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Linear algebra: Euclidean spaces: Rn, Cn

Problems:

Classify n× n matrices up to similarity: Jordan Canonical Form

For a given matrix A,

which matrices B satisfy AB = BA,

and what subspaces M satisfy AM ⊂M?

Such a subspace is said to be “an invariant subspace for A”

An important example(!): 

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0





The analysis of differential equations necessitated extension

to infinite dimensional spaces:

Hilbert spaces are infinite dimensional Euclidean spaces: Cn expands to `2

v = (a0, a1, a2, · · ·) with ‖v‖2 =

∞∑
n=0

|an|2 and 〈v, w〉 =

∞∑
n=0

anbn

It is now convenient to insist that ‖Ax‖ ≤ K‖x‖ so that the function x 7→ Ax

is continuous: the best value for K ≡ ‖A‖.

Problems:

Classify operators up to similarity.

For a given operator A,

which operators B satisfy AB = BA,

and what subspaces M satisfy AM ⊂M?



The analysis of differential equations necessitated extension

to infinite dimensional spaces:

Hilbert spaces are infinite dimensional Euclidean spaces: Cn expands to `2

v = (a0, a1, a2, · · ·) with ‖v‖2 =

∞∑
n=0

|an|2 and 〈v, w〉 =

∞∑
n=0

anbn

It is now convenient to insist that ‖Ax‖ ≤ K‖x‖ so that the function x 7→ Ax,

a linear operator, is continuous: the best value for K ≡ ‖A‖.

Problems:

Classify operators up to similarity. (unsolved!)

For a given operator A,

which operators B satisfy AB = BA, (unsolved!)

and what subspaces M satisfy AM ⊂M? (unsolved!)



An important example(!):

On `2 = {v = (a0, a1, a2, · · ·) : ‖v‖2 =
∑
|an|2 <∞}

the unilateral shift operator is:

Sv =



0 0 0 0 · · ·

1 0 0 0 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·
. . .





a0

a1

a2

a3

...


=



0

a0

a1

a2

...



An easy example of an operator that is not self-adjoint, normal, or compact,

types of operators with much better understood structure than generic ones.



Let A : H 7→ H be a linear transformation and H a Hilbert space.

Some terminology:

• A is bounded (continuous) if there is K so ‖Ax‖ ≤ K‖x‖ for all x ∈ H

• A is self-adjoint if A = A∗, a generalization of real-symmetric matrices.

• A is normal if AA∗ = A∗A

• A is compact if A = limn→∞Bn where the Bn have finite dimensional ranges.

The range of a compact operator is “small” in the sense that

the range contains no closed, infinite dimensional subspaces!



In 1949, Beurling published a theorem that gives a complete characterization of

ALL the closed subspaces that are invariant for the unilateral shift.

This breakthrough was based on Beurling’s understanding of how this interesting

operator is connected to complex analysis!!



Defining the Hardy space on the unit disk, D, by

H2(D) = {f analytic on D : f (z) =

∞∑
n=0

anz
n with ‖f‖2 =

∑
|an|2 <∞}

We see `2 ↔ H2 and S ↔ Tz where Tz(f ) = zf

The operators Tψ, for ψ a bounded analytic function on D are defined by

Tψf = ψf

and these operators are continuous with

‖Tψ‖ = ‖ψ‖∞ = sup{|ψ(z)| : |z| < 1}

Beurling’s Theorem. A closed subspace M of H2 is invariant for Tz if and only

if M is the range of Tψ for some bounded analytic function ψ on D for which

|ψ(eiθ)| = 1 almost everywhere.



For a bounded analytic function, ψ, on D, the matrix for Tψ, w.r.t. basis {zn},

is lower triangular and is constant along diagonals:

a0 0 0 0 · · ·

a1 a0 0 0 · · ·

a2 a1 a0 0 · · ·

a3 a2 a1 a0
... ... ... . . .


where ψ(z) =

∑∞
j=0 ajz

j.



Definition:

If A is a bounded operator on a space H, the commutant of A is the set

{A}′ = {B ∈ B(H) : AB = BA}

For example, for Tz on H2,

{Tz}′ = {Tψ : ψ ∈ H∞}
0 0 0 · · ·

1 0 0 · · ·

0 1 0 . . .



b00 b01 b02 · · ·

b10 b11 b12 · · ·

b20 b21 b22 . . .

 =


0 0 0 · · ·

b00 b01 b02 · · ·

b10 b11 b12 . . .





Definition:

If A is a bounded operator on a space H, the commutant of A is the set

{A}′ = {B ∈ B(H) : AB = BA}

For example, for Tz on H2,

{Tz}′ = {Tψ : ψ ∈ H∞}
0 0 0 · · ·

1 0 0 · · ·

0 1 0 . . .



b00 b01 b02 · · ·

b10 b11 b12 · · ·

b20 b21 b22 . . .

 =


0 0 0 · · ·

b00 b01 b02 · · ·

b10 b11 b12 . . .



b00 b01 b02 · · ·

b10 b11 b12 · · ·

b20 b21 b22 . . .




0 0 0 · · ·

1 0 0 · · ·

0 1 0 . . .

 =


b01 b02 b03 · · ·

b11 b12 b13 · · ·

b21 b22 b23 . . .






0 0 0 · · ·

b00 b01 b02 · · ·

b10 b11 b12 . . .

 =


b01 b02 b03 · · ·

b11 b12 b13 · · ·

b21 b22 b23 . . .


This means that b0j = 0 for j ≥ 1 and bi,j = bi+1,j+1 for i, j ≥ 0

In particular, letting ai = bi0, we see the matrix is lower triangular and is

constant along diagonals: 

a0 0 0 0 · · ·

a1 a0 0 0 · · ·

a2 a1 a0 0 · · ·

a3 a2 a1 a0
... ... ... . . .


This is Tψ for ψ(z) =

∑∞
j=0 ajz

j where ‖ψ‖∞ = ‖Tψ‖.



Definition:

If A is a bounded operator on a space H, the commutant of A is the set

{A}′ = {B ∈ B(H) : AB = BA}

We have seen for Tz on H2,

{Tz}′ = {Tψ : ψ ∈ H∞}

This means we can rephrase Beurling’s Theorem about the invariant subspaces of

the unilateral shift S:

Beurling’s Theorem. Let M be a closed subspace of `2.

Then M is an invariant subspace for the unilateral shift if and only if

M is the range of some bounded operator T on `2 such that ST = TS.



By the 1970’s, there was interest in the more general question,

For ψ in H∞ and Tψ an operator on H2, what is {Tψ}′ ?

It turned out the descriptions of {Tψ}′ involve a different class of operators:

composition operators.

Let Ω be a domain in C or CN and suppose H is a Hilbert space of

analytic functions on Ω.

If ϕ is an analytic map of Ω into itself,

the composition operator Cϕ is the operator on H given by

Cϕf = f ◦ ϕ

Goal: relate the function–theoretic properties of ϕ to the operator–theoretic

properties of Cϕ.



Some well known examples of Hilbert spaces of analytic functions are:

For example, Hardy spaces

H2(D) = {f analytic in D : sup
0<r<1

∫ 2π

0

|fr|2
dθ

2π
<∞}

H2(BN) = {f analytic in BN : sup
0<r<1

∫
∂BN

|fr|2 dσN <∞}

and Bergman spaces

A2(D) = {f analytic in D :

∫
D
|f (z)|2 dA

π
<∞}

A2(BN) = {f analytic in BN :

∫
BN

|f (z)|2 dνN <∞}



If ϕ is an analytic map of Ω into itself,

the composition operator Cϕ is the operator on H given by

Cϕf = f ◦ ϕ

Goal: relate the function–theoretic properties of ϕ to the operator–theoretic

properties of Cϕ.

Theorem. If ϕ is an analytic map of the disk into itself,

then Cϕ is bounded on H2(D) and

‖Cϕ‖ ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)1/2

On medium sized spaces, like H2 and A2, all composition operators are bounded.



Definition: If A is a bounded operator on a Hilbert space H, the spectrum of A,

denoted σ(A), is

σ(A) = {λ ∈ C : λI − A does not have a continuous inverse}

This is a generalization of the eigenvalues of an n× n matrix, but in infinite

dimensional spaces, there are often points in σ(A) that are not eigenvalues of A.

For any bounded operator, σ(A) is a non-empty, compact subset of the plane.

For example, it is easy to prove that the unilateral shift, S, on `2 does not have

any eigenvalues, but

σ(S) = {λ ∈ C : |λ| ≤ 1}



Spectra of composition operators are related to the nature of the fixed points of ϕ.

We will say b in the closed disk is a fixed point of ϕ if

lim
r→1−

ϕ(rb) = b

If b is a fixed point of ϕ in the closed disk, then

lim
r→1−

ϕ′(rb)

exists and we denote it by ϕ′(b).

Theorem (Denjoy, Wolff, 1926).

If ϕ is an analytic map of the disk into itself, not an automorphism, then

there is a unique fixed point a in the closed disk for which |ϕ′(a)| ≤ 1.

Moreover,

lim
n→∞

ϕn(z) = a

for all z in the open disk, uniformly on compact sets.

The point a of the theorem above will be called the Denjoy-Wolff point of ϕ.



Model for iteration of analytic functions mapping unit disk into itself.

Maps of the disk into itself are like linear fractional maps.

Let ϕ be an analytic map of the unit disk D into itself, not an

automorphism of the disk.

Suppose that either ϕ does not have a fixed point in D or that ϕ′(a) 6= 0 for

the fixed point a in D.

Then there is a domain ∆, either the plane or a half-plane, an

automorphism Φ of ∆ onto ∆, and a mapping σ of D into ∆ such that

σ ◦ ϕ = Φ ◦ σ



Four distinct cases in the model:

If ϕ has a fixed point in D:

• (plane/dilation) ∆ = C, Φ(z) = αz

If ϕ has no fixed points in D:

• (half-plane/dilation) ∆ = {Re z > 0}, Φ(z) = αz

• (plane/translation) ∆ = C, Φ(z) = z + 1

• (half-plane/translation)

∆ = {Im z > 0}, Φ(z) = z ± 1



Some applications of the model:

• Better understanding of iteration of the function ϕ, including questions about

embeddability of the discrete semi-group of iterates of ϕ into a continuous

semi-group

• Determination of the functions ψ mapping the disk into the disk that satisfy

ψ ◦ ϕ = ϕ ◦ ψ

• Determination of the eigenvectors and eigenvalues of composition operators on

spaces of analytic functions on the disk

• Determination of the spectrum of composition operators on spaces of analytic

functions on the disk



Spectra of Cϕ:

Cϕ is invertible if and only if ϕ is an automorphism

Cϕ is compact (or power compact) implies |a| < 1 and

σ(Cϕ) = {0} ∪ {1} ∪ {ϕ′(a)n : n = 1, 2, · · ·}

|a| < 1 and smoothness hypotheses

σ(Cϕ) = {0} ∪ {1} ∪ {ϕ′(a)n : n = 1, 2, · · ·} ∪ {z : |z| ≤ ρ}

|a| = 1, ϕ′(a) < 1

σ(Cϕ) = {z : |z| ≤ ϕ′(a)−1/2}

Less is known:

|a| = 1, ϕ′(a) = 1, half-plane translation

|a| = 1, ϕ′(a) = 1, plane translation



Problem: Explain the circular symmetry of the spectra of Cϕ:

(Cowen, 1983)

If ϕ is a map of the disk into itself with |a| = 1 and ϕ′(a) < 1,

then on H2(D),

σ(Cϕ) = {λ : |λ| ≤ ϕ′(a)−1/2}

Moreover, Cϕ is similar to eiθCϕ for each real number θ.



Some omitted topics:

• Adjoints of Cϕ.

• Topology of the set of composition operators.

• Cyclicity, hypercyclicity, etc. of Cϕ and C∗ϕ .

• Normality, subnormality, hyponormality of Cϕ and C∗ϕ .

• Similarity and unitary equivalence of Cϕ and Cψ.



Composition operators in several variables

Still many mysteries in several variables... even boundedness is problematic.

Wogen (1988) gave necessary and sufficient conditions for a smooth map to give a

bounded operator on H2(BN).

For example,

ϕ(z1, z2) = (
5

9
+

5

9
z1 −

1

9
z21 +

1

6
z22,

1

5
z22)

is a map of B2 into B2 that gives unbounded composition operator on H2(B2).



On the other hand, some things carry over to several variables.

Theorem (MacCluer, 1984)

If Cϕ is compact on H2(BN), then ϕ has an attractive fixed point a in BN .

Moreover, the spectrum of Cϕ is

σ(Cϕ) = {0} ∪ {1} ∪ {all products of eigenvalues of ϕ′(a)}

If ϕ is an analytic map of BN into itself, ϕ(0) = 0, and ϕ is not unitary on a

slice, then

σ(Cϕ) ⊃ {λ : |λ| ≤ ρ}

where ρ is computed in terms of the essential spectral radius of Cϕ and a

constant depending on the local behavior of ϕ.



Some broad areas for investigation:

What can you say about the spectrum of Cϕ if ϕ has no fixed point in BN?

What effect do degeneracies of ϕ have on the structure of Cϕ? For example, if

ϕ(BN) ⊂ BN ∩ {(w1, 0)} and Cϕ is bounded, what is the structure of Cϕ?

For example, if

ϕ(z1, z2) = (2z1z2, 0) or ϕ(z1, z2) = (z21 + z22, 0)

then Cϕ is unbounded, but if

ϕ(z1, z2) = (z1z2, 0)

then Cϕ is compact.



Similarly, what if ϕ(z1, z2) = (z1ψ(z1, z2), z2) which is unitary on the slice z1 = 0,

or what if ϕ(z1, z2) = (ψ1(z1), ψ2(z2))?

We need a better understanding of maps of the ball into the ball, for example, we

need to have a substitute for the “Model for Iteration” for several variables.

What is a ‘nice’ class of functions of BN into itself? Given ϕ, can we find a ‘nice’

map that is ‘like’ ϕ.



Most important reason to study composition operators:

They are operators that have very different structures

than other better known classes of operators!

I believe their structures better represent the structures of generic operators.



For example, composition operators can be used to study general operators:

Definition: An operator U is called a universal operator on H2, if for every

continuous T on a separable, infinite dimensional Hilbert space, there is a

subspace M of H2 and a number α > 0 so that the restriction of U to M is

similar to αT .



For example, composition operators can be used to study general operators:

Definition: An operator U is called a universal operator on H2, if for every

continuous T on a separable, infinite dimensional Hilbert space, there is a

subspace M of H2 and a number α > 0 so that the restriction of U to M is

similar to αT .

Let f be the function f (z) = (z + 1)/2.

Theorem:(Cowen, Gallardo, 2012)

There are an analytic function, ψ, on the disk and an analytic map, ϕ, of the

disk into itself so that T∗ψ is a universal operator and, for Wf,ϕ = TfCϕ,

the operator W∗f,ϕ is a compact operator commuting with T∗ψ .



For example, composition operators can be used to study general operators:

Definition: An operator U is called a universal operator on H2, if for every

continuous T on a separable, infinite dimensional Hilbert space, there is a

subspace M of H2 and a number α > 0 so that the restriction of U to M is

similar to αT .

Let f be the function f (z) = (z + 1)/2.

Theorem:(Cowen, Gallardo, 2012)

There are an analytic function, ψ, on the disk and an analytic map, ϕ, of the

disk into itself so that T∗ψ is a universal operator and, for Wf,ϕ = TfCϕ,

the operator W∗f,ϕ is a compact operator commuting with T∗ψ .

Corollary:

If A is any bounded operator on an infinite-dimensional Hilbert space H, then

there is a non-zero compact operator R so that the range of R is invariant for A.



Thank You!

Slides available: http://www.math.purdue.edu/˜cowen



Of course, the points α = β1, β2, · · ·, βn depend on α, so we might write them as

α = β1(α), β2(α), · · ·, βn(α).

In fact (!), if B is a finite Blaschke product of order n and α is a point of the disk

that is NOT one of the n(n− 1) points of the disk for which B(α) = B(β) and

B′(β) = 0,

the maps α 7→ βj(α) are just the n branches of the analytic function

B−1 ◦B that is defined and arbitrarily continuable on the disk with the

n(n− 1) exceptional points removed.

Theorem: (Cowen, 1974)

For B a finite Blaschke product, the branches of B−1 ◦B form a group

whose normal subgroups are associated with compositional factorizations of

B into compositions of two Blaschke products.



Of course, the points α = β1, β2, · · ·, βn depend on α, so we might write them as

α = β1(α), β2(α), · · ·, βn(α).

In fact (!), if B is a finite Blaschke product of order n and α is a point of the disk

that is NOT one of the n(n− 1) points of the disk for which B(α) = B(β) and

B′(β) = 0,

the maps α 7→ βj(α) are just the n branches of the analytic function

B−1 ◦B that is defined and arbitrarily continuable on the disk with the

n(n− 1) exceptional points removed.

Theorem: (Cowen, 1974) (Ritt, 1922, ’23)

For B a finite Blaschke product, the branches of B−1 ◦B form a group

whose normal subgroups are associated with compositional factorizations of

B into compositions of two Blaschke products.



Theorem: (C. & Wahl, 2012). For B a Blaschke product, and W ∼ B−1 ◦B:

If T is a bounded operator on A2 that commutes with TB, then there is a

bounded analytic function G on the Riemann surface W so that for f in A2,

(Tf )(α) = (B′(α))
−1∑

G((β, α))β′(α)f (β(α)) (1)

where the sum is taken over the n branches of B−1 ◦B at α. Moreover, if α0

is a zero of order m of B′, and ψ1, ψ2, · · ·, ψn is a basis for(
(B −B(α0))H

2
)⊥

, then G has the property that∑
G((β, α))β′(α)ψj(β(α)) has a zero of order m at α0 (2)

for j = 1, 2, · · · , n.

Conversely, if G is a bounded analytic function on W that has

properties (4) at each zero of B′, then (3) defines a bounded linear operator

on A2 with T in {TB}′.


