Due Wednesday, 31 March:

• page 337: 1, 2, 3, 4

• page 343: 1, 2, 5, 6, 7

In addition, do the following problem:

A. Let A be the matrix

$$A = \begin{pmatrix} 0.7 & 0.9 & 0.6 \\ -1.6 & 1.8 & -0.8 \\ -2.6 & -0.2 & -1.8 \end{pmatrix}$$

- (a) Choose two vectors u_0 and v_0 in \mathbf{R}^3 that are linearly independent and satisfy $1 \le ||u_0|| \le 10$ and $1 \le ||v_0|| \le 10$.
- (b) For $k=1,2,3,\cdots,20$, use a machine to calculate $u_k=Au_{k-1}$. (Note: although I doubt it will happen, if the absolute value of some component of u_k is larger than 100, replace u_k by $(.05)u_k$ before proceeding with the computations; similarly, if the absolute values of all components of u_k are less than .01, replace u_k by $20u_k$ before proceeding with the computations).
- (c) For $k = 1, 2, 3, \dots, 20$, use a machine to calculate $v_k = Av_{k-1}$. (Note: although I doubt it will happen, if the absolute value of some component of v_k is larger than 100, replace v_k by $(.05)v_k$ before proceeding with the computations; similarly, if the absolute values of all components of v_k are less than .01, replace v_k by $20v_k$ before proceeding with the computations).
- (d) Do you notice anything about u_{20} and v_{20} ? How are these vectors related to A?