Composition Operators on Spaces of Analytic Functions, II

Carl C. Cowen

IUPUI

(Indiana University Purdue University Indianapolis)

Spring School of Functional Analysis, Rabat, 20 May 2009

www.math.iupui.edu/~ccowen/EPAF09.html

Today, we want to consider the spectral theory of composition operators.

- We finished yesterday with the introduction of the linear fractional model for iteration and Koenigs' construction which gives the model in the plane dilation case.
- We begin with the spectrum for compact composition operators, as was historically first.

Recall that if A is an operator, the spectrum of A is the set

 $\sigma(A) = \{\lambda \in \mathbb{C} : A - \lambda I \text{ does not have a continuous inverse}\}\$

Suppose φ is an analytic map of \mathbb{D} into itself and C_{φ} is compact on $H^2(\mathbb{D})$.

The compactness of C_{φ} implies that the Denjoy-Wolff point, a, is in \mathbb{D} .

Let $\psi(z) = \frac{a-z}{1-\overline{a}z}$ It is easy to check that ψ is an automorphism of \mathbb{D} such that $\psi(a) = 0$, $\psi(0) = a$, and $\psi(\psi(z)) = z$, so $\psi = \psi^{-1}$

The map $\psi \circ \varphi \circ \psi$ is therefore a map of \mathbb{D} into itself such that $\psi \circ \varphi \circ \psi(0) = 0$. Moreover,

$$C_{\psi \circ \varphi \circ \psi} = C_{\psi} C_{\varphi} C_{\psi} = (C_{\psi})^{-1} C_{\varphi} C_{\psi}$$

so that $C_{\psi \circ \varphi \circ \psi}$ is similar to C_{φ} .

This means that $C_{\psi \circ \varphi \circ \psi}$ is also compact and $\sigma(C_{\psi \circ \varphi \circ \psi}) = \sigma(C_{\varphi})$.

Thus, with no loss of generality, assume Denjoy-Wolff point φ is a = 0

Theorem (Caughran-Schwartz, 1975)

Let φ be analytic map on \mathbb{D} with D.W. point a and C_{φ} compact on H^2 . Then |a| < 1 and the spectrum of C_{φ} is

$$\sigma(C_{\varphi}) = \{0, 1\} \cup \{\varphi'(a)^n : n = 1, 2, 3, \cdots\}$$

Moreover, each of the eigenspaces is one dimensional and, if $\varphi'(a) \neq 0$, for each non-negative integer n, the eigenspace corresponding to $\varphi'(a)^n$ is spanned by σ^n , where σ is the Koenigs function for φ .

Proof:

Without loss of generality, $\varphi(0) = 0$.

The monomials $1, z, z^2, \cdots$ form an orthonormal basis for H^2 and we will consider the matrix for C_{φ} with respect to this basis.

Without loss of generality, $\varphi(0) = 0$.

Since $C_{\varphi} 1 = 1 \circ \varphi = 1$, the column of the matrix for C_{φ} corresponding to the basis vector 1 is $(1, 0, 0, \cdots)$. Similarly, column of the matrix for C_{φ} corresponding to the basis vector z^k is the vector of Taylor coefficients of $C_{\varphi} z^k = \varphi^k$ which is $(0, 0, \cdots 0, \varphi'(0)^k, k\varphi'(0)^{k-1}\varphi''(0)/2, \cdots)$

In particular, the matrix for C_{φ} is lower triangular which means the matrix for C_{φ}^* is upper triangular

Triangularity of C_{φ}^* implies, for any positive integer n, as a block matrix

$$C_{\varphi}^{*} \sim \left(\begin{array}{cc} A & B \\ \\ 0 & D \end{array}\right)$$

where A is $n \times n$ upper triangular and the lower left is a 0 matrix

The compactness of C_{φ}^* implies, for sufficiently large n, as a block matrix

$$C_{\varphi}^{\ast} \sim \left(\begin{array}{c} A & B \\ 0 & D \end{array} \right)$$

and ||D|| can be made as small as we like.

As a consequence, each of the non-zero eigenvalues of C_{φ}^* is an eigenvalue of an upper left corner, A, for sufficiently large n, and every eigenvalue of such an A is an eigenvalue of C_{φ}^* . Note that

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & \overline{\varphi'(0)} & * & * & \cdots & * \\ 0 & 0 & \overline{\varphi'(0)}^2 & * & \cdots & * \\ 0 & 0 & 0 & \overline{\varphi'(0)}^3 & \cdots & * \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \overline{\varphi'(0)}^n \end{pmatrix}$$

We see that this means that the eigenvalues of A are 1, $\overline{\varphi'(0)}, \overline{\varphi'(0)}^2, \cdots$, and $\overline{\varphi'(0)}^n$, each of multiplicity one, and that therefore, the non-zero eigenvalues of C_{φ}^* are $\{\overline{\varphi'(0)}^k\}_{k=0}^{\infty}$, each with multiplicity one.

The spectral theory of compact operators therefore implies that the non-zero eigenvalues of C_{φ} are $\{\varphi'(0)^k\}_{k=0}^{\infty}$, each with multiplicity one.

Since each of the numbers $\{\varphi'(0)^k\}_{k=0}^{\infty}$, is a non-zero eigenvalue with multiplicity one, for each of the numbers $\varphi'(0)^k$ there must be a one-dimensional subspace of $H^2(\mathbb{D})$ (!!!) consisting of eigenvectors of C_{φ} .

Koenigs' Theorem says that the only solutions of $f \circ \varphi = \varphi'(0)^k f$ are multiples of σ^k , where σ is the Koenigs function for φ . This means that if C_{φ} is compact on H^2 , then for every positive integer k, the function σ^k is in H^2 and that these vectors span the eigenspaces of C_{φ} .

Noting that 0 is always a point of the spectrum of a compact operator on an infinite dimensional space, that the constant functions are eigenvectors for the eigenvalue 1, and that 0 is never an eigenvalue of C_{φ} because $\varphi(\mathbb{D})$ is an open set, we see that the proof is complete.

The eigenvalue equation for C_{φ} , $f \circ \varphi = \lambda f$, is called Schroeder's functional equation. Koenigs solved Schroeder's functional equation for functions analytic in the disk with Denjoy-Wolff point in \mathbb{D} . However, as we saw in the proof of the theorem, it is not enough to have a solution of Schroeder's equation, one must also show it is in H^2 to have a eigenvector of C_{φ} .

We will split the general problem into two pieces: find solutions of Schroeder's equation and then decide which, if any, are in H^2 (or other space of interest).

The linear fractional model for iteration is helpful in this effort. We have

$$\sigma\circ\varphi=\Phi\circ\sigma$$

for Φ a specific linear fractional map when φ is analytic map on \mathbb{D} and the Denjoy-Wolff point satisfies |a| = 1.

Specifically, when |a| = 1 and $s = \varphi'(a) < 1$, σ maps \mathbb{D} into the right half plane and $\Phi(w) = sw$. When |a| = 1, σ maps \mathbb{D} into the upper or lower half plane or into the whole plane, depending on the nature of the iterates of φ , and $\Phi(w) = w + 1$.

Suppose F solves Schroeder's equation for Φ for some number λ , that is, $F \circ \Phi = \lambda F$. Using $\sigma \circ \varphi = \Phi \circ \sigma$ and choosing $f = F \circ \sigma$, we see $f \circ \varphi = (F \circ \sigma) \circ \varphi = F \circ (\sigma \circ \varphi) = F \circ (\Phi \circ \sigma) = (F \circ \Phi) \circ \sigma = \lambda F \circ \sigma = \lambda f$ For $\Phi(w) = sw$ on the right half plane, using the branch of logarithm with $\log(1) = 0$ and writing $F(w) = e^{r \log w}$, we get $F \circ \Phi = s^r F$ for any r. For $\Phi(w) = w + 1$, writing $F(w) = e^{rw}$, we get $F \circ \Phi = e^r F$ for any r.

Theorem

Let φ be analytic map on \mathbb{D} with Denjoy-Wolff point a and |a| = 1. Then for each non-zero number λ , Schroeder's equation has an infinite dimensional subspace of solutions.

Proof:

The remark above shows that for every complex number r, either s^r (if $\varphi'(a) = s < 1$) or e^r (if $\varphi'(a) = 1$) are solutions of Schroeder's Equation.

Notice that each non-zero complex number λ can be written as $\lambda = s^r$ or $\lambda = e^r$ for infinitely many different *r*'s. Since the corresponding functions $f(z) = e^{r \log \sigma(z)}$ or $f(z) = e^{r\sigma(z)}$ are linearly independent for different *r*'s, the Theorem is proved.

Koenigs' Theorem gives the solutions of Schroeder's equation when |a| < 1.

Theorem

Let φ be automorphism of \mathbb{D} and a in $\overline{\mathbb{D}}$ the fixed point with $|\varphi'(a)| \leq 1$.

- If |a| < 1 (φ is elliptic), then $\sigma(C_{\varphi}) = \overline{\{\varphi'(a)^n\}_{n=0}^{\infty}}$
- If |a| = 1 and $\varphi'(a) = 1$ (φ is parabolic), then $\sigma(C_{\varphi}) = \partial \mathbb{D}$
- If |a| = 1 and $\varphi'(a) < 1$ (φ is hyperbolic), then

$$\sigma(C_{\varphi}) = \{\lambda : \sqrt{\varphi'(a)} \le |\lambda| \le \frac{1}{\sqrt{\varphi'(a)}}\}$$

Proof:

If |a| < 1, so that φ is an elliptic automorphism, the automorphism $\psi(z) = (a - z)/(1 - \overline{a}z)$ gives $\zeta = \psi^{-1} \circ \varphi \circ \psi$ so that C_{ζ} is similar to C_{φ} and $\zeta(z) = \gamma z$ with $\gamma = \varphi'(a)$ and $|\gamma| = 1$. For each non-negative integer n, the function z^n is an eigenvector for the eigenvalue γ^n , so $\sigma(C_{\zeta}) = \sigma(C_{\varphi})$ is a closed set that includes γ^n for all positive integers n.

If γ is root of unity, the spectrum includes the finite set of powers of $\gamma = \varphi'(a)$. If γ is not a root of unity, the set $\{\gamma^n\}_{n=0}^{\infty}$ is dense in the unit circle and the spectrum includes the unit circle. Since the matrix for C_{ζ} is diagonal, it is easy to see that each of these containments is actually equality.

If |a| = 1 and $\varphi'(a) = 1$, so that φ is an parabolic automorphism, and it has a half-plane translation model. Without loss of generality, a = 1. For example, $\varphi(z) = \left((1+i)z - i \right) / \left((1-i) + iz \right)$ is such a parabolic automorphism. The result above shows that the eigenfunctions are exponentials composed with the map σ .

In the case of the map φ above, the eigenvectors are

$$f(z) = e^{r\frac{z+1}{z-1}}$$

and for each complex number r, the corresponding eigenvalues are e^{-2ir} . These functions are in $H^2(\mathbb{D})$ if and only if $r \ge 0$. This means the spectrum of C_{φ} includes the unit circle, and since the spectral radius of C_{φ} and C_{φ}^{-1} are 1, the spectrum is actually equal to the unit circle.

Finally, if |a| = 1 and $\varphi'(a) = s < 1$, so that φ is hyperbolic, then without loss of generality, a = 1 and the other fixed point of φ is -1. In this case,

$$\varphi(z)=\frac{(1+s)z+1-s}{1+s+(1-s)z}$$

and it has a half-plane dilation model.

The result above shows the eigenfunctions are powers of the map σ which, in this case, means the eigenfunctions are

$$f(z) = \left(\frac{1-z}{1+z}\right)^r$$

and for each complex number r, the corresponding eigenvalue is s^r . Now the eigenfunctions are in $H^2(\mathbb{D})$ if and only if $-\frac{1}{2} < \operatorname{Re} r < \frac{1}{2}$ so this, together with spectral radius calculations, shows the spectrum is

$$\sigma(C_{\varphi}) = \{\lambda : \sqrt{s} \le |\lambda| \le \frac{1}{\sqrt{s}}\}$$

Just as in the automorphism cases, for φ a linear fractional map that is not an automorphism, all the computations needed to determine the spectrum can be carried out explicitly using the linear fractional models.

Examples

(1) (plane dilation) $\varphi(z) = (1+i)z/2$, a = 0, $\varphi'(a) = (1+i)/2$, C_{φ} compact

$$\sigma(C_{\varphi}) = \{0\} \cup \{\left(\frac{1+i}{2}\right)^n : n = 0, 1, 2, \cdots\}$$

(2) (plane dilation) $\varphi(z) = -z/2 + 1/2, \quad a = 1/3, \quad \varphi'(a) = -1/2,$ C_{φ} not compact ($\varphi(-1) = 1$), but $C_{\varphi}^2 = C_{\varphi \circ \varphi}$ is compact $\sigma(C_{\varphi}) = \{0\} \cup \{\left(-\frac{1}{2}\right)^n : n = 0, 1, 2, \cdots\}$

Examples (cont'd)

(3) (plane dilation) $\varphi(z) = z/(2-z), \quad a = 0, \quad \varphi'(a) = 1/2,$ but also $\varphi(1) = 1$ and $\varphi'(1) = 2$, so C_{φ} not compact $\sigma(C_{\varphi}) = \{1\} \cup \{\lambda : |\lambda| \le \frac{1}{\sqrt{2}}\}$

(4) (half-plane dilation) $\varphi(z) = z/3 + 2/3$, a = 1, $\varphi'(a) = 1/3$, so C_{φ} not compact

$$\sigma(C_{\varphi}) = \{\lambda : |\lambda| \le \frac{1}{\sqrt{\varphi'(a)}}\} = \{\lambda : |\lambda| \le \sqrt{3}\}$$

(5) (plane translation) $\varphi(z) = \frac{(2-t)z+t}{-tz+2+t}$ for $\operatorname{Re} t > 0$, a = 1, $\varphi'(1) = 1$

$$\sigma(C_{\varphi}) = \{ e^{\beta t} : \beta \le 0 \} \cup \{ 0 \}$$

The examples from the linear fractional maps give an indication of how the spectra vary depending on the case from the model for iteration – this dependence appears to persist throughout the study of composition operators on spaces of analytic functions.

By far the easiest case to handle is the half-plane dilation case.

Theorem

If φ is an analytic mapping of the unit disk to itself with Denjoy–Wolff point a on the unit circle and $\varphi'(a) < 1$, then for real θ the operator C_{φ} on $H^2(\mathbb{D})$ is similar to the operator $e^{i\theta}C_{\varphi}$.

Thus, if λ is in the spectrum of C_{φ} then for real θ , $e^{i\theta}\lambda$ is also.

(half-plane dilation)

Theorem

If φ , not an inner function, is analytic in a neighborhood of the closed unit disk, maps the disk to itself, and has Denjoy–Wolff point a on the unit circle with $\varphi'(a) < 1$, then for C_{φ} acting on the Hardy space $H^2(\mathbb{D})$,

$$\sigma(C_{\varphi}) = \{\lambda : |\lambda| \le \varphi'(a)^{-1/2}\}$$

For $\varphi'(a)^{1/2} < |\lambda| < \varphi'(a)^{-1/2}$, the number λ is always an eigenvalue of infinite multiplicity for C_{φ}

(plane dilation)

Theorem

Let φ , not an inner function, be analytic in a neighborhood of the closed disk with $\varphi(\mathbb{D}) \subset \mathbb{D}$ and $\varphi(a) = a$ for some point a with |a| < 1. If C_{φ} is the associated composition operator on $H^2(\mathbb{D})$, then

$$\sigma(C_{\varphi}) = \{\lambda : |\lambda| \le \rho\} \cup \{\varphi'(a)^k : k = 1, 2, \dots\} \cup \{1\}$$

where ρ is the essential spectral radius of C_{φ} .

Theorem

If φ is an inner function with a fixed point in the disk, not an automorphism, then C_{φ} acting on $H^2(\mathbb{D})$ is similar to an isometry whose unitary part is the identity on a one dimensional space and whose purely isometric part is a unilateral shift of infinite multiplicity. Moreover,

$$\sigma(C_{\varphi}) = \sigma_e(C_{\varphi}) = \{\lambda : |\lambda| \le 1\}$$

Theorem

Let φ be an inner function, not an automorphism, with Denjoy–Wolff point a on the unit circle. Then on $H^2(\mathbb{D})$

$$\sigma(C_{\varphi}) = \sigma_e(C_{\varphi}) = \{\lambda : |\lambda| \le \varphi'(a)^{-1/2}\}$$

In the half-plane translation case, we have some information about the spectrum:

Theorem

If φ is an analytic mapping of the unit disk with a halfplane/translation model for iteration, then the spectrum and essential spectrum of C_{φ} on $H^2(D)$ contain the unit circle. Moreover, if λ is an eigenvalue of C_{φ} , then $e^{i\theta}\lambda$ is also an eigenvalue of C_{φ} for each positive number θ .

Problem

If φ is in the half-plane translation case, not an automorphism, is $\sigma(C_{\varphi})$ always $\{\lambda : |\lambda| \leq 1\}$? In the plane translation case, we have no information about the spectrum, only a few examples:

In the plane translation case, the only examples for which we know the spectra are symbols that belong to a semigroup of analytic functions, and the spectrum is computed using semigroup theory.

Problem

If φ is in the plane translation case, is $\sigma(C_{\varphi})$ always a union of spirals joining 0 and 1?

Problem

Find the spectrum of C_{φ} for a function φ in the plane translation case that is not inner, linear fractional, or a member of a semigroup of analytic functions.