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Math S165 Test 2 24 November 2008
There are 6 pages, 6 questions, and 100 points on this test. The test finishes at 10:10am!
Follow the instructions for each question and show enough of your work that I can understand
what you are doing.

(15 points) 1. Let R be the region in the first quadrant bounded on the top by the line y — z = 6, on the
right by the parabola y = z2, and on the left by the y-axis.

| (5/?) (a) Set up an integral to find the volume of the solid obtained by revolving the region R around
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(b) Set up an integral to find the volume of the solid obtained by revolving the region R around
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4“ Si» | (c) Evaluate one of the integrals found in (a) or (b) to find theuvolume (as a number) of that
’ solid.
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(15 points) 2. A barrel full of water is being lifted by a crane to the top of a 100 foot building. When the
barrel is full, it weighs 200 pounds. Unfortunately, the barrel is leaking: in fact during the time
it is being lifted to the top of the building, it loses 100 pounds of water! Assuming the water
Is being lost at a constant rate, that the crane lifts the barrel at a constant rate, and that the
weight of the cable holding the barre] is negligible (that is, the work done in lifting the cable
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(20 points) 3.

(a) Let a be a real number. Use the definition of derivative as a limit of difference quotients

(that is, not the rules for finding derivatives that we have proved) to find f’(a) when f is
the function

=2 +3z+5
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(b) Use the definition of derivative as a limit of difference quotients to explain why ¢’(0) is not
defined when g is the absolute value function,
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(20 points) 4. dx

Let h(z )—x 73

(a) For which values of z, if any, is h not continuous?
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(15 points) 5. Assume that the equation
23 + 2zsiny — (cosy)? =7
defines y as a function (or functions) of z.

(a) Find ¢/ as a function of z and y.
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(b) Find an equation for the line tangent to the curve at the point (2,0).
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(15 points) 6. Use the epsilon(e) — delta(d) definition of limit to prove that
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