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Abstract. The composition operators on H2 whose symbols are hyperbolic
automorphisms of the unit disk fixing ±1 comprise a one-parameter group and
the analytic Toeplitz operators coming from covering maps of annuli centered at
the origin whose radii are reciprocals also form a one-parameter group. Using the
eigenvectors of the composition operators and of the adjoints of the Toeplitz
operators, a direct unitary equivalence is found between the restrictions to zH2 of
the group of adjoints of these composition operators and the group of Toeplitz
operators. On the other hand, it is shown that there is not a unitary equivalence
of the groups of adjoints of the composition operators and the Toeplitz operators
on the whole of H2.

1. Introduction

Our goal in this note is to explore equivalence between the adjoints of the
composition operators on H2 coming from the hyperbolic automorphisms of the
disk with fixed points at ±1 and the usual analytic Toeplitz operators associated
with covering maps of annuli centered at the origin whose radii are reciprocals. The
unitary equivalence we find is on zH2, not on H2. In fact, we show (Theorem 8)
that there is a unitary operator on zH2 that gives a unitary equivalence of the
group of adjoints of the composition operators and the group of analytic Toeplitz
operators. In addition, we show (Theorem 4) that there is not a unitary equivalence
between these groups on all of H2.

Our approach is to look at the eigenspaces of the adjoints of the Toeplitz
operators and the eigenspaces of the composition operators, or more precisely, of
the infinitesimal generators of their groups because these are one-dimensional, and
construct a unitary equivalence of these operators directly by using their
eigenfunctions. As a corollary, since the compressed adjoint Toeplitz operators and
the compressed composition operators are unitarily equivalent, the restricted (to
zH2) Toeplitz operators and the restricted adjoint composition operators are also
unitarily equivalent.

Understanding the structure of adjoints of composition operators as
multiplications by analytic functions, especially relating to subnormality, extends
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back to the first few years these operators were studied. Subnormality of the Cesàro
operator on H2 was shown by Kriete and Trutt [12] in 1971 and Deddens [7] showed
in 1972 that the adjoints of some composition operators on H2 are analytic
functions of the Cesáro operator, so are subnormal. The connections between
subnormality and composition operators were extended by Nordgren, Rosenthal,
and Wintrobe [14], Cowen [4], and finally Cowen and Kriete [5] by giving proofs
showing that the class of composition operators with subnormal adjoints on H2

includes some composition operators whose symbols are hyperbolic linear fractional
maps of the disk into itself, in particular, it includes the hyperbolic automorphisms
with fixed points at ±1. However, in contrast to our direct approach in this note,
in [14] and [4], the subnormality was established indirectly through moment criteria,
which does not usually tie closely to the structure of the operators as
multiplications by analytic functions. In [5], like in [12], measures were constructed
to show that the operators studied are restrictions to P 2(µ) of the normal operator
of multiplication by a bounded analytic function on L2(µ).

2. Comparison of the Adjoint Toeplitz and Composition Groups

We wish to find a relationship between the Toeplitz operator whose symbol is the
covering map of the disk onto an annulus and the composition operator whose
symbol is a hyperbolic automorphism of the disk with fixed points ±1. We believe
(hope?) this might be true because the Toeplitz operator is subnormal and the
composition operator has subnormal adjoint and the composition operator and the
adjoint of the Toeplitz operator both have point spectra that are open annuli, each
eigenvalue having infinite multiplicity. Rather than use an approach that uses
measures or moments, as in [5], we try a novel approach that uses their groups.

Consider the set (for −∞ < t <∞) of composition operators with symbols Cϕt
where

ϕt(z) =
(1 + e−t)z + (1− e−t)
(1− e−t)z + (1 + e−t)

which has fixed points at 1 and −1 and derivatives at these fixed points e−t and et.
Thus, for t > 0, the Denjoy-Wolff point of ϕt is 1. Easy computations show that
this is a one-parameter group of operators, CϕtCϕs = Cϕs+t , and it is not too
difficult to see that this group is strongly continuous.

Let us compute the infinitesimal generator of this group:

(Hf)(z) =

(
d

dt

∣∣∣∣
t=0

Cϕtf

)
(z) =

d

dt

∣∣∣∣
t=0

f(ϕt(z))

= f ′(ϕt(z))
2(1 + e−t)e−t(1− z2)

[(1− e−t)z + (1 + e−t)]2

∣∣∣∣
t=0

= f ′(z)
1− z2

2

(We note, but will not prove because our focus will be on the eigenfunctions, that H
is a closed operator with domain {f ∈ H2 : f ′(z)(1− z2) ∈ H2}.)

We want to find the eigenvalues of this differential operator that correspond to
eigenvectors that are in H2. That is, we want to solve the differential equation
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f ′(z)(1− z2)/2 = λf and choose those λ that correspond to f in H2. We get

1

f
df = λ

2

1− z2
dz = λ

(
1

1 + z
+

1

1− z

)
dz

which has solutions (up to an additive constant)

log f = λ (log(1 + z)− log(1− z)) = log

(
1 + z

1− z

)λ
The functions wλ are eigenvectors of the infinitesimal generator corresponding to λ

wλ(z) = f(z) =

(
1 + z

1− z

)λ
=

(
1− z
1 + z

)−λ
and they are in H2 for −1/2 < Reλ < 1/2. Note that the eigenspaces of the
infinitesimal generator are one-dimensional! Use of the theory of semigroups or a
direct computation from the expressions for ϕt and wλ shows that Cϕtwλ = eλtwλ.
In particular, for t > 0, the point spectrum of Cϕt is

σp(Cϕt) = {λ : e−t/2 < |λ| < et/2}
Let us now consider the Toeplitz operators whose symbols are maps of the disk

onto annuli centered at the origin with radii that are reciprocals of each other, that
is, the same family of annuli as occur above as the spectra of the composition
operators. Such maps are (for s > 0)

g(z) = esi log( 1−z
1+z ) =

(
1− z
1 + z

)si
and the point spectrum of the adjoint of the Toeplitz operator is

g(D) = {ζ : e−πs/2 < |ζ| < eπs/2}
Since our goal is to match up with the group above, we choose a normalization so

that t = 1 corresponds to the annulus {ζ : e−1/2 < |ζ| < e1/2}, and we let

ψt(z) = e(
ti
π

log( 1−z
1+z )) =

(
1− z
1 + z

) ti
π

These Toeplitz operators also form a strongly continuous group, TψtTψs = Tψs+t ,

and we want to find the infinitesimal generator. For h in H2,

(Gh)(z) =

(
d

dt

∣∣∣∣
t=0

(Tψth)

)
(z) =

d

dt

∣∣∣∣
t=0

e
ti
π

log( 1−z
1+z )h(z)

=

(
i

π
log

(
1− z
1 + z

)
e
ti
π

log( 1−z
1+z )

)∣∣∣∣
t=0

h(z)

=
i

π
log

(
1− z
1 + z

)
h(z)

That is, the infinitesimal generator, G, of the group is an (unbounded) analytic
Toeplitz operator. As is well known, the kernel functions for evaluation at α in the
disk, Kα(z) = (1−αz)−1, are eigenvectors for adjoints of analytic Toeplitz operators

G∗Kα = − i
π

log

(
1− α
1 + α

)
Kα
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and we see, also in this case, that the eigenspaces are one dimensional. We also have

T∗ψtKα = ψt(α)Kα =

(
1− α
1 + α

)− ti
π

Kα

Now, we need to get the relationship between α and λ to compare eigenfunctions
for the same eigenvalue. Using t = 1, we have

eλ =

(
1− α
1 + α

)− i
π

e−
πλ
i = eiπλ =

1− α
1 + α

so finally,

α =
1− eiπλ

1 + eiπλ
=
e−iπλ/2 − eiπλ/2

e−iπλ/2 + eiπλ/2
=
−i sin

(
λπ2
)

cos
(
λπ2
)

We will match up the eigenspaces for the infinitesimal generators of the two groups
to try to obtain the equivalence we are looking for.

For −1/2 < Reλ < 1/2, let

wλ =

(
1− z
1 + z

)−λ
and vλ =

(
1−
−i sin

(
λπ2
)

cos
(
λπ2
) z

)−1

which are the eigenvectors found above that correspond to the eigenvalue λ for the
infinitesimal generators for the two groups. Of course, we are aware that we have
made natural, but ultimately arbitrary, choices of eigenvectors for the two cases.
We hope that these choices will suggest an isomorphism of the space that will
connect the composition and the Toeplitz operators. The following lemma says that
at least we have enough vectors in each case to use linear combinations of
eigenfunctions to get close to every vector in the space.

Lemma 1. Let wλ and vλ be as above. Then the span of {vλ : −1/2 < λ < 1/2}
and the span of {wλ : −1/2 < λ < 1/2} are each dense in H2.

Proof. The vλ are just kernels for point evaluations for functions in H2. If f in H2

is perpendicular to each vλ then, for α = i sin (λπ/2) / cos (λπ/2) as above, we have
0 = 〈f, vλ〉 = f(α), and this is true for each α in the intersection of the unit disk
with the imaginary axis. Since f is analytic in the disk, we must have f = 0. This
means the span of {vλ : −1/2 < λ < 1/2} is dense in H2.

For the second half, let us prove that the span of {wλ : 0 < λ < 1/2} is dense in
H2, from which, clearly, the statement of the lemma will follow. Let us consider the
natural surjective isometry from H2 onto L2(0,∞) (see [15], for instance). This
means that it is enough to prove that the linear span of the functions in L2(0,∞)
given by

eλ(x) =

∫ x

0
tλ−1e−(x−t) dt, (x > 0)

for 0 < λ < 1/2 is dense in L2(0,∞). In order to show this, assume f in L2(0,∞)
satisfies ∫ ∞

0
eλ(x) f(x) dx = 0
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for any 0 < λ < 1/2. The Fubini theorem yields∫ ∞
0

tλ−1

(∫ ∞
t

e−(x−t) f(x) dx

)
dt = 0. (1)

Let us denote by F the L2(0,∞) function

F (t) =

∫ ∞
t

e−(x−t) f(x) dx, (t ∈ (0,∞))

Note that expression (1) is related to the Mellin Transform of F , defined for those
w ∈ C such that the integral

F̃ (w) =

∫ ∞
0

tw−1F (t) dt,

converges. Since F̃ is an analytic map on the fundamental strip of convergence

{0 < Rew < 1/2} and from expression (1) one gets F̃ (λ) = 0 for every 0 < λ < 1/2,

one deduces that F̃ = 0. Hence, F (t) = 0 for any t ∈ (0,∞). From here, it follows
that f = 0, proving the statement of the lemma. �

Corollary 2. If M is any subspace of H2 and P is the orthogonal projection of H2

onto M , then the span of {Pvλ : −1/2 < λ < 1/2} and the span of
{Pwλ : −1/2 < λ < 1/2} are each dense in M .

Proof. Suppose u is a vector in H2 and x is a vector in M . Because ‖P‖ = 1, we
have

‖x− Pu‖ = ‖Px− Pu‖ = ‖P (x− u)‖ ≤ ‖x− u‖

In particular, for every linear combination of the vλ’s or the wλ’s, the distance
between x and the linear combination is no less than the distance between x and
the projection of the linear combination, so the density of the projections in M
follows from the density of the linear combinations in H2. �

If there actually is an isomorphism, then the internal relationships between the
vectors wλ for different λ must have a strong connection with the same relationships
for the vλ. Thus, we will compute both 〈wλ, wµ〉 and 〈vλ, vµ〉 for λ and µ in the
strip, indeed, it should be sufficient to do so for just the real numbers
−1/2 < λ, µ < 1/2.

Because the vectors vλ and vµ are just kernel functions, their inner products are
easy to calculate. Recalling that we are taking λ and µ real,

〈vλ, vµ〉 =

(
1−

(−i sin(π2λ)

cos(π2λ)

)(
i sin(π2µ)

cos(π2µ)

))−1

=
cos(π2λ) cos(π2µ)

cos(π2λ) cos(π2µ)− sin(π2λ) sin(π2µ)
=

cos(π2λ) cos(π2µ)

cos(π2 (λ+ µ))
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The corresponding calculation for wλ and wµ is somewhat more difficult.

〈wλ, wµ〉 =

∫ π

−π

(
1− eiθ

1 + eiθ

)−λ(
1− e−iθ

1 + e−iθ

)−µ
dθ

2π

=

∫ π

0

(
1− eiθ

1 + eiθ

)−λ(
1− e−iθ

1 + e−iθ

)−µ
dθ

2π

+

∫ 0

−π

(
1− eiθ

1 + eiθ

)−λ(
1− e−iθ

1 + e−iθ

)−µ
dθ

2π

=

∫ π

0

(
1− eiθ

1 + eiθ

)−λ(
1− e−iθ

1 + e−iθ

)−µ
dθ

2π

+

∫ π

0

(
1− e−iθ

1 + e−iθ

)−λ(
1− eiθ

1 + eiθ

)−µ
dθ

2π

=

∫ π

0

(
1− eiθ

1 + eiθ

)−λ(
−1− eiθ

1 + eiθ

)−µ
dθ

2π

+

∫ π

0

(
−1− eiθ

1 + eiθ

)−λ(
1− eiθ

1 + eiθ

)−µ
dθ

2π

Making a change of variables, by taking the disk to the half plane to replace the
unit circle by the imaginary axis,

1− eiθ

1 + eiθ
= −ix

and integrating on the real line, we get

〈wλ, wµ〉 =

∫ ∞
0

(−ix)−λ(ix)−µ

1 + x2

dx

π
+

∫ ∞
0

(ix)−λ(−ix)−µ

1 + x2

dx

π

=
(−i)−λi−µ + i−λ(−i)−µ

π

∫ ∞
0

x−λ−µ

1 + x2
dx

=
ei
π
2
λe−i

π
2
µ + e−i

π
2
λei

π
2
µ

π

∫ ∞
0

x−λ−µ

1 + x2
dx

=
2 cos(π2 (λ− µ))

π

∫ ∞
0

x−λ−µ

1 + x2
dx

where we have used ±i = e±i
π
2 . A computation using a computer algebra system

(for example [13]) or a standard table of integrals (for example [16, p. 423, #486])
gives ∫ ∞

0

x−λ−µ

1 + x2
dx =

π

2 cos(π2 (λ+ µ))

so we get

〈wλ, wµ〉 =
2 cos(π2 (λ− µ))

π

π

2 cos(π2 (λ+ µ))
=

cos(π2 (λ− µ))

cos(π2 (λ+ µ))
(2)
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Comparing the formula above for 〈vλ, vµ〉 with this result for 〈wλ, wµ〉, we see
that they are similar in form but not exactly equal.

〈vλ, vµ〉 =
cos(π2λ) cos(π2µ)

cos(π2 (λ+ µ))
(3)

However, consider the following computation

2〈vλ, vµ〉 =
2 cos(π2λ) cos(π2µ)

cos(π2 (λ+ µ))

=
cos(π2λ) cos(π2µ) + sin(π2λ) sin(π2µ)

cos(π2 (λ+ µ))
+

cos(π2λ) cos(π2µ)− sin(π2λ) sin(π2µ)

cos(π2 (λ+ µ))

=
cos(π2 (λ− µ))

cos(π2 (λ+ µ))
+

cos(π2 (λ+ µ))

cos(π2 (λ+ µ))
= 〈wλ, wµ〉+ 1 (4)

If a unitary operator shows two operators are equivalent, the unitary operator
must carry the eigenspaces of one onto the eigenspaces of the other. In our case, if
G∗ and H are unitarily equivalent, the unitary must carry the eigenspace spanned
by vλ onto the eigenspace spanned by wλ. However, we will see Equations (2)
and (3) are inconsistent with this relationship.

Lemma 3. Let H be a Hilbert space, let u1, v1, u2, and v2 be non-zero vectors in H,
and let M1 = span{u1}, N1 = span{v1}, M2 = span{u2}, and N2 = span{v2}. There
is a unitary operator U on H such that UM1 = M2 and UN1 = N2 if and only if

|〈u1, v1〉|
‖u1‖‖v1‖

=
|〈u2, v2〉|
‖u2‖‖v2‖

Proof. (⇒) If U is unitary and UM1 = M2 and UN1 = N2, then there are complex
numbers α and β so that Uu1 = αu2 and Uv1 = βv2. Since unitary operators
preserve inner products, we know that

‖u1‖ = ‖Uu1‖ = ‖αu2‖ = |α|‖u2‖
‖v1‖ = ‖Uv1‖ = ‖βv2‖ = |β|‖v2‖

|〈u1, v1〉| = |〈Uu1, Uv1〉| = |〈αu2, βv2〉| = |α||β||〈u2, v2〉|
Combining these three equalities, we get the desired conclusion:

|〈u1, v1〉|
‖u1‖‖v1‖

=
|α||β||〈u2, v2〉|
|α‖u2‖||β|‖v2‖

=
|〈u2, v2〉|
‖u2‖‖v2‖

(⇐) On the other hand, suppose we have vectors as above so that

|〈u1, v1〉|
‖u1‖‖v1‖

=
|〈u2, v2〉|
‖u2‖‖v2‖

If we let α = ‖u1‖/‖u2‖ and γ = ‖v1‖/‖v2‖, then this equality gives

|〈αu2, γv2〉| = αγ|〈u2, v2〉| = αγ‖u2‖‖v2‖
|〈u1, v1〉|
‖u1‖‖v1‖

= |〈u1, v1〉|

Since these absolute values agree, we can find β so that |β| = γ and
〈αu2, βv2〉 = 〈u1, v1〉.
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Since we now have

〈u1, u1〉 = |α|2〈u2, u2〉 = 〈αu2, αu2〉
〈v1, v1〉 = |β|2〈v2, v2〉 = 〈|βv2, |βv2〉
〈u1, v1〉 = 〈αu2, βv2〉

it follows that, defining U on the subspace M1 +N1 by

U(au1 + bv1) = aαu2 + bβv2

yields a unitary operator mapping M1 +N1 onto M2 +N2 with UM1 = M2 and
UN1 = N2 because, for all a and b,

‖au1 + bv1‖2 = 〈au1 + bv1, au1 + bv1〉
= |a|2〈u1, u1〉+ 2Re ab〈u1, v1〉+ |b|2〈v1, v1〉
= |a|2〈αu2, αu2〉+ 2Re ab〈αu2, βv2〉+ |b|2〈βv2, βv2〉
= ‖aαu2 + bβv2‖2

Since dim(M1 +N1) = dim(M2 +N2), we also have
dim((M1 +N1)⊥) = dim((M2 +N2)⊥). Choosing any unitary map of (M1 +N1)⊥

onto (M2 +N2)⊥, we can extend U to all of H so that it is unitary on H and
satisfies UM1 = M2 and UN1 = N2. �

We are ready to show that the one parameter groups of adjoints of composition
operators and analytic Toeplitz operators on H2 are not unitarily equivalent.

Theorem 4. There is no unitary operator U on H2 such that U∗CϕtU = T∗ψt for
every real number t.

Proof. Suppose U is a unitary on H2 such that U∗CϕtU = T∗ψt for every real

number t. If f is a function in H2 such that Uf is in the domain of H, then

lim
t→0

1

t
(T∗ψtf − f) = lim

t→0

1

t
(U∗CϕtUf − U∗Uf)

= U∗ lim
t→0

1

t
(CϕtUf − Uf)

= U∗H(Uf)

This shows that f is in the domain of G∗ and that G∗f = U∗HUf . That is, U∗
takes the domain of H into the domain of G∗. Reversing the roles of G∗ and H
shows that U takes the domain of G∗ into the domain of H. Thus, we see that U
takes the domain of G∗ onto the domain of H and that, therefore, H and G∗ are
unitarily equivalent.

This unitary equivalence implies that U takes eigenspaces of G∗ onto eigenspaces
of H. Since all the eigenspaces of G∗ and H are one dimensional we can apply
Lemma 3 to pairs of eigenspaces.

For example, if we take M1 and M2 to be the eigenspaces spanned by wλ and vλ,
respectively, for λ = 0 and N1 and N2 to be the eigenspaces spanned by wµ and vµ,
respectively, for µ = 1/4.
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Using Equation (2) to compute the square of the left hand side of the equality in
the Lemma, we see that

|〈wλ, wµ〉|2

‖wλ‖2‖wµ‖2
=

( cos(π/8)
cos(π/8))2

1 1
cos(π/4)

=
1√
2

On the other hand, from Equation (3), the right side is

|〈vλ, vµ〉|2

‖vλ‖2‖vµ‖2
=

(1 cos(π/8)
cos(π/8) )2

1 cos(π/8)2

cos(π/4)

=
cos(π/4)

cos(π/8)2
=

1√
2 cos(π/8)2

Thus, the two sides are not equal, which contradicts the fact that U is unitary. �

The comparisons we are trying to make, if they will work at all, will work
because wλ and vλ are eigenvectors corresponding to the eigenvalue λ for their
respective operators. Equation (4), which expresses their relationship, is
inconsistent with a unitary equivalence on the space H2. Let us consider the
possible restriction of our operators to another space.

Lemma 5. If D is a bounded operator on the Hilbert space H and M is an
invariant subspace for D, then M⊥ is an invariant subspace for D∗. Furthermore,
if r is an eigenvector for D with eigenvalue λ and r = p+ q where p is in M and q
is in M⊥, then either q = 0 or q is an eigenvector for the eigenvalue λ for the
compression of D to M⊥, which is the adjoint of the restriction of D∗ to its
invariant subspace M⊥.

Proof. Suppose x is in M and y is in M⊥. Since M is invariant for D, then Dx is
also in M . This means that 〈Dx, y〉 = 0. However, 〈x,D∗y〉 = 〈Dx, y〉, so we have,
for all x in M and all y in M⊥ that 〈x,D∗y〉 = 0, so D∗y is also in M⊥, which
shows that M⊥ is an invariant subspace for D∗.

We can write a block matrix for D with respect to the decomposition of H as
H = M ⊕M⊥ so that

D =

(
A B
0 C

)
where the 0 is in the lower left corner because M is invariant for D and A is the
restriction of D to M . The operator C is the compression of D to M⊥, that is, if P
is the orthogonal projection of H onto M⊥, then for y in M⊥, Cy = PDy. Now
Dr = λr and r = p+ q as in the hypothesis means that

λr = Dr =

(
A B
0 C

)(
p
q

)
=

(
Ap+Bq
Cq

)
On the other hand, we have

λr = λ

(
p
q

)
=

(
λp
λq

)
so that Ap+Bq = λp and Cq = λq. The latter equation is exactly the penultimate
statement of the Lemma.

Finally, the matrix for D∗ is

D∗ =

(
A∗ 0
B∗ C∗

)
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so the restriction of D∗ to M⊥, an invariant subspace, is C∗ as the final statement
of the Lemma asserts. �

Let [1] denote the subspace of H2 spanned by the constant functions so that
H2 = [1]⊕ zH2. Let P be the projection of H2 onto the subspace zH2, so that, in
fact, for f in H2, we have Pf = f − f(0).

Corollary 6. Let ϕ be a hyperbolic automorphism of the disk with fixed points ±1
and let Cϕ be the associated composition operator on H2. Then [1] is an invariant

subspace for Cϕ and [1]⊥ = zH2 is an invariant subspace for C∗ϕ . Furthermore, if r
is an eigenvector for Cϕ with eigenvalue λ and r = p+ q where p = ρ1 and q 6= 0 is
in zH2, then q is an eigenvector for the eigenvalue λ for the compression of Cϕ to
zH2, which is the adjoint of the restriction of C∗ϕ to its invariant subspace zH2.

Proof. This is a direct consequence of Lemma 5 with the observation that
Cϕ1 = 1 ◦ ϕ = 1 which means [1] is an invariant subspace for Cϕ. �

Corollary 7. Let ψ be the covering map of an annulus as above and let Tψ be the
associated composition operator on H2. Then [1] is an invariant subspace for T∗ψ
and [1]⊥ = zH2 is an invariant subspace for Tψ. Furthermore, if r is an eigenvector
for T∗ψ with eigenvalue λ and r = p+ q where p = ρ1 and q 6= 0 is in zH2, then q is

an eigenvector for the eigenvalue λ for the compression of T∗ψ to zH2, which is the

adjoint of the restriction of Tψ to its invariant subspace zH2.

Proof. This is a direct consequence of Lemma 5 with the observation that
T∗ψ 1 = T∗ψK0 = ψ(0)K0 = ψ(0)1 which means [1] is an invariant subspace for

T∗ψ . �

For the composition operator group, we have been considering the eigenvectors
wλ; let xλ = Pwλ. Because wλ(0) = 1 for each λ under consideration, we have
wλ = 1 + xλ and this is the splitting of wλ with respect to the decomposition
H2 = [1]⊕ zH2 because 1 is in [1] and xλ is in zH2. This will be valuable because
Lemma 5 says xλ is an eigenvector for eλt for the compressions of the operators Cϕt
to zH2. Note that

〈xλ, xµ〉 = 〈wλ − 1, wµ − 1〉
= 〈wλ, wµ〉 − 〈wλ, 1〉 − 〈1, wµ〉+ 〈1, 1〉
= 〈wλ, wµ〉 − 1− 1 + 1 = 〈wλ, wµ〉 − 1

Similarly, for the adjoints of the Toeplitz operator group, we have we have been
considering the eigenvectors vλ; let uλ = Pvλ. Because vλ(0) = 1 for each λ under
consideration, we have vλ = 1 + uλ and this is the splitting of vλ with respect to the
decomposition H2 = [1]⊕ zH2 because 1 is in [1] and uλ is in zH2. This will be
valuable because Lemma 5 says uλ is an eigenvector for eλt for the compressions of
the operators T∗ψt to zH2. Note that

〈uλ, uµ〉 = 〈vλ − 1, vµ − 1〉
= 〈vλ, vµ〉 − 〈vλ, 1〉 − 〈1, vµ〉+ 〈1, 1〉
= 〈vλ, vµ〉 − 1− 1 + 1 = 〈vλ, vµ〉 − 1
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Putting these together with Equation (4), we have

2〈uλ, uµ〉 = 2(〈vλ, vµ〉 − 1) = 2〈vλ, vµ〉 − 2

= (〈wλ, wµ〉+ 1)− 2 = 〈wλ, wµ〉 − 1

= 〈xλ, xµ〉 (5)

The following theorem summarizes our conclusions.

Theorem 8. Let the vectors xλ and uλ be as described above for −1/2 < λ < 1/2.
Then the following are true:

(1) The sets {xλ : −1/2 < λ < 1/2} and {uλ : −1/2 < λ < 1/2} are each
linearly independent and have dense span in zH2.

(2) If U is the operator obtained from

U(xλ) =
√

2uλ

defining it to be linear from the span of {xλ : −1/2 < λ < 1/2} to the span
of {uλ : −1/2 < λ < 1/2}, then U is an isometry between these spans and
can be further extended to a unitary operator of zH2 onto itself.

(3) The operator U gives a unitary equivalence of the one-parameter groups
{Cϕ∗t

∣∣
zH2}t∈R and {Tψt |zH2}t∈R. In particular, for each real number t,

U Cϕ
∗
t

∣∣
zH2 = Tψt |zH2 U

Proof. (1) Corollary 2 shows that the projections of the wλ and the vλ, that is, the
xλ and the uλ, are dense in zH2. Notice that w0 = v0 = 1, so if some of the xλ’s or
the uλ’s were linearly dependent, then the corresponding wλ’s with w0 or the
corresponding vλ’s together with v0 would be dependent since each wλ = 1 + xλ and
each vλ = 1 + uλ. Since they are linearly independent, the conclusion follows.

(2) Equation (5) implies that the map U is isometric as a mapping from the span
of the xλ’s to the span of the uλ’s. Indeed, if −1/2 < λj < 1/2 and aj and bj are
complex numbers for j = 1, 2, · · · , n, then

〈
n∑
j=1

ajxλj ,
n∑
k=1

bkxλk〉 =
n∑
j=1

n∑
k=1

ajbk〈xλj , xλk〉 =
n∑
j=1

n∑
k=1

ajbk2〈uλj , uλk〉

= 〈
n∑
j=1

aj(
√

2uλj ),
n∑
k=1

bk(
√

2uλk)〉

= 〈U

 n∑
j=1

ajxλj

 , U

(
n∑
k=1

bkxλk

)
〉

Since these sets are dense in zH2, the isometry U of the span of the xλ’s onto the
span of the uλ’s can be extended to a unitary of zH2 onto itself.

(3) For each t ≥ 0, xλ is an eigenvector for eλt for the compressions of the
operator Cϕt to zH2, so we see that

U(PCϕt)xλ = U(eλtxλ) = eλt(
√

2uλ)
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On the other hand, for each t ≥ 0, uλ is an eigenvector for eλt for the compressions
of the operator T∗ψt to zH2, so we see that

(PT∗ψt)Uxλ = (PT∗ψt)(
√

2uλ) = eλt(
√

2uλ)

Since the span of the xλ’s and span of the uλ’s are both dense in zH2, this means
that U(PCϕt) = (PT∗ψt)U on zH2. Taking adjoints, we see this is equivalent to

(PCϕt)
∗U∗ = U∗(PT∗ψt)

∗. Since the adjoints of the compressions are the

restrictions of the adjoints, we get Cϕ
∗
t

∣∣
zH2 U

∗ = U∗ Tψt |zH2 which is equivalent to
the result of (3). Since the same unitary works for every t, the groups are unitarily
equivalent. �

Corollary 9. For each real number t, the operators Cϕ
∗
t

∣∣
zH2 and Tψt on H2 are

unitarily equivalent.

Proof. The operator Tz is a unitary map of H2 onto zH2. For any function h in
H∞(D), the analytic Toeplitz operator Th on H2 is unitarily equivalent to Th|zH2

because

T∗z Th|zH2 Tz = T∗z ThTz = T∗z TzTh = Th

Thus, Tψt |zH2 is unitarily equivalent to Tψt on H2 and the corollary follows. �

Theorem 8 gives us a new, easy proof of the subnormality of the operators
Cϕ
∗
t

∣∣
zH2 . The earlier proof of the stronger result that Cϕ

∗
t is subnormal on all of

H2 depends on the ideas in the papers [12, 7, 14, 5] noted earlier. The result of
Corollary 10 follows immediately from that because the restriction of a subnormal
operator to an invariant subspace is also subnormal.

Corollary 10. For each real number t, the operators Cϕ
∗
t

∣∣
zH2 are subnormal.

Proof. Each Tψt is subnormal on H2. �

There are clearly connections between analytic Toeplitz operators and
composition operators, for example (see [1, 2]), the commutant of an analytic
Toeplitz operator often consists of the algebra generated by the composition
operators that commute with it and the analytic Toeplitz operators. On the other
hand, it is often thought that the structures of these operators are quite different
from each other. The results of this paper show that this is not always the case and
suggest that this issue needs further examination.

References

[1] C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc.
239(1978), 1–31.

[2] C. C. Cowen, The commutant of an analytic Toeplitz operator, II, Indiana Univ. Math. J.
29(1980), 1–12.

[3] C. C. Cowen, Subnormality of the Cesaro operator and a semigroup of composition
operators, Indiana Univ. Math. J. 33(1984), 305–318.

[4] C. C. Cowen, Linear fractional composition operators on H2, J. Integral Equations Operator
Theory 11(1988), 151–160.

[5] C. C. Cowen and T. L. Kriete, Subnormality and composition operators on H2, J.
Functional Analysis 81(1988), 298–319.



EQUIVALENCE OF TOEPLITZ AND COMPOSITION OPERATORS 13

[6] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic
Functions, CRC Press, 1995.

[7] J. A. Deddens, Analytic Toeplitz and composition operators, Canadian J. Math. 24(1972),
859–865.

[8] R. G. Douglas. “Banach Algebra Techniques in Operator Theory,” Academic Press, New
York, 1972.

[9] A. Erdelyi, et. al., “Higher Transcendental Functions, Vol. 1,” McGraw-Hill, New York, 1953.
[10] A. Erdelyi, et. al., “Tables of Integral Transforms, Vol. 1,” McGraw-Hill, New York, 1954.
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