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Definition (Matrixz Exponential Function):

If Ais n x n matrix, the matrix exponential function e is defined by series
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Definition (Matrixz Exponential Function):

If Ais n x n matrix, the matrix exponential function e is defined by series
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In the last segment, we saw that this makes sense, that is, that the series

converges for all numbers ¢ and all matrices A.

While the infinite series representation is correct, it is not usually very useful,

tA

because we can’t actually compute e'“*v for most matrices A and vectors v.

In this segment, we wish to use the Spectral Mapping Theorem to be able to

effectively compute e'4v for any number ¢, any matrix A, and any vector v.
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For D diagonal with diagonal entries d;, this means
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However, most matrices are much harder to exponentiate!
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For example if A = , then A® = =
0 2 0 2 0 2 04
11 13 17 11 17 115
AB_ — ; A4: p—
0 2 04 08 0 2 08 0 16
and
L0 11 213 BT et 77

Q)
|
+
+
|
+
|
+
|



Theorem:

If A is an n X n matrix with eigenvector v with eigenvalue A,
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Theorem:

If A is an n X n matrix with eigenvector v with eigenvalue X,
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t* t3
Proof: We have e = ([ +tA+ EAQ + §A3 + - ) v

t? t°
= ]v+tAv+§A2v+§A?’v+---

At ()
= v+)\tv+uv+uv+---

2! 3!
B (ML) (At)?
—(1+)\t+ 5] + A +- v

_ GAt’U



Theorem:

If A is an n X n matrix with eigenvector v with eigenvalue X,

then v is an eigenvector of the matriz e with eigenvalue .
Corollary:
Let A be an n X n matrix with eigenvectors vy, v, - -+, Uy corresponding to
the eigenvalues Ay, Aa, -+, Ap.

If C = aqv; 4+ agvg + - - - + v

A

then e“C = oqultm + ageAQtvg 4+ o+ ety



Theorem:

If A is an n X n matrix with eigenvector v with eigenvalue X,

then v is an eigenvector of the matriz e with eigenvalue e.
Corollary:
Let A be an n X n matrix with eigenvectors vy, v, - -+, Uy corresponding to
the eigenvalues Ay, Aa, -+, Ap.

If C = ajv; 4+ agvg + - - - + v

A

then €“C = oqultvl + ozzeA?tvz 4+ ety

In particular, if A is diagonalizable, there is a basis for C" consisting of
eigenvectors of A and this corollary gives the solution of every initial value

problem for the differential equation Y’ = AY.



This is the end of the Third Segment.

In the next segment, we will begin with this result and use it to solve some

initial value problems.



