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Again we want to use the results of Segments 2 and 3:

Theorem: If A is an n× n matrix and C is a vector in Rn or Cn,

then the function Y (t) = etAC is the unique solution

of the initial value problem: Y ′ = AY and Y (0) = C

and also:

Theorem:

If A is an n× n matrix and v1, v2, · · ·, vn is a basis for Cn consisting of

eigenvectors for A associated with the eigenvalues λ1, λ2, · · ·, λn,

then the unique solution of the initial value problem: Y ′ = AY , Y (0) = C

is Y (t) = α1e
λ1tv1 + α2e

λ2tv2 + · · · + αne
λntvn,

where C = α1v1 + α2v2 + · · · + αnvn



Example:

Solve the initial value problem:

 y′1 = 2y1 + y2

y′2 = −y1 + 2y2

and

 y1(0) = 3

y2(0) = 0



Example:

Solve the initial value problem:

 y′1 = 2y1 + y2

y′2 = −y1 + 2y2

and

 y1(0) = 3

y2(0) = 0

We can rewrite this as Y ′ = FY and Y (0) = R by choosing

Y =

 y1

y2

 F =

 2 1

−1 2

 and R =

 3

0


As before, we will use Matlab to do the calculations.



Example (cont’d):

From the Matlab computations, the solution of Y ′ = FY , Y (0) = R is

Y (t) = c1e
λ1tw1 + c2e

λ2tw2

where c1 = 2.1213, c2 = 2.1213

w1 =

 0.7071

0.7071i

, w2 =

 0.7071

−0.7071i

,

and λ1 = 2 + i, and λ2 = 2− i
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Example (cont’d):

From the Matlab computations, the solution of Y ′ = FY , Y (0) = R is

Y (t) = c1e
λ1tw1 + c2e

λ2tw2

where c1 = 2.1213, c2 = 2.1213

w1 =

 0.7071

0.7071i

, w2 =

 0.7071

−0.7071i

,

and λ1 = 2 + i, and λ2 = 2− i

Since λ1 and λ2 are different, the eigenvalues of F are distinct and F is

diagonalizable. In particular, this means we get the solution exactly as before:

Y (t) = c1e
(2+i)tw1 + c2e

(2−i)tw2 = e(2+i)t

 1.5

1.5i

 + e(2−i)t

 1.5

−1.5i





Example (cont’d):

On the other hand, our IVP:
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Example (cont’d):

To understand this situation, we must recall facts about the complex

exponential function, and in particular, Euler’s formula and its consquences!

From calculus, we know ex = 1 + x+
x2

2!
+
x3

3!
+ · · · for all real numbers x, and

that the series converges absolutely.

This means that the exponential function can be extended to the complex

plane by ez = 1 + z +
z2

2!
+
z3

3!
+ · · ·

We recall that the exponential function satisfies the equation ea+b = eaeb

for a and b real numbers,

and it is easy to prove that it also holds for a and b complex numbers.

(BUT we will see it does NOT hold for n× n matrices for n ≥ 2!!)
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Example (cont’d):

If a and b are real numbers ea+bi = eaeib, and we understand ea.

Euler’s formula is: For b real (using radians), eib = cos(b) + i sin(b)

Applying this to the complex exponential function in the Example, we see

e(2+i)t = e2teit = e2t(cos(t) + i sin(t)) and e(2−i)t = e2t(cos(t)− i sin(t)) and

Y (t) = e(2+i)t

 1.5

1.5i

 + e(2−i)t

 1.5

−1.5i



= 1.5e2t


 (cos(t) + i sin(t))

(cos(t) + i sin(t))i

+

 (cos(t)− i sin(t))

−(cos(t)− i sin(t))i




=

 3e2t cos(t)

−3e2t sin(t)

 or, y1(t) = 3e2t cos(t) and y2(t) = −3e2t sin(t)
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Another Example:

Solve initial value problem: y′′ + 5y′ + 6y = 0 with y(0) = 1 and y′(0) = −1

The most obvious difference between this and earlier examples is that

this is 1 linear equation of order 2 instead of a system of linear equations.

Strategy: Replace one order 2 equation by system of two order 1 equations :

Let y1(t) = y(t), so that y′1 = y′. Also, let y2(t) = y′1(t), so y′2 = y′′.

Since y′′ + 5y′ + 6y = 0, we see y′2 = y′′ = −5y′ − 6y = −6y1 − 5y2.

The resulting IVP is:

 y′1 = y2

y′2 = −6y1 − 5y2

and

 y1(0) = 1

y2(0) = −1

We solve this system in the usual way, and interpret it as above!



Another Example:

Solve the IVP:

 y′1 = y2

y′2 = −6y1 − 5y2

and

 y1(0) = 1

y2(0) = −1

We can rewrite this as Y ′ = GY and Y (0) = S by choosing

Y =

 y1

y2

 G =

 0 1

−6 −5

 and S =

 1

−1


Solution of Y ′ = GY , Y (0) = S is Y (t) = d1e

λ1tx1 + d2e
λ2tx2

where d1 = 4.4721, d2 = 3.1623, λ1 = −2, λ2 = −3,

x1 =

 0.4472

−0.8944

, and x2 =

 −0.3162

0.9487





Another Example:

In other words, the function

Y (t) = d1e
−2tx1 + d2e

−3tx2 = e−2t

 2

−4

 + e−3t

 −1

3



is the solution of the IVP:

 y′1 = y2

y′2 = −6y1 − 5y2

and

 y1(0) = 1

y2(0) = −1



Another Example:

In other words, the function

Y (t) = d1e
−2tx1 + d2e

−3tx2 = e−2t

 2

−4

 + e−3t

 −1

3



is the solution of the IVP:

 y′1 = y2

y′2 = −6y1 − 5y2

and

 y1(0) = 1

y2(0) = −1

In particular, relating this to the original IVP, this means

y(t) = y1(t) = 2e−2t − e−3t

is the solution of the initial value problem:

y′′ + 5y′ + 6y = 0 with y(0) = 1 and y′(0) = −1.



This is the end of the Fifth Segment.

In the next segment, we tackle initial value problems

for which the coefficient matrix is non-diagonalizable.


