Application of Linear Algebra

to Differential Equations

Segment 5: More Examples

Carl C. Cowen

IUPUI

Math 35300, April 26, 2014

(© All rights reserved
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e Segment 2. The matrix exponential
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e Segment 5. More examples
e Segment 6. Complication: A not diagonalizable

e Segment 7. An example with A not diagonalizable

References: Section 8.3, Section 10.2

Problems: For Discussion May 1: page 328: 1, 2, 3,4, 5 page 392: 1, 2, 4



Again we want to use the results of Segments 2 and 3:

Theorem: If A is an n X n matriz and C' is a vector in R" or C",

then the function Y (t) = e C is the unique solution

of the initial value problem: Y'=AY and Y(0)=C

and also:
Theorem:
If A is an n X n matriz and vy, va, - - -, U, 1S a basis for C" consisting of
ergenvectors for A associated with the eigenvalues \i, g, - -+, A\,

then the unique solution of the initial value problem: Y' =AY, Y (0)=C

18 Y(t) = ()416/\1151)1 + @26/\275?}2 44 ozneA"tvn,

where C = aqv1 + agvg + - - - + a,U,



Example:

Solve the initial value problem: <




Example:

Solve the initial value problem: < e & Y2 and < y1(0)

Yy = —y1 + 2y y2(0)

|
oS W

We can rewrite this as Y/ = F'Y and Y (0) = R by choosing

0 1 3
y= || r= and R =

Yo -1 2 0

As before, we will use Matlab to do the calculations.



Example (cont’d):
From the Matlab computations, the solution of Y= FY, Y (0) =R is
Y(t) = c1e™Mwy + epe sy
where ¢ = 2.1213, ¢p = 2.1213

0.7071 0.7071
w1 = ; W = ’

0.70712 —0.70712

and )\1:2+i, and)\2:2—i
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From the Matlab computations, the solution of Y= FY, Y (0) =R is
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Since Ay and Ay are different, the eigenvalues of F' are distinct and F' is

diagonalizable.



Example (cont’d):

From the Matlab computations, the solution of Y= FY, Y (0) =R is
Y(t) = c1e™Mwy + epe sy
where ¢ = 2.1213, ¢p = 2.1213

0.7071 0.7071
w1 = ; W = ’

0.70712 —0.70712
and )\1 :2—|—Z, and )\2:2—i

Since Ay and Ay are different, the eigenvalues of F' are distinct and F' is

diagonalizable. In particular, this means we get the solution exactly as before:

1.52 —1.52



Example (cont’d):

On the other hand, our IVP: <

and our answer is complex(!):

201 + Yo

—y1 + 2y

0) =3
and < :(0) 1s real
y2(0) =0
1.5 JCR” 1.5
1.51 —1.57



Example (cont’d):

On the other hand, our IVP: <

and our answer is complex(!):

201 + Yo

—y1 + 2y

0) =3
and < 1(0) 1s real
y2(0) =0
1.5 JCR” 1.5 |
1.51 —1.57

but we can check that it is a solution of the IVP, which has a unique solution!



Example (cont’d):

On the other hand, our IVP: <

and our answer is complex(!):

201 + Yo

—y1 + 2Y9

Y(t) _ 6(2+z’)z€

0)=3
and < :(0) 1s real
y2(0) =0
1.5 L i 1.5 |
1.5¢ —1.52

but we can check that it is a solution of the IVP, which has a unique solution!

To understand this situation, we must recall facts about the complex

exponential function, and in particular, Euler’s formula and its consquences!
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To understand this situation, we must recall facts about the complex

exponential function, and in particular, Euler’s formula and its consquences!

562 3

T
From calculus, we know e =1+ x + o + a7 + - - - for all real numbers x, and

that the series converges absolutely.



Example (cont’d):
To understand this situation, we must recall facts about the complex

exponential function, and in particular, Euler’s formula and its consquences!

2 3
A
From calculus, we know e =1+ x + o + a1 + - - - for all real numbers x, and

that the series converges absolutely.

This means that the exponential function can be extended to the complex
2 3
z z
planebye'z=1+z+§+§+---



Example (cont’d):
To understand this situation, we must recall facts about the complex

exponential function, and in particular, Euler’s formula and its consquences!

2 3
x:
From calculus, we know ¢ =1+ x + o + ) + - - - for all real numbers x, and

that the series converges absolutely.

This means that the exponential function can be extended to the complex
2 3
2°  z
planebyezzl+z+§+§+...

a b

+b e

We recall that the exponential function satisfies the equation e*™ = e

for a and b real numbers,



Example (cont’d):
To understand this situation, we must recall facts about the complex

exponential function, and in particular, Euler’s formula and its consquences!

562 3

T
From calculus, we know e =1+ x + o + a7 + - - - for all real numbers x, and

that the series converges absolutely.

This means that the exponential function can be extended to the complex

5 2?2
plane by e =1+z+§+§+...
We recall that the exponential function satisfies the equation e = e%e’

for a and b real numbers,

and it is easy to prove that it also holds for a and b complex numbers.



Example (cont’d):
To understand this situation, we must recall facts about the complex

exponential function, and in particular, Euler’s formula and its consquences!

562 3

T
From calculus, we know e =1+ x + o + a7 + - - - for all real numbers x, and

that the series converges absolutely.

This means that the exponential function can be extended to the complex

5 2?2
plane by e =1+z+§+§+...
We recall that the exponential function satisfies the equation e = e%e’

for a and b real numbers,
and it is easy to prove that it also holds for a and b complex numbers.

(BUT we will see it does NOT hold for n x n matrices for n > 2!!)



Example (cont’d):

b

)

If @ and b are real numbers e? ™ = e%®  and we understand e?.



Example (cont’d):

atbi — e and we understand e®.

If a and b are real numbers e = e

Euler’s formula is: For b real (using radians), e = cos(b) + 4 sin(b)



Example (cont’d):

b

atbi _ ol . and we understand e“.

If a and b are real numbers e

Euler’s formula is: For b real (using radians), e = cos(b) + i sin(b)

Applying this to the complex exponential function in the Example, we see

et — it — 2 (cos(t) + isin(t)) and e = e¥(cos(t) — isin(t)) and



Example (cont’d):

b

atbi _ ol . and we understand e“.

If a and b are real numbers e

Euler’s formula is: For b real (using radians), e = cos(b) + i sin(b)

Applying this to the complex exponential function in the Example, we see

et — it — 2 (cos(t) + isin(t)) and e = e¥(cos(t) — isin(t)) and

(
Y(t) = (2111 Lo 4 (20t L5
\ 154 —1.5i
_ 1 52t (cos(t) + usin(t)) (cos(t) — isin(t))
— 1.0€ +
i (cos(t) +isin(t))i —(cos(t) — isin(t))s _
3e? cos(t)

- Yein(t) | yi(t) = 3¢ cos(t) and ya(t) = —3¢” sin(t)
—3e*' sin(t



Another Example:

Solve initial value problem: 3" + 5y’ + 6y = 0 with y(0) = 1 and y'(0) = —1



Another Example:
Solve initial value problem: " + 5y" + 6y = 0 with y(0) = 1 and ¢'(0) = —1
The most obvious difference between this and earlier examples is that

this is 1 linear equation of order 2 instead of a system of linear equations.
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Solve initial value problem: y" 4+ 5y" + 6y = 0 with y(0) = 1 and 3/(0) = —1
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this is 1 linear equation of order 2 instead of a system of linear equations.

Strategy: Replace one order 2 equation by system of two order 1 equations:
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Another Example:
Solve initial value problem: " + 5y" + 6y = 0 with y(0) = 1 and ¢'(0) = —1
The most obvious difference between this and earlier examples is that

this is 1 linear equation of order 2 instead of a system of linear equations.

Strategy: Replace one order 2 equation by system of two order 1 equations:

Let y1(t) = y(t), so that y; =y Also, let ya(t) = 1 (t), s0 yp = y".



Another Example:
Solve initial value problem: " + 5y" + 6y = 0 with y(0) = 1 and ¢'(0) = —1

The most obvious difference between this and earlier examples is that

this is 1 linear equation of order 2 instead of a system of linear equations.

Strategy: Replace one order 2 equation by system of two order 1 equations:

Let y1(t) = y(t), so that y; = y".  Also, let ya(t) = (), s0 y5 = y".

Since iy + 5y’ + 6y =0, we see  yh =1’ = =5y — 6y = —6y; — Hy».



Another Example:
Solve initial value problem: y" + 5y" + 6y = 0 with y(0) = 1 and 3/(0) = —1
The most obvious difference between this and earlier examples is that

this is 1 linear equation of order 2 instead of a system of linear equations.

Strategy: Replace one order 2 equation by system of two order 1 equations:

Let y1(t) = y(t), so that y; = y".  Also, let ya(t) = 1 (), s0 yp = y".
Since 3" + 5y’ + 6y = 0, we see  yh =y" = —by' — 6y = —6y; — Hys.

( (

/ — O :1
The resulting IVP is: < Y1 Y2 and ¢ y1(0)

yy = —6y1 — 5y yo(0) = —1
\

\



Another Example:
Solve initial value problem: 3" + 5y’ + 6y = 0 with y(0) = 1 and y'(0) = —1
The most obvious difference between this and earlier examples is that

this is 1 linear equation of order 2 instead of a system of linear equations.

Strategy: Replace one order 2 equation by system of two order 1 equations:

Let y1(t) = y(t), so that y; = y".  Also, let ya(t) = 1 (), s0 yp = y".
Since 3" + 5y’ + 6y = 0, we see  yh =y = =5y — 6y = —6y; — Hy».

( (

= 0) =1
The resulting IVP is: < Y1 Y2 and ¢ y1(0)

yo = —by1 — Syo y2(0) = —1
\

\

We solve this system in the usual way, and interpret it as above!



Another Example:

( (

/
— 0) =
Solve the IVP: < e )2 and < u1(0)

v, = —6y; — By \ 12(0) = —1

\

We can rewrite this as Y/ = GY and Y (0) = S by choosing

0 1 1
Y = v G = and S =

Yo —6 =5 —1

Solution of Y'=GY, Y(0)=S5 is Y(t) = dieMzy + doe’ay
where d1 - 44721, d2 = 31623, )\1 — —2, )\2 = —3,

0.4472 —0.3162

T = ,and x9 =

—0.8944 0.9487



Another Example:

In other words, the function

Y(t) = die 2oy + doe Sty = 7

is the solution of the IVP:

\

2
+e_3t

—4
Y2
—6y1 — Sy

and

9

y1(0) =1
y2(0) = —1



Another Example:

In other words, the function

2 —1
Y(t) =die *x; + doe 'zy = e g
( ¢
= 0) = 1
is the solution of the IVP: & Y2 and ¢ y1(0)
yp = —6y1 — Sy \ yo(0) = —1
\

In particular, relating this to the original IVP, this means

y(t) = yi(t) =2 — e

is the solution of the initial value problem:

y" 45y +6y =0 with y(0) =1 and y'(0) = —1.



This is the end of the Fifth Segment.

In the next segment, we tackle initial value problems

for which the coeflicient matrix is non-diagonalizable.



