
Math 444 (Cowen) Solution to Prob. 10, page 86 5 October 2010

10. (page 86 of Bartle and Sherbert)

Let x1 < x2 be real numbers and define the sequence (xn) recursively by

xn =
1

2
(xn−2 + xn−1)

for n > 2. Show that the sequence (xn) converges and find its limit.

Solution:
We will solve this problem by a series of lemmas, some of which are more general than the
problem itself. The solution given does not directly use the Contraction Mapping Theorem
(Theorem 3.5.8) but is clearly closely related to it.

The first lemma shows that the between-ness that follows from the averaging process
gives an order relation among the terms of the sequence (xn) that is helpful in the analysis.

Lemma 1. Suppose (xn) is a sequence with xk+1 (strictly) between xk and xk−1 for each
integer k with k ≥ 2 and x1 < x2. Then

(1) x1 < x3 < x5 < x7 < · · · < x8 < x6 < x4 < x2

that is, the sequence satisfies x2k−1 < x2k+1 < x2j+2 < x2j for each j and k in N.

Proof. We are given that x1 < x2. By hypothesis, with k = 2, we know x3 is between x2 and
x1, so x1 < x3 < x2. Now, for k = 3, we have x4 is between x3 and x2, so x1 < x3 < x4 < x2.

Thus, for n = 1, we have x2n−1 < x2n+1 < x2n+2 < x2n. We establish this inequality
for all n by induction. Suppose this inequality is true for n = ` ≥ 1, that is, x2`−1 < x2`+1 <
x2`+2 < x2`, then we want to show it is true for n = ` + 1. For k = 2` + 2, we have x2`+1 =
xk−1 < xk = x2`+2 and by hypothesis, xk+1 is between xk and xk−1, that is, xk−1 < xk+1 < xk,
and again, xk+2 is between xk+1 and xk, so we have xk−1 < xk+1 < xk+2 < xk. Recalling
that k = 2` + 2, this means x2`+1 < x2`+3 < x2`+4 < x2`+2 which is the desired inequality
x2n−1 < x2n+1 < x2n+2 < x2n for n = `+ 1.

By induction, this means that x2n−1 < x2n+1 < x2n+2 < x2n is true for all positive
integers n. Now, suppose k and j are integers in N. If k = j, then this is just one instance of
the inequality we have proved. If k < j, then, for n = j, we have x2j−1 < x2j+1 < x2j+2 < x2j .
But since the inequalities on the left hold for all n, we have

x2k−1 < x2k+1 < · · · < x2j+1 < x2j+2 < x2j

and the inequality in the conclusion holds. Similarly, if k > j, then for n = k, we have
x2k−1 < x2k+1 < x2k+2 < x2k and since the inequalities on the right hold for all n, we have

x2k−1 < x2k+1 < x2k+2 < · · · < x2j+2 < x2j

and the Lemma is proved for all k and j in N. �

The second lemma shows that the order relations from Lemma 1, together with a hy-
pothesis on successive terms being close, imply convergence of the sequence.

Lemma 2. Suppose the sequence (yn) satisfies Inequality (1), that is, it satisfies y2k−1 ≤
y2k+1 ≤ y2j+2 ≤ y2j for each j and k in N. Then the sequence (yn) converges if and only if
limn→∞ |yn − yn+1| = 0.

Proof. If the sequence (yn) converges, then the sequence (yn) is Cauchy, and for any ε > 0,
there is Nε so that when n and m satisfy n,m > Nε, then |yn− ym| < ε. Choosing, m = n+ 1,
this means when n > Nε, then |yn − yn+1| < ε. This means that limn→∞ |yn − yn+1| = 0.
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Conversely, if (yn) satisfies Inequality (1), then the sequence (y2k−1) is an increasing
sequence and the sequence (y2j) is a decreasing sequence. We will see that this means that
(yn) is a Cauchy sequence. If ε > 0 is given, then since limn→∞ |yn− yn+1| = 0, there is Mε so
that n > Mε implies |yn − yn+1| < ε. Choose k so that 2k − 1 > Mε and let j = k. Then, we
have (2k−1)+1 = 2k = 2j and we see |y2k−1−y2j | < ε. On the other hand, if n and m satisfy
n,m > 2k = 2j, then yn satisfies y2k−1 < yn < y2j and ym also satisfies y2k−1 < ym < y2j so
we have |yn − ym| < |y2k−1 − y2j | < ε. Since this is true for all ε > 0, this means that (yn) is a
Cauchy sequence, and therefore (yn) converges. �

The following lemma shows that we can normalize the sequence and thereby simplify our
calculations.

Lemma 3. Let the sequence (an) be defined recursively by a1 = 0 and a1 = 1 and

an =
1

2
(an−2 + an−1)

for n > 2. Then the sequence (xn) defined above satisfies xn = x1 + an(x2 − x1).

Proof. Notice that the hypotheses on the sequence (an) give

x1 + a1(x2 − x1) = x1 + 0(x2 − x1) = x1

and
x1 + a2(x2 − x1) = x1 + 1(x2 − x1) = x2

so the formula works for n = 1 and n = 2. We continue by using (strong) induction. Suppose,
xn = x1 + an(x2 − x1) for all n ≤ k. Then

xk+1 =
1

2
(xk + xk−1) =

1

2
(x1 + ak(x2 − x1) + x1 + ak−1(x2 − x1))

= x1 +
1

2
(ak + ak−1)(x2 − x1) = x1 + ak+1(x2 − x1)

and the formula works for n = k + 1. Thus, the formula holds for all n in N. �

Lemma 2 says that to establish convergence, we need to look at the differences of suc-
cessive terms.

Lemma 4. Suppose (an) is the sequence of Lemma 3. Then for n ≥ 2, we have |an+1− an| =
|an − an−1|/2 and the sequence (an) is convergent.

Proof. For any n ≥ 2, we have

|an+1 − an| = |
1

2
(an−1 + an)− an| = |

1

2
an−1 +

1

2
an − an| = |

1

2
an−1 −

1

2
an| =

1

2
|an−1 − an|

so the desired relationship holds.
We will use induction to show that for n ≥ 2, we have |an − an−1| = 1/2n−2. For n = 2,

we see that |a2 − a1| = |1− 0| = 1 = 1/20, so the formula is correct for n = 2. Now suppose,
we have the formula is correct for n = k ≥ 2, that is, we have |ak − ak−1| = 1/2k−2. Then,
using the relationship just proved, we have

|ak+1 − ak| =
1

2
|ak − ak−1| =

1

2

1

2k−2
=

1

2k−1

and the formula is correct for n = k + 1. Thus, the formula is correct for all n ≥ 2.
Now, limn→∞ 1/2n−1 = 0, so this says that limn→∞ |an+1 − an| = 0. Now the sequence

(an) satisfies the hypotheses of both Lemma 1 and and Lemma 2, so this means that the
sequence (an) converges. �



The following establishes a relationship that is useful in finding the limit of the sequence
(an).

Lemma 5. Suppose (an) is the sequence of Lemma 3. Then for k = 3, 4, 5, · · · , we have
ak+2 − ak = (ak − ak−2)/4.

Proof. Suppose (an) is the sequence above. Then for k = 3, 4, 5, · · · , we have |ak − ak−1| =
|ak−1 − ak−2|/2. We know from Lemma 1 that the even numbered terms of the sequence
are larger than the odd numbered terms, so being aware of the parity of k, we have ak −
ak−1 = (ak−2 − ak−1)/2 where both sides are positive if k is even and both sides negative
if k is odd. We also have ak+1 − ak = (ak−1 − ak)/2. Adding these two equations, we get
ak+1 − ak−1 = (ak−2 − ak)/2 for every k ≥ 3.

Now replacing k by k+ 1, we get ak+2− ak = (ak−1− ak+1)/2. Combining this with the
equality in the preceding paragraph, we get

ak+2 − ak =
1

2
(ak−1 − ak+1) =

1

2

(
1

2

)
(ak − ak−2) =

1

4
(ak − ak−2)

as we wished to prove. �

Finally, we can put these results together to get the answer to question 10, page 86.

Theorem 6. If x1 < x2 are real numbers and the sequence (xn) is defined recursively by

xn =
1

2
(xn−2 + xn−1)

for n > 2, then (xn) converges and

lim
n→∞

xn =
1

3
x1 +

2

3
x2

Proof. Lemma 3 allows us to consider the normalized sequence (an) rather than the given
sequence (xn). This should make the calculations more transparent.

The formula in Lemma 5, for k ≥ 3, gives

ak+2 − ak =
1

4
(ak − ak−2)

Writing k = 2j + 1, we have, for j ≥ 1

a2j+3 − a2j+1 =
1

4
(a2j+1 − a2j−1)

Now for j = 1, this says that a5 − a3 = (a3 − a1)/4. Since a1 = 0 and a2 = 1, we have
a3 = (1 + 0)/2 = 1/2 and, therefore, a5 − a3 = 1/8.

Now, an easy induction argument gives a2j+3 − a2j+1 = 2−(2j+1): It is true for j = 1. If
it is true for j = k, then

a2(k+1)+3 − a2(k+1)+1 =
1

4
(a2k+3 − a2k+1) = 2−22−(2k+1) = 2−(2k+3)

and it is true for j = k + 1, so it is true for all j in N.
Now for k a positive integer, we have

a2k+3 = (a2k+3−a2k+1) + (a2k+1−a2k−1) + · · ·+ (a5−a3) +a3 =
1

22k+1
+

1

22k−1
+ · · ·+ 1

23
+

1

2
Thus,

lim
k→∞

a2k+3 =
1

2
+

1

23
+

1

25
+ · · · = 1

2
(1 +

1

4
+

1

42
+ · · · ) =

1

2

(
1

1− (1/4)

)
=

2

3



Since the sequence (an) converges and this subsequence converges to 2/3, we must have
limn→∞ an = 2/3.

Now, Lemma 3 says that xn = x1 + an(x2 − x1), so

lim
n→∞

xn = lim
n→∞

(x1 + an(x2 − x1)) = x1 +
(

lim
n→∞

an

)
(x2 − x1)

= x1 +
2

3
(x2 − x1) =

1

3
x1 +

2

3
x2

as we were to prove. �


