◦ϕ◦ψ) = σ(Cϕ).

Thus, with no loss of generality, assume Denjoy-Wolff point ϕ is a = 0



Theorem (Caughran-Schwartz, 1975)

Let ϕ be analytic map on D with D.W. point a and Cϕ compact on H2.

Then |a| < 1 and the spectrum of Cϕ is

σ(Cϕ) = {0, 1} ∪ {ϕ′(a)n : n = 1, 2, 3, · · ·}

Moreover, each of the eigenspaces is one dimensional and, if ϕ′(a) 6= 0,

for each non-negative integer n, the eigenspace corresponding to ϕ′(a)n

is spanned by σn, where σ is the Koenigs function for ϕ.

Proof:

Without loss of generality, ϕ(0) = 0.

The monomials 1, z, z2, · · · form an orthonormal basis for H2 and we will

consider the matrix for Cϕ with respect to this basis.



Proof (cont’d):

Without loss of generality, ϕ(0) = 0.

Since Cϕ1 = 1 ◦ ϕ = 1, the column of the matrix for Cϕ corresponding to

the basis vector 1 is (1, 0, 0, · · ·). Similarly, column of the the matrix for Cϕ

corresponding to the basis vector zk is the vector of Taylor coefficients of

Cϕz
k = ϕk which is (0, 0, · · · 0, ϕ′(0)k, kϕ′(0)k−1ϕ′′(0)/2, · · ·)

In particular, the matrix for Cϕ is lower triangular which means the matrix

for C∗ϕ is upper triangular

Triangularity of C∗ϕ implies, for any positive integer n, as a block matrix

C∗ϕ ∼

 A B

0 D


where A is n× n upper triangular and the lower left is a 0 matrix



Proof (cont’d):

The compactness of C∗ϕ implies, for sufficiently large n, as a block matrix

C∗ϕ ∼

 A B

0 D


and ‖D‖ can be made as small as we like.

As a consequence, each of the non-zero eigenvalues of C∗ϕ is an eigenvalue of

an upper left corner, A, for sufficiently large n, and every eigenvalue of such

an A is an eigenvalue of C∗ϕ .



Note that

A =



1 0 0 0 · · · 0

0 ϕ′(0) ∗ ∗ · · · ∗

0 0 ϕ′(0)
2 ∗ · · · ∗

0 0 0 ϕ′(0)
3 · · · ∗

... . . . ...

0 0 0 0 · · · ϕ′(0)
n


We see that this means that the eigenvalues of A are 1, ϕ′(0), ϕ′(0)

2
,· · ·,

and ϕ′(0)
n
, each of multiplicity one, and that therefore, the non-zero

eigenvalues of C∗ϕ are {ϕ′(0)
k}∞k=0, each with multiplicity one.

The spectral theory of compact operators therefore implies that the

non-zero eigenvalues of Cϕ are {ϕ′(0)k}∞k=0, each with multiplicity one.



Since each of the numbers {ϕ′(0)k}∞k=0, is a non-zero eigenvalue with

multiplicity one, for each of the numbers ϕ′(0)k there must be a

one-dimensional subspace of H2(D) (!!!) consisting of eigenvectors of Cϕ.

Koenigs’ Theorem says that the only solutions of f ◦ ϕ = ϕ′(0)kf are

multiples of σk, where σ is the Koenigs function for ϕ. This means that if

Cϕ is compact on H2, then for every positive integer k, the function σk is in

H2 and that these vectors span the eigenspaces of Cϕ.

Noting that 0 is always a point of the spectrum of a compact operator on an

infinite dimensional space, that the constant functions are eigenvectors for

the eigenvalue 1, and that 0 is never an eigenvalue of Cϕ because ϕ(D) is an

open set, we see that the proof is complete.



The eigenvalue equation for Cϕ, f ◦ ϕ = λf , is called Schroeder’s functional

equation. Koenigs solved Schroeder’s functional equation for functions

analytic in the disk with Denjoy-Wolff point in D. However, as we saw in

the proof of the theorem, it is not enough to have a solution of Schroeder’s

equation, one must also show it is in H2 to have a eigenvector of Cϕ.

We will split the general problem into two pieces: find solutions of

Schroeder’s equation and then decide which, if any, are in H2 (or other

space of interest).

The linear fractional model for iteration is helpful in this effort. We have

σ ◦ ϕ = Φ ◦ σ

for Φ a specific linear fractional map when ϕ is analytic map on D and the

Denjoy-Wolff point satisfies |a| = 1.



Specifically, when |a| = 1 and s = ϕ′(a) < 1, σ maps D into the right half

plane and Φ(w) = sw. When |a| = 1, σ maps D into the upper or lower

half plane or into the whole plane, depending on the nature of the iterates of

ϕ, and Φ(w) = w + 1.

Suppose F solves Schroeder’s equation for Φ for some number λ, that is,

F ◦ Φ = λF . Using σ ◦ ϕ = Φ ◦ σ and choosing f = F ◦ σ, we see

f ◦ϕ = (F ◦σ) ◦ϕ = F ◦ (σ ◦ϕ) = F ◦ (Φ ◦σ) = (F ◦Φ) ◦σ = λF ◦σ = λf

For Φ(w) = sw on the right half plane, using the branch of logarithm with

log(1) = 0 and writing F (w) = er logw, we get F ◦ Φ = srF for any r.

For Φ(w) = w + 1, writing F (w) = erw, we get F ◦ Φ = erF for any r.



Theorem

Let ϕ be analytic map on D with Denjoy-Wolff point a and |a| = 1.

Then for each non-zero number λ, Schroeder’s equation has an infinite

dimensional subspace of solutions.

Proof:

The remark above shows that for every complex number r, either sr

(if ϕ′(a) = s < 1) or er (if ϕ′(a) = 1) are solutions of Schroeder’s Equation.

Notice that each non-zero complex number λ can be written as λ = sr or

λ = er for infinitely many different r’s. Since the corresponding functions

f (z) = er log σ(z) or f (z) = erσ(z) are linearly independent for different r’s,

the Theorem is proved.

Koenigs’ Theorem gives the solutions of Schroeder’s equation when |a| < 1.



Theorem

Let ϕ be automorphism of D and a in D the fixed point with |ϕ′(a)| ≤ 1.

• If |a| < 1 (ϕ is elliptic), then σ(Cϕ) = {ϕ′(a)n}∞n=0

• If |a| = 1 and ϕ′(a) = 1 (ϕ is parabolic), then σ(Cϕ) = ∂D

• If |a| = 1 and ϕ′(a) < 1 (ϕ is hyperbolic), then

σ(Cϕ) = {λ :
√
ϕ′(a) ≤ |λ| ≤ 1√

ϕ′(a)
}

Proof:

If |a| < 1, so that ϕ is an elliptic automorphism, the automorphism

ψ(z) = (a− z)/(1− az) gives ζ = ψ−1 ◦ ϕ ◦ ψ so that Cζ is similar to Cϕ

and ζ(z) = γz with γ = ϕ′(a) and |γ| = 1. For each non-negative integer n,

the function zn is an eigenvector for the eigenvalue γn, so σ(Cζ) = σ(Cϕ) is

a closed set that includes γn for all positive integers n.



Proof (cont’d):

If γ is root of unity, the spectrum includes the finite set of powers of

γ = ϕ′(a). If γ is not a root of unity, the set {γn}∞n=0 is dense in the unit

circle and the spectrum includes the unit circle. Since the matrix for Cζ is

diagonal, it is easy to see that each of these containments is actually

equality.

If |a| = 1 and ϕ′(a) = 1, so that ϕ is an parabolic automorphism, and it has

a half-plane translation model. Without loss of generality, a = 1. For

example, ϕ(z) = ((1 + i)z − i) / ((1− i) + iz) is such a parabolic

automorphism. The result above shows that the eigenfunctions are

exponentials composed with the map σ.



Proof (cont’d):

In the case of the map ϕ above, the eigenvectors are

f (z) = er
z+1
z−1

and for each complex number r, the corresponding eigenvalues are e−2ir.

These functions are in H2(D) if and only if r ≥ 0. This means the spectrum

of Cϕ includes the unit circle, and since the spectral radius of Cϕ and C−1
ϕ

are 1, the spectrum is actually equal to the unit circle.

Finally, if |a| = 1 and ϕ′(a) = s < 1, so that ϕ is hyperbolic, then without

loss of generality, a = 1 and the other fixed point of ϕ is −1. In this case,

ϕ(z) =
(1 + s)z + 1− s

1 + s + (1− s)z

and it has a half-plane dilation model.



Proof (cont’d):

The result above shows the eigenfunctions are powers of the map σ which,

in this case, means the eigenfunctions are

f (z) =

(
1− z

1 + z

)r

and for each complex number r, the corresponding eigenvalue is sr. Now the

eigenfunctions are in H2(D) if and only if −1
2 < Re r < 1

2 so this, together

with spectral radius calculations, shows the spectrum is

σ(Cϕ) = {λ :
√
s ≤ |λ| ≤ 1√

s
}



Just as in the automorphism cases, for ϕ a linear fractional map that is not

an automorphism, all the computations needed to determine the spectrum

can be carried out explicitly using the linear fractional models.

Examples

(1) (plane dilation) ϕ(z) = (1 + i)z/2, a = 0, ϕ′(a) = (1 + i)/2,

Cϕ compact

σ(Cϕ) = {0} ∪ {
(

1 + i

2

)n

: n = 0, 1, 2, · · ·}

(2) (plane dilation) ϕ(z) = −z/2 + 1/2, a = 1/3, ϕ′(a) = −1/2,

Cϕ not compact (ϕ(−1) = 1), but C2
ϕ = Cϕ◦ϕ is compact

σ(Cϕ) = {0} ∪ {
(
−1

2

)n

: n = 0, 1, 2, · · ·}



Examples (cont’d)

(3) (plane dilation) ϕ(z) = z/(2− z), a = 0, ϕ′(a) = 1/2,

but also ϕ(1) = 1 and ϕ′(1) = 2, so Cϕ not compact

σ(Cϕ) = {1} ∪ {λ : |λ| ≤ 1√
2
}

(4) (half-plane dilation) ϕ(z) = z/3 + 2/3, a = 1, ϕ′(a) = 1/3,

so Cϕ not compact

σ(Cϕ) = {λ : |λ| ≤ 1√
ϕ′(a)

} = {λ : |λ| ≤
√

3}

(5) (plane translation) ϕ(z) =
(2− t)z + t

−tz + 2 + t
for Re t > 0, a = 1, ϕ′(1) = 1

σ(Cϕ) = {eβt : β ≤ 0} ∪ {0}



The examples from the linear fractional maps give an indication of how the

spectra vary depending on the case from the model for iteration – this

dependence appears to persist throughout the study of composition

operators on spaces of analytic functions.

By far the easiest case to handle is the half-plane dilation case.

Theorem

If ϕ is an analytic mapping of the unit disk to itself with Denjoy–Wolff

point a on the unit circle and ϕ′(a) < 1, then for real θ the operator Cϕ

on H2(D) is similar to the operator eiθCϕ.

Thus, if λ is in the spectrum of Cϕ then for real θ, eiθλ is also.



(half-plane dilation)

Theorem

If ϕ, not an inner function, is analytic in a neighborhood of the closed

unit disk, maps the disk to itself, and has Denjoy–Wolff point a on the

unit circle with ϕ′(a) < 1, then for Cϕ acting on the Hardy space H2(D),

σ(Cϕ) = {λ : |λ| ≤ ϕ′(a)−1/2}

For ϕ′(a)1/2 < |λ| < ϕ′(a)−1/2, the number λ is always an eigenvalue of

infinite multiplicity for Cϕ



(plane dilation)

Theorem

Let ϕ, not an inner function, be analytic in a neighborhood of the

closed disk with ϕ(D) ⊂ D and ϕ(a) = a for some point a with |a| < 1.

If Cϕ is the associated composition operator on H2(D), then

σ(Cϕ) = {λ : |λ| ≤ ρ} ∪
{
ϕ′(a)k : k = 1, 2, . . .

}
∪ {1}

where ρ is the essential spectral radius of Cϕ.



Theorem

If ϕ is an inner function with a fixed point in the disk, not an

automorphism, then Cϕ acting on H2(D) is similar to an isometry

whose unitary part is the identity on a one dimensional space and

whose purely isometric part is a unilateral shift of infinite multiplicity.

Moreover,

σ(Cϕ) = σe(Cϕ) = {λ : |λ| ≤ 1}

Theorem

Let ϕ be an inner function, not an automorphism, with Denjoy–Wolff

point a on the unit circle. Then on H2(D)

σ(Cϕ) = σe(Cϕ) = {λ : |λ| ≤ ϕ′(a)−1/2}



In the half-plane translation case, we have some information about the

spectrum:

Theorem

If ϕ is an analytic mapping of the unit disk with a halfplane/translation

model for iteration, then the spectrum and essential spectrum of Cϕ on

H2(D) contain the unit circle. Moreover, if λ is an eigenvalue of Cϕ,

then eiθλ is also an eigenvalue of Cϕ for each positive number θ.

Problem

If ϕ is in the half-plane translation case, not an automorphism, is

σ(Cϕ) always {λ : |λ| ≤ 1}?



1

In the plane translation case, we have no information about the spectrum,

only a few examples:

♥(z) =
1 + z + 2

√
1− z2

3− z + 2
√

1− z2

We find σ(C♥) is the heart-shaped region {e−β : | arg β| ≤ π/4} ∪ {0}



In the plane translation case, the only examples for which we know the

spectra are symbols that belong to a semigroup of analytic functions, and

the spectrum is computed using semigroup theory.

Problem

If ϕ is in the plane translation case, is σ(Cϕ) always a union of spirals

joining 0 and 1?

Problem

Find the spectrum of Cϕ for a function ϕ in the plane translation case

that is not inner, linear fractional, or a member of a semigroup of

analytic functions.


