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Abstract. If ϕ is an analytic map of the unit disk D into itself, the composition operator Cϕ on a

Hardy space H2 is defined by Cϕ(f) = f◦ϕ. The unilateral shift on H2 is the operator of multiplication

by z. Beurling (1949) characterized the invariant subspaces for the shift. In this paper, we consider
the shift invariant subspaces that are invariant for composition operators. More specifically, necessary

and sufficient conditions are provided for an atomic inner function with a single atom to be invariant

for a composition operator and the Blaschke product invariant subspaces for a composition operator
are described. We show that if ϕ has Denjoy-Wolff point a on the unit circle, the atomic inner function

subspaces with a single atom at a are invariant subspaces for the composition operator Cϕ.

1. Introduction

Composition operators can be defined on any Hilbert space of analytic functions. If H is a Hilbert
space of analytic functions on a domain in the plane, a closed subspace, M , of H will be called shift-
invariant if f in M implies zf is also in M . The goal of this paper is to describe (some of) the
shift-invariant subspaces that are also invariant under composition operators.

Here we consider composition operators on the classical Hardy Hilbert space H2(D), that we denote
H2, the set of functions f analytic on the unit disk D satisfying

sup
0<r<1

∫ 2π

0

|f(reiθ)|2 dθ
2π

<∞

When the above inequality is satisfied, the left-hand side is the square of the norm of f . In 1949,
Beurling [1] characterized the shift-invariant subspaces of H2 as being JH2 for some inner function J .

If ϕ is an analytic map of the unit disk D into itself, the composition operator Cϕ is defined on a
Hardy space by Cϕ(f) = f ◦ ϕ, where f is in the Hardy space. The operator Cϕ is bounded on H2 for
all such ϕ, see [5]. Typically, results about composition operators are related to the fixed point(s) of ϕ
in the closed unit disk. We show in Section 3 that the mapping properties of ϕ and its derivatives at its
fixed points are also closely related to the Cϕ-invariant, shift-invariant subspaces of the Hardy space.

In [7], Jones considers some subspaces of H2 that are invariant for Cϕ when ϕ is inner. In particular,
he determined, in this case, some shift invariant subspaces of the form SµH

2, where Sµ is a singular
inner function, and BH2 for certain types of Blaschke products B are also Cϕ-invariant. In [8], Mahvidi
considers the question of common invariant subspaces for two composition operators, and the question of
lattice containment for two composition operators. Those papers and this one clearly have overlapping
goals.

We restrict our attention to invariant subspaces generated by atomic singular inner functions with

a single atom, that is, eα
z+a
z−aH2 with |a| = 1 and α > 0, and those of the form BH2 for a Blaschke

product B and for these two types of shift-invariant subspaces we largely determine the Cϕ-invariant
subspaces in general, for the various cases of model type for iteration of ϕ. Specifically, in Section 3,

Date: 15 December 2011, revised 29 February 2012.
2010 Mathematics Subject Classification. Primary: 47B32; Secondary: 47B33, 47B38, 47A15.
Key words and phrases. composition operator, shift-invariant subspace.
The authors would like to thank the participants of the IUPUI Operator Theory Seminar, Jim Carter, William Higdon,

William Johnston, and Derek Thompson, for their helpful suggestions to the authors concerning this work.

1



2 CARL C. COWEN AND REBECCA G. WAHL

we determine the composition operators having singular inner function invariant subspaces of the form
given above. The proofs of Theorems 6 and 7 combine to prove the following main result of Section 3:

Corollary 8. Let |b| = 1 and let ϕ be an analytic map of the unit disk into itself. If ϕ(b) = b and

ϕ′(b) ≤ 1, then eα
z+b
z−bH2 is an invariant subspace for Cϕ whenever α > 0. Conversely, if α > 0 and

the subspace eα
z+b
z−bH2 is invariant for Cϕ, then ϕ(b) = b and ϕ′(b) ≤ 1.

In Section 4, we establish properties of Blaschke products B and maps ϕ that permit shift invariant
subspaces BH2 to be also Cϕ-invariant.

2. Preliminaries

In this section, we present the necessary background and notation for what follows.
For w in D, evaluation at w is a bounded linear functional so, by the Riesz representation theorem,

there is a function Kw in H2 that induces this linear functional: f(w) = 〈f,Kw〉. The function Kw is
called the reproducing kernel function. In the Hardy space H2, the reproducing kernel is

Kw(z) =
1

1− wz
and in this space has norm given by

‖Kw‖2 = 〈Kw,Kw〉 =
1

1− |w|2

It is known that in H2, if J is the atomic singular inner function with a single atom J(z) = eα
z+a
z−a

for |a| = 1 and α > 0, then (JH2) is a shift-invariant subspace. If Z is a subset of the disk, the set
MZ = {f ∈ H2 : f(z) = 0 for z ∈ Z} is a shift-invariant subspace of H2 and it is the zero subspace if
Z is too big. For a non-constant function f in H2, we will denote by Zf the Blaschke sequence that is
the zero sequence of f , that is, Zf = {z ∈ D : f(z) = 0} written as a (possibly empty) sequence. It is
known that Zf is a finite or countably infinite sequence, (zj), with

∑
Zf

(1 − |zj |) < ∞. Furthermore,

we note that if zj is in Zf , then the multiplicity of the zero of f at zj is the number of integers k such
that zk = zj . In other words, if w is in Zf , then the multiplicity of w as a zero of f , that is, multf (w),
is the non-negative integer m so that (z − w)m divides f , but (z − w)m+1 does not.

In H2, of course, the non-zero subspaces MZ are just BH2 where B is the Blaschke product whose
zero sequence is Z = ZB . Of course, if f = BJg where B is a Blaschke product, J is a singular inner
function and g is an outer function, then Zf = ZB because neither J nor g vanishes in the disk. If B
is a Blaschke product, there is a complex number λ with |λ| = 1 and a zero sequence ZB so that

B(z) = λ
∏
ZB

|zj |
zj

zj − z
1− zjz

If zj = 0, we will take the jth term in this product to be z. We will occasionally refer to Zf as the zero
set of f even though it is more properly called the zero sequence.

This paper is largely about composition operators that have JH2 or BH2 as invariant subspaces
and the relationship between ϕ and J or B that must exist.

If a is a point of the open disk, we say a is a fixed point of ϕ if ϕ(a) = a. We give the following
definition to extend to meaning of ‘fixed point’ to include points on the boundary of the disk as well.

Definition If ϕ is an analytic mapping of the unit disk into itself and a is a point of the closed unit
disk, we say that a is a fixed point of ϕ if

lim
r→1−

ϕ(ra) = a

Of course, by the continuity of ϕ in the open disk, this agrees with the usual definition for |a| < 1, but
it extends the definition to the case in which |a| = 1, where ϕ may not be defined. It follows from the
results below concerning analytic self-maps of the unit disk (see, for example, [5, Sec. 2.3]) that if a is
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a fixed point of ϕ on the boundary of the disk that limr→1− ϕ
′(ra) exists as a positive real number or

+∞; we will abuse the notation and write ϕ′(a) for this limit.

Lemma 1. (Julia’s Lemma) Suppose ζ is in the unit circle and

d(ζ) = lim inf
z→ζ

1− |ϕ(z)|
1− |z|

is finite where the lower limit is taken as z approaches ζ unrestrictedly in D. Suppose {an} is a sequence
along which this lower limit is achieved and for which ϕ(an) converges to η. Then |η| = 1 and for every
z in D,

|η − ϕ(z)|2

1− |ϕ(z)|2
≤ d(ζ)

|ζ − z|2

1− |z|2
Moreover, if equality holds for some z in D, then ϕ is an automorphism of the disk.

Definition For k > 0 and ζ in the unit circle let

(1) E(k, ζ) = {z ∈ D : |ζ − z|2 ≤ k(1− |z|2)}
The set E(k, ζ) is a relatively closed disk internally tangent to the circle at ζ with center 1

1+k ζ and

radius k
k+1 . If ϕ is an analytic self-map of the disk to which Julia’s Lemma applies, it shows that ϕ

maps each disk E(k, ζ) into the corresponding disk E(kd(ζ), η).

Theorem 2. (Julia-Carathéodory Theorem)
For ϕ : D→ D analytic and ζ in ∂D, the following are equivalent:

(1)
d(ζ) = lim inf

z→ζ
(1− |ϕ(z)|)/(1− |z|) <∞,

where the limit is taken as z approaches ζ unrestrictedly in D.
(2) ϕ has finite angular derivative ϕ′(ζ) at ζ.
(3) Both ϕ and ϕ′ have (finite) nontangential limits at ζ, with |η| = 1 for η = limr→1 ϕ(rζ).

Moreover, when these conditions hold, we have limr→1ϕ
′(rζ) = ϕ′(ζ) = d(ζ)ζη and d(ζ) is the nontan-

gential limit limz→ζ(1− |ϕ(z)|)/(1− |z|).

The last condition in the Julia-Carathéodory Theorem shows that when ζ is a fixed point of the unit
circle we have ϕ′(ζ) = d(ζ) > 0. So if ϕ has fixed point ζ with ϕ′(ζ) ≤ 1, we have

ϕ (E(k, ζ)) ⊂ E(kϕ′(ζ), ζ)

for all k > 0. This means that ϕ maps disks in D internally tangent to ζ into smaller disks in D
internally tangent to ζ.

Theorem 3. (Denjoy–Wolff Theorem)
If ϕ, not an elliptic automorphism of D, is an analytic map of the disk into itself, then there is a point
a in D so that the iterates ϕn of ϕ converge to a uniformly on compact subsets of D. Moreover, the
point a (called the Denjoy-Wolff point of ϕ) is the unique fixed point of D such that |ϕ′(a)| ≤ 1.

Experience has shown that the location and behavior of ϕ near the Denjoy-Wolff point has a dramatic
effect on the operator theoretic properties of Cϕ.

Suppose ω is an automorphism of the disk, that is, ω is a one-to-one map of D onto itself. Then Cω
is a bounded and invertible composition operator and C−1ω = Cω−1 . Thus, for ϕ a map of the disk into
itself, we see that

C−1ω CϕCω = Cω◦ϕ◦ω−1

so that the composition operator Cϕ is similar to the composition operator with symbol ω ◦ ϕ ◦ ω−1.
Finally, because ω is an inner function and compositions of inner functions are again inner, Cω maps

shift-invariant subspaces to shift-invariant subspaces. Indeed, if J is an inner function, Cω carries the
shift-invariant subspace JH2 to the shift-invariant subspace (J ◦ ω)H2. This means that if JH2 is
invariant for Cϕ, then (J ◦ω)H2 is invariant for Cω◦ϕ◦ω−1 . This will allow us to concentrate on special
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types of maps ϕ without significant loss of generality. In particular, when showing certain shift-invariant
subspaces are invariant for some composition operators, will often assume that if ϕ is a map of the disk
into itself with Denjoy-Wolff point a, then either a = 0 (when ϕ has a fixed point in the open disk D)
or a = 1 (when ϕ has no fixed point in the open disk D) and this assumption will not result in loss of
generality. Moreover, if J is a Blaschke product with zeros {zj}, then J ◦ ω is also a Blaschke product
but with zeros {ω−1(zj)} and similarly with other zero-sets. If J is a singular inner function then J ◦ω
is also a singular inner function and if J has an atom at b on the circle, then J ◦ ω has an atom at
ω−1(b) on the circle.

It is well known that analytic self maps of the disk can be classified in ways related to the locations
of their Denjoy-Wolff points and their derivatives there (see [2] or [5, Section 2.4]). Although the extra
structure that allows the classification to be proved unique up to automorphism has been omitted from
this version, the main theorem is paraphrased as ‘The Linear Fractional Model’ below.

Theorem 4. (The Linear Fractional Model)
If ϕ, non-constant and not an elliptic automorphism, is an analytic map of the unit disk into itself
with Denjoy-Wolff point a and ϕ′(a) 6= 0, then the iteration of ϕ can be described by a linear fractional
model as follows. There is a domain Ω, either the plane C, the right half-plane RHP, or the upper half
plane UHP, and an automorphism Φ of Ω such that

Φ ◦ σ = σ ◦ ϕ
where σ : D→ Ω is analytic. This classifies ϕ into one of the four cases:

(1) Plane/Dilation: Ω = C, σ(a) = 0, Φ(z) = sz, 0 < |s| < 1.
(2) Plane/Translation: Ω = C, σ(a) =∞, Φ(z) = z + 1
(3) Half-Plane/Dilation: Ω = RHP, σ(a) = 0, Φ(z) = sz, 0 < s < 1.
(4) Half-Plane/Translation: Ω = UHP, σ(a) =∞, Φ(z) = z ± 1.

The map ϕ is in the Plane/Dilation case if and only if ϕ has Denjoy-Wolff point a in the disk and
0 < |ϕ′(a)| < 1. If ϕ has Denjoy-Wolff point a with |a| = 1 and ϕ′(a) < 1, then it is in the Half-
Plane/Dilation case and {ϕn(w)} is an interpolating sequence for every w in D. If ϕ has Denjoy-Wolff
point a with |a| = 1 and ϕ′(a) = 1 and {ϕn(w)} is an interpolating sequence for every (any) w in D, then
ϕ is in the Half-Plane/Translation case. If ϕ has Denjoy-Wolff point a with |a| = 1 and ϕ′(a) = 1 and
{ϕn(w)} is NOT an interpolating sequence for any (every) w in D, then ϕ is in the Plane/Translation
case.

3. Singular Inner Function Invariant Subspaces

The shift-invariant subspaces generated by atomic singular inner functions are those of the form

eα
z+a
z−aH2, for |a| = 1 and α > 0. In the main result of this section, we show that these subspaces are also

Cϕ-invariant exactly when ϕ has Denjoy-Wolff point a on the boundary, which, by the considerations
of the previous section we may take as a = 1.

An application of Julia’s Lemma yields the following lemma.

Lemma 5. Let ϕ be an analytic map of the unit disk into itself such that ϕ(1) = 1 and ϕ′(1) ≤ 1.
Then, for z in D,

Re

(
ϕ(z) + 1

ϕ(z)− 1
− z + 1

z − 1

)
≤ 0

Proof. An easy calculation shows that

(2) Re

(
z + 1

z − 1

)
=
|z|2 − 1

|z − 1|2

and

(3) Re

(
ϕ(z) + 1

ϕ(z)− 1

)
=
|ϕ(z)|2 − 1

|ϕ(z)− 1|2
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Additionally, by Julia’s Lemma with η = 1, ζ = 1 and d(1) = ϕ′(1) ≤ 1, we have for all z ∈ D
|1− ϕ(z)|2

1− |ϕ(z)|2
≤ ϕ′(1)

|1− z|2

1− |z|2

Equivalently,
|ϕ(z)|2 − 1

|ϕ(z)− 1|2
≤ 1

ϕ′(1)

|z|2 − 1

|z − 1|2
Writing this in terms of the real parts, we have

Re

(
ϕ(z) + 1

ϕ(z)− 1

)
≤ 1

ϕ′(1)
Re

(
z + 1

z − 1

)
Finally, recalling that ϕ′(1) ≤ 1 and that z+1

z−1 maps the unit disk into the left half-plane,

Re

(
ϕ(z) + 1

ϕ(z)− 1
− z + 1

z − 1

)
= Re

(
ϕ(z) + 1

ϕ(z)− 1

)
− Re

(
z + 1

z − 1

)
≤ 1

ϕ′(1)
Re

(
z + 1

z − 1

)
− Re

(
z + 1

z − 1

)
=

1− ϕ′(1)

ϕ′(1)
Re

(
z + 1

z − 1

)
≤ 0

�

Next, we use this fact to prove one of the main results of this section.

Theorem 6. If ϕ is an analytic map of the unit disk into itself with ϕ(1) = 1 and ϕ′(1) ≤ 1, then

eα
z+1
z−1H2 is an invariant subspace for Cϕ whenever α > 0.

Proof. To see that eα
z+1
z−1H2 is Cϕ-invariant, recall that the boundedness of Cϕ implies that h = g ◦ ϕ

is in H2 for all z ∈ D. Letting F (z) = eα( ϕ+1
ϕ−1−

z+1
z−1 ), we see for all g ∈ H2 that

Cϕ(eα
z+1
z−1 g(z)) = eα

ϕ(z)+1
ϕ(z)−1 (g ◦ ϕ) (z) = eα

ϕ(z)+1
ϕ(z)−1h(z)

= eα
z+1
z−1 eα( ϕ(z)+1

ϕ(z)−1
− z+1

z−1 )h(z) = eα
z+1
z−1F (z)h(z)

Since h ∈ H2 and the product of an H∞ function and an H2 function is in H2, we need only show
that F ∈ H∞ to see that Fh ∈ H2. To this end, let Re(z) denote the real part of z and recall that
|ez| = eRe(z). Then we have |F (z)| = eRe(F (z)) ≤ 1 since Re(F (z)) ≤ 0 by the previous lemma. So

F ∈ H∞, Fh ∈ H2, and Cϕ maps eα
z+1
z−1H2 into itself. �

Recall that H2 functions have radial limits a.e. on the unit circle given by

lim
r→1

f(reiθ) = f(eiθ).

The previous fact allows us to characterize the composition operators that have shift-invariant sub-
spaces associated with atomic singular inner functions.

Theorem 7. Let ϕ be an analytic map of the unit disk D into itself. If there is α > 0 such that

eα
z+1
z−1H2 is an invariant subspace for Cϕ, then ϕ(1) = 1 and ϕ′(1) ≤ 1, that is, 1 is the Denjoy-Wolff

point of ϕ.

Proof. If ϕ(z) ≡ z, we clearly have ϕ(1) = ϕ′(1) = 1, so we assume ϕ is not the identity map.

Since eα
z+1
z−1 is analytic on the disk with H∞-norm 1, the function

Cϕ

(
eα

z+1
z−1

)
= eα

ϕ(z)+1
ϕ(z)−1

is analytic on the disk with H∞-norm at most 1. We have assumed the shift-invariant subspace

eα
z+1
z−1H2(D) is also invariant for Cϕ, so Cϕ

(
eα

z+1
z−1

)
is in eα

z+1
z−1H2. This implies that eα

ϕ(z)+1
ϕ(z)−1

−α z+1
z−1 is

in H2.



6 CARL C. COWEN AND REBECCA G. WAHL

Now eα
z+1
z−1 is an inner functions, so the function e−α

z+1
z−1 is in L∞(∂D) and has modulus 1 almost

everywhere on the unit circle. It follows that the H2 function eα
ϕ(z)+1
ϕ(z)−1

−α z+1
z−1 satisfies∣∣∣eαϕ(z)+1

ϕ(z)−1
−α z+1

z−1

∣∣∣ =
∣∣∣eαϕ(z)+1

ϕ(z)−1 e−α
z+1
z−1

∣∣∣ =
∣∣∣eαϕ(z)+1

ϕ(z)−1

∣∣∣ ≤ 1

almost everywhere on the unit circle. This means that eα
ϕ(z)+1
ϕ(z)−1

−α z+1
z−1 is actually an H∞ function with

H∞-norm at most 1.
The properties of the exponential function and the fact that α > 0 imply

Re

(
ϕ(z) + 1

ϕ(z)− 1

)
< Re

(
z + 1

z − 1

)
Using Equations (2) and (3), we get

|ϕ(z)|2 − 1

|ϕ(z)− 1|2
<
|z|2 − 1

|z − 1|2

or

(4)
|1− ϕ(z)|2

1− |ϕ(z)|2
<
|1− z|2

1− |z|2

In particular, since the inequality is strict, ϕ cannot have a fixed point in the open disk D so the
Denjoy-Wolff point must be on the unit circle. Replacing z by r where 0 < r < 1 and taking the limit
as r tends to 1, we see that limr→1− ϕ(r) = 1, so 1 is a boundary fixed point of ϕ.

Finally, if the Denjoy-Wolff point of ϕ is a point ζ on the unit circle with ζ 6= 1, then Julia’s Lemma
(Lemma 1) implies

(5)
|ζ − ϕ(z)|2

1− |ϕ(z)|2
≤ ϕ′(ζ)

|ζ − z|2

1− |z|2
≤ |ζ − z|

2

1− |z|2

Now let ∆1 = E(1, 1) be the disk as in Equation (1). Since ζ 6= 1, there is τ > 0 so that the disk
∆2 = E(τ, ζ) intersects ∆1 in exactly one point, z0, in the unit disk that satisfies

|ζ − z0|2

1− |z0|2
= τ and

|1− z0|2

1− |z0|2
= 1

and the disks ∆1 and ∆2 are tangent at z0. Inequality (4) says |1−ϕ(z0)|
2

1−|ϕ(z0)|2 < 1, so ϕ(z0) is in the interior

of the disk ∆1. On the other hand, Inequality (5) says |ζ−ϕ(z0)|
2

1−|ϕ(z0)|2 ≤ τ so ϕ(z0) is in the closed disk

∆2. Since ∆1 ∩∆2 = {z0}, the open disk with boundary Γ1 and the closed disk with boundary Γ2 are
disjoint, so the inequalities (4) and (5) are inconsistent. Thus, the Denjoy-Wolff point of ϕ must be 1
and the theorem is proved. �

The following corollary combines the results of Theorems 6 and 7 and generalizes them using a simple
change of variables to give a complete description of the composition operators that have invariant
subspaces JH2 when J is a singular inner function whose singular measure is a point mass.

Corollary 8. Let |b| = 1 and let ϕ be an analytic map of the unit disk into itself. If ϕ(b) = b and

ϕ′(b) ≤ 1, then eα
z+b
z−bH2 is an invariant subspace for Cϕ whenever α > 0. Conversely, if α > 0 and

the subspace eα
z+b
z−bH2 is invariant for Cϕ, then ϕ(b) = b and ϕ′(b) ≤ 1.
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4. Blaschke Product Invariant Subspaces

In this section we determine the shift-invariant subspaces BH2 that are also Cϕ-invariant where B
is a Blaschke product. As noted earlier, for a function f in H2, we will denote by Zf the Blaschke
sequence that is the zero sequence of f , that is, Zf = {z ∈ D : f(z) = 0} written as a sequence, and
the multiplicity of w as a zero of f , multf (w), is the non-negative integer m so that (z − w)m divides
B, but (z − w)m+1 does not and it is number of times w occurs in the sequence Zf .

Definition If S1, S2, S3, · · · is a finite or countable collection of sequences, Sk = {sj,k}j , a combina-
tion of the sequences {Sk} is a sequence T = {t`}∞`=1 so that for each sj,k in one of the sequences Sk,
there is t` in T such that t` = sj,k and if t`1 = sj`1 ,k`1 and t`2 = sj`2 ,k`2 where either sj`1 ,k`1 and sj`2 ,k`2
are from different sequences (k`1 6= k`2) or they are different terms from the same sequence (k`1 = k`2
and j`1 6= j`2) then `1 6= `2.

In other words, the combination is a sequence T whose terms are the union of the terms of the
sequences Sk but the number of times a particular number w occurs in T is the sum of the number of
times it occurs in each of the sequences Sk.

The following lemma is the key to the results of this section.

Lemma 9. Let B be a Blaschke product and let ϕ, non-constant and not an elliptic automorphism,
be an analytic map of the unit disk into itself. The subspace BH2 is Cϕ-invariant if and only if
multB(w) ≤ multB◦ϕ(w) for each w in ZB.

Proof. If BH2 is Cϕ-invariant, for each f in BH2, then Cϕf is also in BH2. Since B is in BH2, we
must have Cϕ(B) = B ◦ ϕ = Bg where g is in H2. In particular, this means that if w is in ZB and
multB(w) = m, then (z − w)m divides B, so (z − w)m divides B ◦ ϕ, and multB◦ϕ(w) ≥ m also.

Suppose multB◦ϕ(w) ≥ multB(w) for all w in ZB . Then B divides B ◦ ϕ and there is an analytic
function g on the disk so that B ◦ ϕ = Bg. In fact, because B is in H∞, we see B ◦ ϕ is in H∞ and
since |B(z)| = 1 for almost all z on the unit circle, we see that ‖B ◦ ϕ‖∞ = ‖gB‖∞ = ‖g‖∞ which
means g is in H∞ also. Now, if f is in BH2, say f = Bh for h in H2, then

Cϕf = f ◦ ϕ = (B ◦ ϕ)(h ◦ ϕ) = (Bg)(h ◦ ϕ) = B(g · h ◦ ϕ)

Because Cϕ bounded means h ◦ ϕ is in H2 and g in H∞ implies g · h ◦ ϕ is also in H2, we see
Cϕf = B(g · h ◦ ϕ) is in BH2. �

The following example gives an illustration of the condition in Lemma 9.

Example 1
Consider B(z) = z ((z + 1/2)/(1 + z/2))

2
and ϕ(z) = (2z2 + z)/4. In this case, ZB = {0,−1/2,−1/2},

ϕ(0) = 0, and ϕ(−1/2) = 0, so for each w in ZB , we have ϕ(w) is also in ZB , but since the multiplicity
of 0 is 1 and the multiplicity of ϕ(0) = 0 is 1, and the multiplicity of −1/2 is 2 and the multiplicity of
ϕ(−1/2) = 0 is 1, the multiplicity condition is NOT met. In this example, we have

(B ◦ ϕ)(z) =
2z2 + z

4

(
(2z2 + z)/4 + 1/2

1 + (2z2 + z)/8

)2

= (z(z + 1/2))
1

2

(
4z2 + 2z + 4

2z2 + z + 8

)2

=

(
z

(
z + 1/2

1 + z/2

))(
(2 + z)

(
2z2 + z + 2

2z2 + z + 8

)2
)

The first factor in the final expression is an inner function, and the second factor is an outer function,
so B does NOT divide the composition B ◦ ϕ.

It is worth noting that B may have zeros other than ϕ(w) for w in ZB .

Example 2
Consider B(z) = z2(z + 1/2)/(1 + z/2) and ϕ(z) = (2z2 + z)/4. In this case, ZB = {0, 0,−1/2},
ϕ(0) = 0, and ϕ(−1/2) = 0, so for each w in ZB , we have ϕ(w) is also in ZB , and since the multiplicity
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of 0 is 2 and the multiplicity of ϕ(0) = 0 is 2, and the multiplicity of −1/2 is 1 and the multiplicity of
ϕ(−1/2) = 0 is 2, the multiplicity condition is met. On the other hand, there is no z in D for which
ϕ(z) = −1/2, and certainly no w in ZB with ϕ(w) = −1/2. As a confirmation of Lemma 9, we have

(B ◦ ϕ)(z) =

(
2z2 + z

4

)2(
(2z2 + z)/4 + 1/2

1 + (2z2 + z)/8

)
= (z(z + 1/2))

2

(
4z2 + 2z + 4

4(2z2 + z + 8)

)
=

(
z

(
z + 1/2

1 + z/2

))2(
(1 + z/2)2(2z2 + z + 2)

2(2z2 + z + 8)

)
= B(z)

(
(z + 1/2)(1 + z/2)(2z2 + z + 2)

2(2z2 + z + 8)

)
We can use Lemma 9 to understand the relationship between the location and character of the

fixed points of ϕ and the kinds of Blaschke product invariant subspaces that are possible for Cϕ. For
example, we find that Blaschke products vanishing at the Denjoy-Wolff point are the only Blaschke
type Cϕ-invariant subspaces when ϕ has a fixed point in the disk. We note that the third part of the
next theorem follows from a result Mahvidi [8, p. 465].

Theorem 10. Let ϕ, non-constant and not an elliptic automorphism, be an analytic map of the disk
into itself with Denjoy-Wolff point, a. If B is a Blaschke product for which BH2 is Cϕ-invariant, then

(i) for each w in ZB,

multϕ−ϕ(w)(w) ·multB(ϕ(w)) ≥ multB(w)

(ii) ϕn(w) is in ZB for every w in ZB and for every positive integer n
(iii) if a is in D, the point a is in ZB

and
(iv) if a is in D, for every w in ZB, there is an integer nw such that ϕnw

(w) = a

Proof. For any function g in H2, we can use the inner-outer factorization to factor the function g into

a product of factors, fj of the form
|zj |
zj

zj−z
1−zjz and a function f0 that is never zero. Now, the zeros of

g ◦ ϕ are going to arise from the factors fj ◦ ϕ because f0 ◦ ϕ is also a non-zero function. If w is a zero
of g ◦ ϕ, then it must be a zero of fj ◦ ϕ for at least one fj . On the other hand, w is a zero of fj ◦ ϕ if
and only if (zj − ϕ(w)) = 0, which means ϕ(w) = zj . But ϕ is a function, so w is a zero of fj ◦ ϕ and
fk ◦ ϕ if and only if zj = zk. We conclude that for each w in the disk,

multg◦ϕ(w) = multϕ−ϕ(w)(w) ·multg(ϕ(w))

Suppose that BH2 is Cϕ-invariant. By Lemma 9 above, then

multϕ−ϕ(w)(w) ·multB(ϕ(w)) = multB◦ϕ(w) ≥ multB(w)

This proves (i).
In particular, for each w in ZB , we see that ϕ(w) is also in ZB , since multϕ−ϕ(w)(w) is non-zero.

Using this observation repeatedly, we see that (ii) holds.
Suppose a is in the open unit disk D. Since the iterates of ϕ converge to the Denjoy-Wolff point

a in the disk, we have ϕn(z) → a as n tends to infinity for all z in D. By (ii), for w in ZB , the set
{ϕn(w)}∞n=1 consists of zeros of B, and we see that this set must be finite since, otherwise, it provides
an infinite set with a limit point in D on which B is zero. But since B 6≡ 0, this is impossible. Hence,
there exist integers k and ` with ϕk(w) = ϕ`(w). If, without loss of generality, k > ` then we have
ϕk−`(ϕ`(w)) = ϕ`(w) and note that ϕ`(w) is a fixed point of ϕk−`. But the iterates of ϕ cannot have
a Denjoy-Wolff point different from that of ϕ, so we conclude that ϕ`(w) = a. Then the fourth result
follows since w was arbitrary (but our choice of ` was not). Recalling the fact that every iterate of w
is in ZB , we see that ϕ`(w) = a is in ZB so a is in ZB and the result is proved. �

When ϕ is univalent, we can say more about the Cϕ-invariant subspaces of the Blaschke type.
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Corollary 11. If ϕ, non-constant and not an elliptic automorphism, is a univalent analytic map of the
unit disk into itself with Denjoy-Wolff point a in D and B is a Blaschke product with BH2 invariant

for Cϕ, then B(z) = λ

(
z − a
1− az

)m
for some positive integer m.

Proof. If z is a zero of B, then by (iv) of Theorem 10, ϕm(z) = a for some positive integer m. But ϕ
univalent implies ϕm is also univalent, and ϕm(z) = a = ϕm(a) means z = a. �

After a few definitions, we consider the remaining cases of the model for iteration, Theorem 4.

Definition An interpolating sequence is a sequence {zj} in the disk such that for any bounded sequence
{cj} of complex numbers there is a bounded analytic function f on D with f(zj) = cj .

A characterization of interpolating sequences {zj} in H∞ was given by Carleson (see [6], [9], or [10])
that depends on the relative closeness of the points of the sequence to each other in the hyperbolic
metric.

Definition A non-constant sequence {zk}∞k=q, where q is an integer or −∞, is called a forward iteration

sequence for ϕ, an analytic map of the unit disk into itself, if ϕ(zk) = zk+1 for all k ≥ q. Of course,
except when ϕ is an elliptic automorphism of the disk onto itself, a forward iteration sequence for ϕ
converges to the Denjoy-Wolff point of ϕ.

Cowen determined [3, Prop. 4.2, 4.9] that when ϕ is in cases (3) or (4) of the model as described
in Theorem 4 (or see [2, p. 80]), any forward iteration sequence for ϕ is an interpolating sequence and
if ϕ is case (2), none are. Since interpolating sequences are Blaschke sequences, we find that in these
cases, there are many Blaschke product invariant subspaces that are also invariant for Cϕ.

Theorem 12. Let ϕ be an analytic map of the disk into itself with Denjoy-Wolff point on the unit
circle such that ϕ is in case (3) or (4) of Theorem 4. If B is a Blaschke product for which BH2 is
Cϕ-invariant, then the zero set ZB is the union of finitely many, or countably infinitely many, forward
iteration sequences for ϕ. Conversely, if Z is a sequence in the unit disk that is the combination of
finitely many forward iteration sequences of ϕ, then the Blaschke product, B, with zero set ZB = Z,
gives the shift invariant subspace BH2 which is also Cϕ-invariant.

Proof. If w is in ZB and {zk}∞k=q is a forward iteration sequence that includes w, say w = zj , then the

sequence {zk}∞k=j is a forward iteration sequence that starts with w and is a subsequence of the given
sequence. For each w in ZB , there is a forward iteration sequence for ϕ starting with w, namely, w,
ϕ(w), ϕ2(w), · · · , and, indeed, this is the unique forward iteration sequence for ϕ that starts with w.
The second conclusion follows from the fact that each iteration sequence is an interpolating sequence
which means it is a Blaschke sequence. Since we have only finitely many of these, their combination is
also a Blaschke sequence. Since multϕ−ϕ(w)(w) is at least 1, and we are taking the combination of the
Blaschke sequences, we have

multB◦ϕ(w) = multϕ−ϕ(w)(w) ·multB(ϕ(w)) ≥ multB(ϕ(w)) ≥ multB(w)

for each w in ZB , so BH2 is an invariant subspace for Cϕ by Lemma 9. �

If ϕ(1) = 1 and ϕ′(1) = 1 and ϕ is in case (2) of the model [2, p. 80], Cowen [3, Prop. 4.9] determined
that the iterates under ϕ are not an interpolating sequence. This allows a partial understanding of the
Blaschke product invariant subspaces for functions in this case.

Theorem 13. If ϕ is an analytic map of the unit disk into itself with Denjoy-Wolff point a with
|a| = 1, ϕ′(a) = 1 and ϕn(0) converges non-tangentially to a, then there are no Blaschke product
invariant subspaces.

Proof. If ϕ is an analytic map of the disk into itself that is in case (4) of the model, then the sequence
ϕn(w) converges tangentially to the Denjoy-Wolff point a. It follows that the map ϕ in the hypothesis
must be in case (2). Thus, the sequences {ϕn(w)} all converge non-tangentially to the Denjoy-Wolff
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point a and ϕ′(a) = 1 implies the sequences are not Blaschke sequences. In particular, if B were a
Blaschke product such that BH2 is Cϕ-invariant, then w in ZB would imply ϕn(z) is also in ZB for
each n but this is impossible because these points are not a Blaschke sequence. �

Corollary 14. If ϕ(1) = ϕ′(1) = 1 and ϕ is real on real axis, then there are no Blaschke product
invariant subspaces for Cϕ.

It is possible for an analytic map ϕ of the disk into itself to be in case (2) but have ϕn(w) converge
tangentially to a for each w in the disk. We cannot say if such maps can have Blaschke product
subspaces that are invariant for Cϕ or not.
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