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OUTLINE
e Segment 1. Introduction; the equation Y’ = AY
e Segment 2. The matrix exponential
e Segment 3. Spectral Mapping Theorem for the matrix exponential
e Segment 4. Some easy examples
e Segment 5. More examples
e Segment 6. Complication: A not diagonalizable

e Segment 7. An example with A not diagonalizable

References: Section 8.3, Section 10.2

Problems: For Discussion May 1: page 328: 1, 2, 3,4, 5 page 392: 1, 2, 4
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We need to show that this definition makes sense, that is, that the series

converges, and learn about the properties of the matrix exponential.



Theorem:
Let A be an n X n matrix and let C be a vector in R"™ or C". Then
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Theorem:
Let A be an n X n matrix and let C' be a vector in R" or C"™. Then

A

e The series for e!* converges for all numbers ¢ and all matrices A

o For all ¢, and any A, ||| < el 4l
e The function Y (t) = eC' has derivative Y'(t) = AeC
e The function Y () = e'C satisfies the initial condition Y'(0) = C

e The function Y (t) = e is the only solution of the initial value problem:

Y' = AY and Y(0)=C



Proof: Theorem 5.10 (page 233) says that if a series converges absolutely,
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Moreover, the estimate above shows that HetAH is no more than el and the

series converges absolutely and uniformly for —M <t < M for each positive

number M .
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A is absolutely convergent, therefore, convergent.

converges, so the series for e
Moreover, the estimate above shows that HetAH is no more than e/l and the
series converges absolutely and uniformly for —M <t < M for each positive

number M. Thus, the series can be differentiated term by term and
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so Y'(t) = Ae"'C = AY (t) and Y (0) = °C = C. H



This is the end of the Second Segment.

In the next segment, we will see how to use the Spectral Mapping Theorem to

avoid the infinite series in this segment.

The goal is to be able to calculate ev for any number ¢, any matrix A,

and any vector v.



