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⇤ 60. Let V be the vector space of polynomials in R[x] with degree 3 or less. Let a and b be fixed

real numbers and let f be the linear functional on V defined by f(p) =

Z b

a
p(x) dx

Let D be the di↵erentiation operator on V. Find D

t
f .

⇤ 61. Let n be a positive integer and let W be the vector space of polynomials in R[x] with degree
n or less. Let D be the di↵erentiation operator on W. Find a basis for the null space of Dt.

⇤ 62. Prove that an upper triangular n⇥ n matrix has determinant the product
of the diagonal elements.

⇤ 63. Let n be a positive integer and let a1, a2, a3, · · ·, an be scalars in the field F .

Prove that a Vandermonde matrix
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⇤⇤ 64. (a) Write out the 24 permutations of the integers 1 to 4 and classify each permutation as
odd or even.

(b) We know that det

✓
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= ad� bc.

Use the signs of the permutations given in part (a) to write the similar formula for the
determinant of the 4⇥4 matrix A, below, in terms of sums of signed products of entries:
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CCA then det(A) = ??


