CHAPTER 1

PRELIMINARIES

In this initial chapter we will present the background needed for the study of real analysis.
Section 1.1 consists of a brief survey of set operations and functions, two vital tools for all
of mathematics. In it we establish the notation and state the basic definitions and properties
that will be used throughout the book. We will regard the word “set” as synonymous with
the words “class”, “collection”, and “family”, and we will not define these terms or give a
list of axioms for set theory. This approach, often referred to as “naive” set theory, is quite
adequate for working with sets in the context of real analysis.

Section 1.2 is concerned with a special method of proof called Mathematical Induction.
It is related to the fundamental properties of the natural number system and, though it is
restricted to proving particular types of statements, it is important and used frequently. An
informal discussion of the different types of proofs that are used in mathematics, such as
contrapositives and proofs by contradiction, can be found in Appendix A.

In Section 1.3 we apply some of the tools presented in the first two sections of this
chapter to a discussion of what it means for a set to be finite or infinite. Careful definitions
are given and some basic consequences of these definitions are derived. The important
result that the set of rational numbers is countably infinite is established.

In addition to introducing basic concepts and establishing terminology and notation,
this chapter also provides the reader with some initial experience in working with precise
definitions and writing proofs. The careful study of real analysis unavoidably entails the
reading and writing of proofs, and like any skill, it is necessary to practice. This chapter is
a starting point.

Section 1.1 Sets and Functions

To the reader: In this section we give a brief review of the terminology and notation that
will be used in this text. We suggest that you look through quickly and come back later
when you need to recall the meaning of a term or a symbol.

If an element x is in a set A, we write

x€eA
and say that x is a member of A, or that x belongs to A. If x is not in A, we write
x & A.
If every element of a set A also belongs to a set B, we say that A is a subset of B and write
ACBHB or BD A

We say that a set A is a proper subset of a set B if A C B, but there is at least one element
of B that is not in A. In this case we sometimes write

ACB.
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L.1.1 Definition Two sets A and B are said to be equal, and we write A = B, if they
contain the same elements.

Thus, to prove that the sets A and B are equal, we must show that
ACB and BCA.

A set is normally defined by either listing its elements explicitly, or by specifying a
property that determines the elements of the set. If P denotes a property that is meaningful
and unambiguous for elements of a set S, then we write

{x e §S: P(x)}

for the set of all elements x in S for which the property P is true. If the set S is understood
from the context, then it is often omitted in this notation.

Several special sets are used throughout this book, and they are denoted by standard
symbols. (We will use the symbol := to mean that the symbol on the left is being defined
by the symbol on the right.)

« The set of natural numbers N :={1,2,3,-..},

+ The set of integers Z := {0, 1, —-1,2, -2, .-},

* The set of rational numbers Q := {m/n : m,n € Z and n # 0},
+ The set of real numbers R.

The set R of real numbers is of fundamental importance for us and will be discussed
at length in Chapter 2.

1.1.2 Examples (a) The set

(xeN:x2-3x4+2=0}

consists of those natural numbers satisfying the stated equation. Since the only solutions of
this quadratic equation are x = 1 and x = 2, we can denote this set more simply by {1, 2}.
(b) A natural number n is even if it has the form n = 2k for some k € N. The set of even
natural numbers can be written

{2k : k e N},

which is less cumbersome than {n € N : n = 2k, k € N}. Similarly, the set of odd natural
numbers can be written

{2k —1:k e N}. O

Set Operations

We now define the methods of obtaining new sets from given ones. Note that these set
operations are based on the meaning of the words “or”, “and”, and “not”. For the union,
it is important to be aware of the fact that the word “or” is used in the inclusive sense,
allowing the possibility that x may belong to both sets. In legal terminology, this inclusive
sense is sometimes indicated by “and/or”.

1.1.3 Definition (a) The union of sets A and B is the set
AUB:={x:xeAorx € B}.

(b) The i
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(b) The intersection of the sets A and B is the set
ANB:={x:xeAandx € B}.

(¢) The complement of B relative to A is the set
A\B:={x:x € Aandx ¢ B}.

"

AUB [ ANBIA A\B EH
Figure1.11 (@ AUB ®ANB (c) A\B

The set that has no elements is called the empty set and is denoted by the symbol .
Two sets A and B are said to be disjoint if they have no elements in common,; this can be
expressed by writing AN B = §.

To illustrate the method of proving set equalities, we will next establish one of the
DeMorgan laws for three sets. The proof of the other one is left as an exercise.

1.1.4 Theorem IfA, B, C are sets, then
(@ A\(BUC) = (A\B)N(A\O),
(b) A\(BNC)=(A\B)U(A\C).

Proof. To prove (a), we will show that every element in A\(B U C) is contained in both
(A\B) and (A\C), and conversely.

If x is in A\(B U C), then x is in A, but x is not in B U C. Hence x is in A, but x
is neither in B nor in C. Therefore, x is in A but not B, and x is in A but not C. Thus,
x € A\B and x € A\C, which shows that x € (A\B) N (A\C).

Conversely, if x € (A\B) N (A\C), then x € (A\B) and x € (A\C). Hence x € A
andboth x ¢ B and x ¢ C. Therefore, x € Aandx ¢ (BUC), sothatx € A\(BU ).

Since the sets (A\B) N (A\C) and A\(B U C) contain the same elements, they are
equal by Definition 1.1.1. QED.

There are times when it is desirable to form unions and intersections of more than two
sets. For a finite collection of sets {A,, A,,---, A,}, their union is the set A consisting of
all elements that belong to at least one of the sets A,, and their intersection consists of all
elements that belong to all of the sets A,.

This is extended to an infinite collection of sets {A,, A,,---, A,, - - -} as follows. Their
union is the set of elements that belong to at least one of the sets A . In this case we
write

(o]
|J4,:={x:xea4,forsomen eN}.

n=1
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Similarly, their intersection is the set of elements that belong to all of these sets A, . In this
case we write

A, :={x:xeA, foralln € N}.

DL

Cartesian Products
In order to discuss functions, we define the Cartesian product of two sets.

1.1.5 Definition If A and B are nonempty sets, then the Cartesian product A x B of A
and B is the set of all ordered pairs (a, b) witha € A and b € B. That is,

AXxB:={(a,b):a€ A,be B}.

Thusif A = {1, 2, 3} and B = {1, 5}, then the set A x B is the set whose elements are
the ordered pairs

a4n, 15, @D, 25, G, G

We may visualize the set A x B as the set of six points in the plane with the coordinates
that we have just listed.

We often draw a diagram (such as Figure 1.1.2) to indicate the Cartesian product of
two sets A and B. However, it should be realized that this diagram may be a simplification.
For example, if A:={r e R:1<x<2}and B:={yeR:0<y<lor2=<y=<3}
then instead of a rectangle, we should have a drawing such as Figure 1.1.3.

We will now discuss the fundamental notion of a function or a mapping.

To the mathematician of the early nineteenth century, the word “function” meant a
definite formula, such as f(x) := x* + 3x — 5, which associates to each real number x
another number f(x). (Here, f(0) = -5, f(1) = —1, f(5) = 35.) This understanding
excluded the case of different formulas on different intervals, so that functions could not
be defined “in pieces”.

AXxB

B AxXB

Figure 1.1.2 Figure 1.1.3
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As mathematics developed, it became clear that a more general definition of “function”
would be useful. It also became evident that it is important to make a clear distinction
between the function itself and the values of the function. A revised definition might be:

A function f from a set A into a set B is a rule of correspondence that assigns to
each element x in A a uniquely determined element f(x) in B.

But however suggestive this revised definition might be, there is the difficulty of interpreting
the phrase “rule of correspondence”. In order to clarify this, we will express the definition
entirely in terms of sets; in effect, we will define a function to be its graph. While this has
the disadvantage of being somewhat artificial, it has the advantage of being unambiguous
and clearer.

1.1.6 Definition Let A and B be sets. Then a function from A to B is a set f of ordered
pairs in A x B such that for each a € A there exists a unique b € B with (a,b) € f. (In
other words, if (a, b) € f and (a, b’) € f,thenb =b'.)

The set A of first elements of a function f is called the domain of f and is often
denoted by D(f). The set of all second elements in f is called the range of f and is
often denoted by R(f). Note that, although D(f) = A, we only have R(f) € B. (See
Figure 1.1.4.) '

The essential condition that:

(@b)ef ad (a,b)ef  impliesthat b=10

is sometimes called the vertical line test. In geometrical terms it says every vertical line
£ = a witta € A intrsecrs die grapet of” 7 exaedy-once,
The notation

f:A—> B

is often used to indicate that f is a function from A into B. We will also say that f is a
mapping of A into B, or that f maps A into B. If (@, b) is an element in f, it is customary
1o yuxite

b= f(a) or sometimes arb.

A = D(f)

Figure 1.1.4 A function as a graph
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If b = f(a), we often refer to b as the value of f at a, or as the image of @ under f.

Transformations and Machines

Aside from using graphs, we can visualize a function as a transformation of the set D(f) =
A into the set R(f) C B. In this phraseology, when (a, b) € f, we think of f as taking
the element a from A and “transforming” or “mapping” it into an element b = f(a) in
R(f) € B. We often draw a diagram, such as Figure 1.1.5, even when the sets A and B are
not subsets of the plane.

b = f(a)

R{)

Figure 1.1.5 A function as a transformation

There is another way of visualizing a function: namely, as a machine that accepts
elements of D(f) = A as inputs and produces corresponding elements of R(f) C B as
outputs. If we take an element x € D(f) and putitinto f, then out comes the corresponding
value f(x). If we put a different element y € D(f) into f, then out comes f (y) which may
or may not differ from f(x). If we try to insert something that does not belong to D(f)
into f, we find that it is not accepted, for f can operate only on elements from D(f). (See
Figure 1.1.6.)

This last visualization makes clear the distinction between f and f(x): the first is the
machine itself, and the second is the output of the machine f when x is the input. Whereas
no one is likely to confuse a meat grinder with ground meat, enough people have confused
functions with their values that it is worth distinguishing between them notationally.

Y

fx)
Figure 1.1.6 A function as a machine
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Direct and Inverse Images
Let f : A — B be a function with domain D(f) = A and range R(f) € B.

1.1.7 Definition If E is a subset of A, then the direct image of E under f is the subset
S(E) of B given by

fE):={fkx):x €E).

If H is a subset of B, then the inverse image of H under f is the subset f “1(H) of A
given by

fYH):={xeA: f(x) € H}.

Remark The notation f~(H) used in this connection has its disadvantages. However,
we will use it since it is the standard notation.

Thus, if we are given a set E C A, then a point y, € B is in the direct image f(E)
if and only if there exists at least one point x, € E such that y, = f(x,). Similarly, given
aset H C B, then a point x, is in the inverse image f ~1(H) if and only if ¥y = f(x,)
belongs to H. (See Figure 1.1.7.)

1.1.8 Examples (a) Let f : R — R be defined by f(x) := x2. Then the direct image
oftheset E:={x:0<x <2}istheset f(E)={y:0<y <4}

If G := {y : 0 < y < 4}, then the inverse image of G is the set f'l(G) ={x:-2<
x < 2}. Thus, in this case, we see that f~!(f(E)) # E.

On the other hand, we have f (f‘](G)) =G.Butif H:={y:—-1<y <1}, then
wehave f (f'(H)) ={y:0<y<1}#H.

A sketch of the graph of f may help to visualize these sets.
(b) Let f:A — B,andlet G, H be subsets of B. We will show that

FFGNH) S UG N F1(H).

For, if x € f~1(G N H), then f(x) e GNH, so that f(x) € G and f(x) € H. But this
impliesthatx € f~!(G)andx € f~'(H), whencex € f~1(G) N f~1(H). Thus the stated
implication is proved. [The opposite inclusion is also true, so that we actually have set
equality between these sets; see Exercise 13.] O

Further facts about direct and inverse images are given in the exercises.

f(E)

Figure 1.1.7 Direct and inverse images
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Special Types of Functions
The following definitions identify some very important types of functions.

1.1.9 Definition Let f : A — B be a function from A to B.

(a) The function f is said to be injective (or to be one-one) if whenever x, # x,, then
f(x;) # f(xy).If f is an injective function, we also say that f is an injection.

(b) The function f is said to be surjective (or to map A onto B) if f(A) = B; that is, if
the range R(f) = B.If f is a surjective function, we also say that f is a surjection.

(c) If £ is both injective and surjective, then f is said to be bijective. If f is bijective, we
also say that f is a bijection.

+ In order to prove that a function f is injective, we must establish that:
forall x,, x, in A, if f(x;) = f(x,), thenx; =Xx,.

To do this we assume that f(x,) = f(x,) and show that x; = x,.
[In other words, the graph of f satisfies the first horizontal line test: Every horizontal
line y = b with b € B intersects the graph f in at most one point.]

+ To prove that a function f is surjective, we must show that for any b € B there exists at
least one x € A such that f(x) = b.
[In other words, the graph of f satisfies the second horizontal line test: Every horizontal
line y = b with b € B intersects the graph f in at least one point.]

1.1.10 Example LetA := {x € R: x # 1} anddefine f(x) :=2x/(x — 1) forallx € A.
To show that f is injective, we take x, and x, in A and assume that f(x;) = f(x,). Thus
we have

2x 2x,

=1 x,-1
which implies that x, (x, — 1) = x,(x; — 1), and hence x; = Xx,. Therefore f is injective.
To determine the range of f, we solve the equation y = 2x/(x — 1) for x in terms of

y. We obtain x = y/(y — 2), which is meaningful for y # 2. Thus the range of f is the set
B :={y € R: y # 2}. Thus, f is a bijection of A onto B. 0

Inverse Functions

If f is a function from A into B, then f is a special subset of A X B (namely, one passing
the vertical line test.) The set of ordered pairs in B x A obtained by interchanging the
members of ordered pairs in f is not generally a function. (That is, the set f may not pass
both of the horizontal line tests.) However, if f is a bijection, then this interchange does
lead to a function, called the “inverse function” of f.

1.1.11 Definition If f : A — B is a bijection of A onto B, then
g:={(b,a)e BxA:(a,b) € f}

is a function on B into A. This function is called the inverse function of f, and is denoted
by f~'. The function £~! is also called the inverse of f.
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We can also express the connection between f and its inverse f ~! by noting that
D(f) = R(f™") and R(f) = D(f™") and that
b= f(a) ifandonlyif a= f"1(b).

For example, we saw in Example 1.1.10 that the function
2x
f&x) =
¥ —1
is a bijection of A := {x € R: x # 1} onto the set B :={y € R : y # 2}. The function
inverse to f is given by

o) = y_ii for y e B.

Remark We introduced the notation f~!(H) in Definition 1.1.7. It makes sense even if
f does not have an inverse function. However, if the inverse function £~ does exist, then
f~Y(H) is the direct image of the set H € B under f~!.

Compesition of Functions
It often happens that we want to “compose” two functions f, g by first finding f(x) and
then applying g to get g(f(x)); however, this is possible only when f(x) belongs to the
domain of g. In order to be able to do this for all f(x), we must assume that the range of
f is contained in the domain of g. (See Figure 1.1.8.)

1.1.12 Definition If f: A — B and g: B — C, and if R(f) € D(g) = B, then the
composite function g o f (note the order!) is the function from A into C defined by

go Nx):=g(f(x)) forall x e A.
1.1.13 Examples (a) The order of the composition must be carefully noted. For, let f
and g be the functions whose values at x € R are given by

fx)=2x and gx):=3x*-1.

Since D(g) = Rand R(f) € R = D(g), then the domain D(g o f) is also equal to R, and
the composite function g o f is given by

(go f)x) =32x)? —1=12x> - 1.

B
A c
f g
—— ——
gof

Figure 1.1.8 The composition of f and g
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On the other hand, the domain of the composite function fogisalsoR, but
(fog)x) =2(3x>—1) =6x2 2.

Thus, in this case, we have g o f # f o g.

(b) In considering g o f, some care must be exercised to be sure that the range of f is
contained in the domain of g. For example, if

fx):=1-x% and g(x) := /x,
then, since D(g) = {x : x > 0}, the composite function g o f is given by the formula
go NI =V1-x*

only for x € D(f) that satisfy f(x) > 0; that is, for x satisfying —1 <x < 1.
We note that if we reverse the order, then the composition f o g is given by the formula

(fog)x)=1-x,
but only for those x in the domain D(g) = {x : x > 0}. ]

We now give the relationship between composite functions and inverse images. The
proof is left as an instructive exercise.

1.1.14 Theorem Letf:A — Bandg: B — C be functions and let H be a subset of
C. Then we have

(g0 H™VH) = f~l(g ™\ (H)).
Note the reversal in the order of the functions.

Restrictions of Functions
If f:A— Bisafunctionand if A, C A, we can define a function f, : 4, — B by

L&) :=f@&x) for xeA,.

The function f; is called the restriction of f to A,. Sometimes it is denoted by f; = f|A,.

It may seem strange to the reader that one would ever choose to throw away a partof a
function, but there are some good reasons for doing so. For example, if f : R — R is the
squaring function:

f(x):=x* for x€eR,

then f is not injective, so it cannot have an inverse function. However, if we restrict fto
the set A, := {x : x > 0}, then the restriction f|A, is a bijection of A, onto A,. Therefore,
this restriction has an inverse function, which is the positive square root function. (Sketch
a graph.)

Similarly, the trigonometric functions S(x) := sinx and C(x) := cos x are not injective
on all of R. However, by making suitable restrictions of these functions, one can obtain
the inverse sine and the inverse cosine functions that the reader has undoubtedly already
encountered.
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EXercises for Section I.T

2, but
1. If A and B are sets, show that A € B ifand only if AN B = A.
2. Prove the second De Morgan Law [Theorem 1.1.4(b)].
Uie range o1°j 15" 3. Prove the Distributive Laws:
(@ ANBUC)=(ANBUMUNOC),
®) AUBNC)=(AUBYN(AUCQC).

4. The symmetric difference of two sets A and B is the set D of all elements that belong to either
' the formula A or B but not both. Represent D with a diagram.
(a) Show that D = (A\B) U (B\A).
(6)° Stiow uiat'1s aido given oy U= (A°U B\(A'1 TH).

5. ForeachneN,letA, ={(n+1k:keN}
< 1. (@) Whatis A, NA,?
(b) Determine the sets  {A, : n € N}and [){4, : n € N}.

n by the formula
6. Draw diagrams in the plane of the Cartesian products A x B for the given sets A and B.
(@ A={xeR:1<x<2o0r3<x<4}, B={xeR:x=1orx=2}
O ) A={1,2,3}, B={xeR:1<x <3}

7. Let A:=B:={x € R: —1 < x < 1} and consider the subset C := {(x, y) :x2 4+ y* =1} of
A x B.Is this set a function? Explain.

8. Letf(x):=1/x% x#0,xeR.
(a) Determine the direct image f(E) where E :={x e R:1 <x <2}.
& Datermine the invame.image ,f UG mhere &= (r e R - 1 <7 < 4}

r

be a subset of 9. Letg(x) :=x%and f(x) :=x + 2 for x € R, and let  be the composite function / := g o f.
(a) Find the direct image h(E)of E:={x e R:0<x <1}.

(b) Find the inverse image k~'(G) of G := {x e R: 0 < x < 4}.

10. Let f(x):=x*forxeR,andletE:={xeR:-1<x<0land F:={xeR:0<x <1}
Show that ENF = {0} and f(ENF) = {0}, while f(E)= f(F)={yeR:0<y<1).
riénce y{E" TH) 15 a proper subset o1”y {£) I Ty 1#7). What Happens 11U'1$ aélerea’rfom thie sets
E and F?

11. Let f and E, F be as in Exercise 10. Find the sets E\ F and f(E)\ f(F) and show that it is not
true that f(E\F) C f(E)\f(F).

se images. The

— B by
12. Show that if f: A — B and E, F are subsets of A, then f(EUF) = f(E)U f(F) and
F(ENF) S f(E)N f(F).
£ =flA 13. Show thatif f : A — B and G, H are subsets of B, then f"'(GUH) = f"{(G) U f~1(H)
Yy i =Tl and fH(GNH) = £71(G) N £~ (H.
yay a part of a
R — R is the 14. Show that the function f defined by f(x) :=x/vx*+1,x € R, is a bijection of R onto
{y:-1<y<1}
15. Fora,b € R witha < b, find an explicit bijectionof A ;= {x :a <x <b}onto B:={y: 0 <
y < 1}
» restrict f to 16. Give an example of two functions f, g on R to R such that f # g, butsuch that fog =g o f.
- Therefore, 17. (a) Show thatif f : A — B is injective and E < A, then f~!(f(E)) = E. Give an example
tion. (Sketch to show that equality need not hold if f is not injective.
(b) Showthatif f : A — B issurjectiveand H C B, then f(f ' (H)) = H. Give an example
» not injective to show that equality need not hold if f is not surjective.
pc can obtain 18. (a) Suppose that f is an injection. Show that £~ o f(x) = x for all x € D(f) and that
tedly already fofYy)=yforally € R(f).
(b) If f is a bijection of A onto B, show that £~ is a bijection of B onto A.




