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Abstract. Weighted composition operators have been related to products of
composition operators and their adjoints and to isometries of Hardy spaces.
In this paper, Hermitian weighted composition operators on weighted Hardy
spaces of the unit disk are studied. In particular, necessary conditions are
provided for a weighted composition operator to be Hermitian on such spaces.
On weighted Hardy spaces for which the kernel functions are (1 − wz)−κ for
κ ≥ 1, including the standard weight Bergman spaces, the Hermitian weighted
composition operators are explicitly identified and their spectra and spectral
decompositions are described. Some of these Hermitian operators are part of a
family of closely related normal weighted composition operators. In addition, as
a consequence of the properties of weighted composition operators, we compute
the extremal functions for the subspaces associated with the usual atomic inner
functions for these weighted Bergman spaces and we also get explicit formulas
for the projections of the kernel functions on these subspaces.

1. Introduction

In this paper, we give necessary conditions (Theorem 3) on the symbols f and
ϕ for Wf,ϕ to be a Hermitian weighted composition operator on a weighted Hardy
space. For the standard weight Bergman spaces A2

α for α ≥ 0, all of which are
also weighted Hardy spaces, we establish the converse (Theorem 6) and identify all
of the Hermitian weighted composition operators for these spaces. In Sections 2
and 3, we identify the spectra and spectral decompositions of these operators.
Section 3 covers the Hermitian weighted composition operators with continuous
spectra and we establish a unitary equivalence (Theorem 17) between these oper-
ators and multiplication operators on an L2([0, 1], µ) space. In addition, we show
that these operators are part of an analytic semigroup of normal weighted com-
position operators (Corollary 19). In the final section of the paper, we apply the
results of Section 3 to find the extremal functions (Theorem 25) for the invariant
subspaces for multiplication by z in the Bergman spaces A2

α for α ≥ 0 that are
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associated with the usual atomic inner functions on the disk. Finally, explicit
formulas for the kernel functions for these subspaces are computed (Theorem 26).

Weighted composition operators have been studied occasionally over the past
few decades, but have usually arisen in answering other questions related to op-
erators on spaces of analytic functions, such as questions about multiplication
operators or composition operators. For example, Forelli [13] showed that the
only isometries of Hp for p 6= 2 are weighted composition operators and that
the isometries for Hp with p 6= 2 have analogues that are isometries of H2 (but
there are also many other isometries of H2). Weighted composition operators
also arise in the description of commutants of analytic Toeplitz operators (see
for example [3, 4]) and in the adjoints of composition operators (see for exam-
ple [6, 7, 8, 10]). Only recently have investigators begun to study the properties
of weighted composition operators in general (for example, see [15]). Our goal in
this paper is to characterize the self-adjoint weighted composition operators on a
very broad class of spaces, the weighted Hardy spaces.

A Hilbert space H whose vectors are functions analytic on the unit disk D
is called [9, p. 14] a weighted Hardy space if the polynomials are dense and the
monomials 1, z, z2, · · · , are an orthogonal set of non-zero vectors in H. Each
weighted Hardy space is characterized by a weight sequence, β, defined for each
non-negative integer j by β(j) = ‖zj‖. For this paper, we will assume that the
norm has been scaled so that β(0) = ‖1‖ = 1. For a given weight sequence, β, the
corresponding weighted Hardy space will be denoted H2(β), and its inner product
is given by

〈
∞∑
j=0

ajz
j ,

∞∑
j=0

cjz
j〉 =

∞∑
j=0

ajcjβ(j)2

for functions in H2(β).
If f is analytic on the open unit disk, D, and ϕ is an analytic map of the unit

disk into itself, the weighted composition operator on H2(β) with symbols f and
ϕ is the operator (Wf,ϕh)(z) = f(z)h(ϕ(z)) for h in H2(β). Letting Tf denote
the analytic multiplication operator given by Tf (h) = fh and Cϕ the composition
operator given by Cϕ(h) = h ◦ ϕ for h in H2(β), if Tf and Cϕ are both bounded
operators, then clearly Wf,ϕ is bounded on H2(β) and

‖Wf,ϕ‖ = ‖TfCϕ‖ ≤ ‖Tf‖‖Cϕ‖

Although it will have little impact on our work, for any weighted Hardy space, if
Tf is bounded, then f is in H∞, but it is not necessary for Tf to be bounded for
Wf,ϕ to be bounded (see [15]).

In an earlier paper, Cowen and Ko [11] identified the Hermitian weighted com-
position operators on the standard Hardy Hilbert space, H2, that is, in the case
β(j) ≡ 1. Specifically, they showed that if Wf,ϕ is Hermitian, then f and ϕ are
related linear fractional maps that can be separated into three distinct cases, some
for which Wf,ϕ is a real multiple of a unitary operator as well as being Hermitian,
some for which Wf,ϕ is compact, and some for which Wf,ϕ has no eigenvalues. In
each case, the spectral measures were computed and in some of the cases, further
information was provided. Generally speaking, the results for more general spaces
H2(β) divide into the same three cases. Many of the techniques used in that paper
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carry over to cases studied in this paper, as will be noted in the specific results.
In the cases in which the proof in the general weighted Hardy space is essentially
the same as in the usual Hardy space, we will omit the proof and refer the reader
to [11].

In this paper, we give necessary conditions (Theorem 3) on the symbols f and
ϕ for Wf,ϕ to be a Hermitian weighted composition operator on H2(β). We prove
the converse of this theorem (Theorem 6) for weighted Hardy spaces where the
kernels for evaluation of the functions in the space are Kw(z) = (1 − wz)−κ for
κ ≥ 1; we will write H2(βκ) for this weighted Hardy space. In the classical Hardy
space, κ = 1 and in the Bergman space, κ = 2. Spaces with other values of κ
are studied in [21], for example, and in [9, p. 27], it is noted that these spaces are
equivalent to the “standard weight Bergman spaces”. In particular, for κ > 1, the
weighted Bergman space A2

κ−2 consists of the same functions as H2(βκ) and∫
D
|f(z)|2(κ− 1)(1− |z|2)κ−2 dA

π

is another expression for the norm for the space.
Specifically, we show that, as in the usual Hardy space, the Hermitian weighted

composition operators fall into three classes, the compact weighted composition
operators, the multiples of isometries, (both covered in Section 2), and those that
have no eigenvalues (Section 3). In the first two cases, we identify the eigenval-
ues and eigenvectors in H2(βκ), (providing spectral resolutions for these opera-
tors) and in the third case, for general spaces H2(βκ), we see that the Hermitian
weighted composition operators are cyclic, are part of an analytic semigroup that
includes normal weighted composition operators, and have no eigenvalues. We find
measures µ = µκ on [0, 1] that allow us to identify the spectral resolutions and a
unitary equivalence with multiplication operators {Mxt} on L2(µ). In addition,
as a consequence of the calculation of the spectral measures, using properties of
the weighted composition operators and the unitary equivalence, we compute the
extremal functions associated with the Bergman shift-invariant subspaces associ-
ated with the usual atomic inner functions and we find the reproducing kernel
functions for these subspaces (Theorems 25 and 26).

The authors would like to thank Peter Duren, Alexander Schuster, and Kehe
Zhu, not only for their books [12] and [17] but also for their help with references
to the literature concerning extremal functions for Bergman spaces.

We begin by proving a result that allows us to choose standard forms for the
operators under study.

Proposition 1. Let f be analytic on the unit disk and let ϕ be an analytic map
of the unit disk into itself. For θ a real number, let Uθ be the composition operator
given by (Uθh)(z) = h(eiθz) for h in H2(β). The operator Uθ is unitary on H2(β),
and if Wf,ϕ is bounded, then

U∗θ Wf,ϕUθ = Wf̃ ,eϕ
where f̃(z) = f(e−iθz) and ϕ̃(z) = eiθϕ(e−iθz)

Proof. The calculation is essentially the same as in the proof of the corresponding
result in [11], and is omitted. �
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This proposition will permit us to choose convenient symbols for the weighted
composition operators we study without losing any generality of the properties of
the operators we are trying to understand.

Corollary 2. If f analytic in the unit disk and ϕ an analytic map of the disk
into itself determine a bounded weighted composition operator, Wf,ϕ, there are g
analytic in the disk and ψ an analytic map of the unit disk into itself with ψ(0) ≥ 0
so that the weighted composition operator Wg,ψ is unitarily equivalent to Wf,ϕ.

Proof. Choose θ in Proposition 1 so that ϕ̃(0) = eiθϕ(e−iθ0) = eiθϕ(0) is non-
negative. Letting g = f̃ and ψ = ϕ̃ satisfies the conclusion of the Corollary. �

As in Proposition 1.3 of [11], if f and ϕ determine a bounded weighted com-
position operator on H2(β) and if g and h are functions in H2(β) such that gh is
also in H2(β), then (Wf,ϕ)(gh) = h ◦ ϕWf,ϕg = g ◦ ϕWf,ϕh.

Following the book of Cowen and MacCluer [9, p. 16], the generating function
for the space H2(β) is the function

k(z) =
∞∑
j=0

zj

β(j)2

The function k(z) is analytic on the unit disk and, for each w in the disk, the
function Kw(z) = k(wz) belongs to H2(β). The Kw are the kernel functions for
H2(β), that is, the functions for which f(w) = 〈f,Kw〉 and this implies ‖Kw‖2 =
k(|w|2).

First, we wish to characterize the functions f and ϕ of bounded Hermitian
weighted composition operators.

Theorem 3. Let k be the generating function for H2(β). If Wf,ϕ is a bounded
Hermitian weighted composition operator on H2(β), then f(0) and ϕ′(0) are real,

f(z) = ck(a0z) = cKa0(z) and ϕ(z) = a0 + a1β(1)2z
k′(a0z)
k(a0z)

where a0 = ϕ(0), a1 = ϕ′(0), and c = f(0).

Proof. LetWf,ϕ be a bounded Hermitian weighted composition operator onH2(β).
Let w and z be points of the open unit disk, D. Now, from the definition of Wf,ϕ,

(Wf,ϕKw)(z) = f(z)Kw(ϕ(z)) = f(z)k(wϕ(z))

and, using the special properties of W∗
f,ϕ acting on kernel functions,

(W∗
f,ϕKw)(z) = f(w)Kϕ(w)(z) = f(w)k(ϕ(w)z)

Because Wf,ϕ is self-adjoint, we have

(1) f(z)k(wϕ(z)) = f(w)k(ϕ(w)z)

Putting w = 0, this means

f(z)k(0ϕ(z)) = f(0)k(ϕ(0)z)

Recalling that we have assumed that k(0) = 1/β(0)2 = 1 and that a0 = ϕ(0), we
have

f(z) = f(0)k(a0z)
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Putting z = 0 also, we get

f(0) = f(0)k(a00) = f(0)

so c = f(0) is real, and we have

f(z) = ck(a0z) = cKa0(z)

Since we are not interested in the case f ≡ 0 which gives Wf,ϕ = 0, we will
assume c is a non-zero real number.

Using this expression for f in Equation (1), we have

ck(a0z)k(wϕ(z)) = ck(a0w)k(ϕ(w)z) = ck(a0w)k(ϕ(w)z)

The Taylor coefficients of k are real numbers, so k(u) = k(u) for any complex
number u. The above equality can be rewritten as

k(a0z)k(wϕ(z)) = k(a0w)k(ϕ(w)z)

Taking the derivative with respect to z gives

k′(a0z)a0k(wϕ(z)) + k(a0z)k′(wϕ(z))wϕ′(z) = k(a0w)k′(ϕ(w)z)ϕ(w)

Letting z = 0, we have

k′(0)a0k(wϕ(0)) + k(0)k′(wϕ(0))wϕ′(0) = k(a0w)k′(0)ϕ(w)

or, noting that k′(0) = 1/β(1)2 and ϕ′(0) = a1, taking conjugates and solving for
ϕ, we have

ϕ(w) = a0 + a1β(1)2w
k′(a0w)
k(a0w)

Finally, taking the derivative again, and setting w = 0, we get

ϕ′(0) = a1β(1)2
k′(a00)
k(a00)

= β(1)2a1
k′(0)
k(0)

= a1

Since ϕ′(0) = a1, this latter equality says ϕ′(0) = ϕ′(0) which means that ϕ′(0)
is real and the proof is complete. �

We prove the converse of the above theorem for weighted Hardy spaces where
the point evaluation kernel is given by Kw(z) = (1−wz)−κ for κ ≥ 1, that is, the
generating function is k(z) = (1 − z)−κ. For κ > 1, since the weighted Bergman
space A2

κ−2 consists of the same functions as H2(βκ) and∫
D
|f(z)|2(κ− 1)(1− |z|2)κ−2 dA

π

gives the norm for the space, it is clear that multiplication by an H∞ function
gives rise to a bounded operator on H2(βκ). It also follows that if f is in H2(βκ)
and g is analytic on D with |g(z)| ≤ |f(z)| for all z in D, then g is also in H2(βκ).
These facts and similar ones will be used below without special reference.

Corollary 4. For κ ≥ 1, let H2(βκ) be the weighted Hardy space with kernel func-
tion Kw(z) = (1 − wz)−κ. If Wf,ϕ is a bounded Hermitian weighted composition
operator on H2(βκ), then

f(z) = c(1− a0z)−κ = cKϕ(0)(z) and ϕ(z) = a0 +
a1z

1− a0z



6 CARL C. COWEN, GAJATH GUNATILLAKE, AND EUNGIL KO

where a0 = ϕ(0) is a complex number and a1 = ϕ′(0) is real number such that ϕ
maps the unit disk into itself and c = f(0) is a non-zero real number.

Proof. The generating function for H2(βκ) is k(z) = (1 − z)−κ, so k(0) = 1, as
was assumed for the scaling. We also see that k′(z) = κ(1− z)−κ−1 so 1/β(1)2 =
k′(0) = κ and β(1)2 = 1/κ.

From this, we conclude that

ϕ(z) = a0 + a1β(1)2z
k′(a0z)
k(a0z)

= a0 + a1
1
κ
z
κ(1− a0z)−κ−1

(1− a0z)−κ
= a0 +

a1z

1− a0z

�

Not surprisingly, this duplicates the corresponding implication of Theorem 2.1
of [11] for the standard Hardy space for which κ = 1. Since the function ϕ is
independent of κ, Corollary 2.3 of [11] describes the conditions on a0 and a1 that
result in the map ϕ taking the unit disk into itself. This result is recorded below.

Lemma 5. Let a1 be real. Then ϕ(z) = a0 + a1z/(1 − a0z) maps the open unit
disk into itself if and only if

(2) |a0| < 1 and − 1 + |a0|2 ≤ a1 ≤ (1− |a0|)2

We are now ready to state the necessary and sufficient conditions for the func-
tions f and ϕ that guarantee Wf,ϕ is a bounded Hermitian weighted composition
operator on H2(βκ).

Theorem 6. For κ ≥ 1, let H2(βκ) be the weighted Hardy space with kernel
function Kw(z) = (1−wz)−κ. If the weighted composition operator Wf,ϕ is bounded
and Hermitian on H2(βκ), then f(0) and ϕ′(0) are real and

ϕ(z) = a0 + a1z/(1− a0z) and f(z) = c(1− a0z)−κ = cKϕ(0)(z)

where a0 = ϕ(0), a1 = ϕ′(0), and c = f(0).
Conversely, suppose a0 is in D, and suppose c and a1 are real numbers. If

ϕ(z) = a0 + a1z/(1− a0z) maps the unit disk into itself and f(z) = c(1− a0z)−κ,
then the weighted composition operator Wf,ϕ is Hermitian and bounded on H2(βκ).

Proof. The first statement follows from Corollary 4. If a0, a1, c, f , and ϕ are as in
the hypothesis, the results of [9, p. 27 and Section 3.1] show thatWf,ϕ is a bounded
operator on H2(βκ). Also, a straightforward calculation shows that Equation (1)
holds for all z and w in the disk, which means that Wf,ϕ is Hermitian. �

When a0 = 0, the resulting operator is a constant multiple of a composition
operator. In this case, Wf,ϕ self adjoint implies ϕ(z) = rz with −1 ≤ r ≤ 1.
For r = ±1, the composition operators are Cϕ = ±I and for −1 < r < 1,
the composition operators are easily understood compact operators, so we will
only consider non-zero values for a0. Furthermore, without loss of generality, we
may take a0 to be a positive number by using the transformation in Corollary 2.
With these hypotheses added, in the remainder of the paper, we will look at the
different cases suggested by Lemma 5: −1 + a2

0 < a1 < (1 − a0)2, a1 = −1 + a2
0,

and a1 = (1− a0)2.
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2. Compact and isometric Hermitian weighted composition operators

We will see that the Hermitian weighted composition operators are all compact
when the parameters defining ϕ satisfy −1 + |a0|2 < a1 < (1− |a0|)2 and they are
isometries when a1 = −1 + |a0|2. Using Proposition 1, without loss of generality,
we may assume 0 < a0 < 1.

Easy calculations (see, for example, the discussion following Corollary 2.3 in [11]),
show that when 0 < a0 < 1 and −1 + a2

0 < a1 < (1 − a0)2 the function ϕ maps
the closed unit disk into the open unit disk. In particular, since ϕ is continuous
and maps the interval [−1, 1] into (−1, 1), it must have a fixed point in (−1, 1).
Similarly, when a1 = −1 + a2

0, we see that

ϕ(z) = a0 +
a1z

1− a0z
= a0 +

(−1 + a2
0)z

1− a0z
=

a0 − z

1− a0z

so that ϕ is an automorphism of the unit disk that satisfies ϕ◦ϕ(z) = z. Moreover,
since ϕ(1) = −1 and ϕ maps [−1, 1] onto itself, it must have a fixed point in
(−1, 1) in this case as well. The most important part of the argument in these
cases depends on the presence of the fixed point.

First, we show that in the first case, the operators are Hilbert-Schmidt and
therefore they are compact operators.

Theorem 7. For κ ≥ 1, let H2(βκ) be the weighted Hardy space with kernel
function Kw(z) = (1− wz)−κ. Suppose

ϕ(z) = a0 + a1z/(1− a0z) and f(z) = c(1− a0z)−κ = cKϕ(0)(z)

where c is a real number. If 0 < a0 < 1 and −1 + a2
0 < a1 < (1− a0)2 then Wf,ϕ

is Hilbert-Schmidt.

Proof. Let fn(z) = β(n)−1zn. Then {fn}∞n=0 is an orthonormal basis of the

weighted Hardy space H2(βκ). We will show that
∞∑
n=0

‖Wf,ϕ(fn)‖2 is finite which

will show Wf,ϕ is Hilbert-Schmidt [9, Theorem 3.23]. The comments above imply
that in this case, there is r < 1 so that |ϕ(z)| < r for z in D. Now, because the
spaces H2(βκ) and A2

κ−2(D) are equivalent, there are constants M and M ′ so that
∞∑
j=0

‖Wf,ϕ(fj)‖2 ≤M
∞∑
j=0

∫
D
c2|Ka0(z)|2β(j)−2|ϕ(z)|2j(1− |z|)κ−2 dA

π

≤M
c2

(1− a0)2κ

∞∑
j=0

∫
D
β(j)−2r2j(1− |z|)κ−2 dA

π

=
c2

(1− a0)2κ
M ′

∞∑
j=0

β(j)−2r2j

=
c2

(1− a0)2κ
M ′k(r2)

Thus
∞∑
n=0

‖Wf,ϕ(fn)‖2 is finite. �
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We will next explore the eigenvectors of these operators.

Lemma 8. Suppose a1 6= 0 and a0 are real numbers such that 0 < a0 < 1 and

ϕ(z) = a0 +
a1z

1− a0z
maps the disk into itself with fixed point α in the disk.

This implies

1− αϕ(z) =
(1− a0α)(1− αz)

1− a0z
(3)

ϕ′(α) =
(a1 − a2

0) + a0α

1− a0α
(4)

and

for g(z) =
α− z

1− αz
then g(ϕ(z)) = ϕ′(α)g(z)(5)

Proof. That α is a fixed point of ϕ means α = a0 +
a1α

1− a0α
=
a1α+ a0 − a2

0α

1− a0α
so

α(1− a0α) = α− a0α
2 = a1α+ a0 − a2

0α(6)

and, rearranging the terms in this equation, we get

α− a0 = a1α+ a0α
2 − a2

0α = α(a1 + a0α− a2
0)(7)

If a1 + a0α− a2
0 = 0 then α = a0 and a1 = 0, contrary to our hypothesis, so we

may also assume a1 + a0α− a2
0 6= 0. Similarly, if α were 0, we would have a0 = 0,

so α 6= 0.
The definition of ϕ means ϕ(z)− a0 = a1z/(1− a0z), so for z = α, we get

α− a0 = ϕ(α)− a0 =
a1α

1− a0α

This, together with Equation (7), gives
a1

1− a0α
=
α− a0

α
= a1 + a0α− a2

0

Taking the derivative of ϕ, we get ϕ′(α) = a1/(1− a0α)2 and we see

ϕ′(α) =
a1

(1− a0α)2
=
(

a1

1− a0α

)
1

1− a0α
=
a1 + a0α− a2

0

1− a0α

as we wanted to prove.
Writing ϕ as ϕ(z) =

(
a0 + (a1 − a2

0)z
)
/(1− a0z), we get

1− αϕ(z) = 1− α

(
a0 + (a1 − a2

0)z
1− a0z

)
=

(1− a0α)− (a1α+ a0 − a2
0α)z

1− a0z

Using Equation (6), this becomes

1− αϕ(z) =
(1− a0α)− α(1− a0α)z

1− a0z
=

(1− a0α)(1− αz)
1− a0z

(8)

as we wished to show.
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From the definition of g and Equation (8), we see

g(ϕ(z)) =
α− ϕ(z)
1− αϕ(z)

=
(α− ϕ(z))(1− a0z)
(1− a0α)(1− αz)

=
(α− a0 − a1z

1−a0z
)(1− a0z)

(1− a0α)(1− αz)

=
α− a0 − αa0z + a2

0z − a1z

(1− a0α)(1− αz)
=

(α− a0)− z(a1 + a0α− a2
0)

(1− a0α)(1− αz)

Using Equation (7) and our calculation of ϕ′(α) in this result, we get

g(ϕ(z)) =
α(a1 + a0α− a2

0)− z(a1 + a0α− a2
0)

(1− a0α)(1− αz)

=
(
a1 + a0α− a2

0

1− a0α

)(
α− z

1− αz

)
= ϕ′(α)g(z)

which completes the proof of the lemma. �

We are now ready to collect the information we have to characterize the eigen-
vectors and eigenvalues of these weighted composition operators.

Theorem 9. For κ ≥ 1, let H2(βκ) be the weighted Hardy space with kernel
function Kw(z) = (1 − wz)−κ. Suppose a0 and a1 are real numbers such that
0 < a0 < 1 and ϕ(z) = a0 +

a1z

1− a0z
maps the disk into itself with fixed point α in

the disk and f(z) = c(1 − a0z)−κ = cKϕ(0)(z) for some real number c. For each
non-negative integer j, the function

gj(z) =
1

(1− αz)κ

(
α− z

1− αz

)j
is an eigenvector of the operator Wf,ϕ with eigenvalue f(α)ϕ′(α)j.

Proof. Since gj is a bounded analytic map on the unit disk it belongs to H2(βκ).

Wf,ϕ(gj)(z) =
c

(1− a0z)κ
1

(1− αϕ(z))κ

(
α− ϕ(z)
1− αϕ(z)

)j
Now using Lemma 8, we get,

Wf,ϕ(gj)(z) =
c

(1− a0z)κ
1

(1− a0α)κ
(1− a0z)κ

(1− αz)κ

(
ϕ′(α)

(
z − α

αz − 1

))j
=

c

(1− a0α)κ
(
ϕ′(α)

)j 1
(1− αz)κ

(
α− z

1− αz

)j
= f(α)ϕ′(α)jgj(z)

�

We can apply this to the case in which Wf,ϕ is compact.

Corollary 10. For κ ≥ 1, let H2(βκ) be the weighted Hardy space with kernel
function Kw(z) = (1 − wz)−κ. Suppose a0, a1, and c are real numbers such that
0 < a0 < 1 and −1 + a2

0 < a1 < (1 − a0)2. If ϕ, f , and gj are defined as in
Theorem 9 and α is the fixed point of ϕ in the disk, then {gj}∞j=0 is an orthogonal
basis for H2(βκ) consisting of eigenvectors for Wf,ϕ with Wf,ϕ(gj) = f(α)ϕ′(α)jgj.
In particular, Wf,ϕ is a compact Hermitian operator and the spectrum of Wf,ϕ is
{0} ∪ {f(α)ϕ′(α)j : j = 0, 1, 2, · · · }.
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Not surprisingly, this agrees with Theorem 1 of [16] which describes the spectra
of compact weighted composition operators on H2(βκ).

Proof. Since α is the fixed point of a non-automorphism of the unit disk, |ϕ′(α)| <
1, and each eigenvector given by Theorem 9 corresponds to a different eigenvalue
of this self-adjoint operator. Thus {gj} is an orthogonal sequence of eigenvectors.
Because the functions in H2(βκ) are analytic in a neighborhood of α, an easy
power series argument shows the span of this sequence is dense in H2(βκ). �

We next look at the case −1 + a2
0 = a1, for which

ϕ(z) = a0 +
a1z

1− a0z
= a0 +

(−1 + a2
0)z

1− a0z
=

a0 − z

1− a0z

is an automorphism of the unit disk with ϕ ◦ ϕ(z) = z. From this, we see that
W 2
f,ϕ = Wf◦ϕ,ϕ◦ϕ = Tf◦ϕ, so it is worth looking at W 2

f,ϕ.

Lemma 11. Suppose

ϕ(z) = a0 +
a1z

1− a0z
and f(z) = c(1− a0z)−κ = cKϕ(0)(z)

If 0 < a0 < 1, a1 = −1 + a2
0, and c = (1 − a2

0)
κ/2 then Wf,ϕ is an invertible

isometry.

Proof. Let g be in H2(βκ). Then,

(W 2
f,ϕg)(z) = Wf,ϕ(Wf,ϕg)(z) = Wf,ϕ(f · g ◦ ϕ)(z)

= (f · f ◦ ϕ · g(ϕ ◦ ϕ)) (z)
= f(z) · f(ϕ(z)) · g(ϕ(ϕ(z)))

=
c

(1− a0z)κ
c

(1− a0
a0−z
1−a0z

)κ
g(z) =

c2

(1− a2
0)κ

g(z)

= g(z)

where the last equality holds by the choice of c in the hypothesis. The operator
Wf,ϕ is self-adjoint therefore W 2

f,ϕ = W∗
f,ϕWf,ϕ = Wf,ϕW

∗
f,ϕ. Thus the above

computation tells us that W∗
f,ϕWf,ϕ = Wf,ϕW

∗
f,ϕ is the identity operator which

means Wf,ϕ is an invertible isometry. �

In this case, the fixed points of ϕ are (1 ±
√

1− a2
0)/a0 and it is clear that

α = (1−
√

1− a2
0)/a0 is inside the open disk. Hence ϕ is an automorphism of the

unit disk with a fixed point inside the open unit disk. In the previous section, note
that the hypotheses of Lemma 8 and of Theorem 9 refer to ϕ having an interior
fixed point and therefore apply to the case we are considering.

In complete analogy to Corollary 10, we characterize the Hermitian isometric
weighted composition operators on H2(βκ).

Corollary 12. For κ ≥ 1, let H2(βκ) be the weighted Hardy space with kernel
function Kw(z) = (1 − wz)−κ. Suppose a0, a1, and c are real numbers such that
0 < a0 < 1, a1 = −1 + a2

0, and c = (1 − a2
0)
κ/2. If ϕ, f , and gj are defined as in

Theorem 9 and α is the fixed point of ϕ in the disk, then {gj}∞j=0 is an orthogonal
basis for H2(βκ) consisting of eigenvectors for Wf,ϕ with Wf,ϕ(gj) = (−1)jgj. In
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particular, Wf,ϕ is Hermitian and unitary and the spectrum of Wf,ϕ is the set
{−1, 1}.

Proof. The map here is the map ϕ of Lemma 8 with a1 = −1+a2
0. From Lemma 8,

we get g(ϕ(z)) =
(
a1 − a2

0 + a0α

1− a0α

)
α− z

1− αz
. Because a1 − a2

0 = −1, it follows that

g(ϕ(z)) = (−1)
α− z

1− αz
= −g(z).

If j is a non-negative integer gj(z) =
1

(1− αz)κ
(g(z))j where g(z) =

α− z

1− αz
.

Then,

Wf,ϕ(gj)(z) =
(1− a2

0)
κ/2

(1− a0z)κ
1

(1− αϕ(z))κ
(g(ϕ(z)))j

using Lemma 8 we get,

Wf,ϕ(gj)(z) =
(1− a2

0)
κ/2

(1− a0z)κ

(
1− a0z

(1− a0α)(1− αz)

)κ(
(−1)

α− z

1− αz

)j
but α =

1−
√

1− a2
0

a0
hence 1− a0α =

√
1− a2

0. Thus

Wf,ϕ(gj)(z) = (−1)j
1

(1− αz)κ

(
α− z

1− αz

)j
= (−1)jgj(z)

In Corollary 10, we showed that {gj}∞j=0 is an orthogonal basis for H2(βκ), and
for this reason, we know that the spectrum has no other elements besides ±1. �

3. Absolutely continuous Hermitian weighted composition
operators

To study the remaining cases of Hermitian weighted composition operators,
when a1 = (1 − a0)2 for 0 < a0 < 1, we first show that the operators Wf,ϕ

belong to a continuous semigroup of Hermitian operators. Recall that an indexed
collection {At : t ≥ 0} of bounded operators is called a continuous semigroup of
operators if As+t = AsAt for all non-negative real numbers s and t, A0 = I, and the
map t 7→ At is strongly continuous. Similarly, for 0 < θ ≤ π

2 , an indexed collection
{At : | arg t| < θ} of bounded operators is called an analytic semigroup of operators
if As+t = AsAt for | arg s| < θ and | arg t| < θ, the map t 7→ At is analytic in the
angular domain {t : t 6= 0 and | arg t| < θ}, and limt→0,| arg t|<θ Ath = h, in norm,
for all h.

An easy calculation, presented in [11] and other sources, shows the collection of
weighted composition operators {TftCϕt} satisfies the semigroup property if and
only if

(9) fs · (ft ◦ ϕs) = fs+t

and

(10) ϕt ◦ ϕs = ϕs+t
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In other words, the composition operator factors in a semigroup of weighted
composition operators form a semigroup of composition operators and the Toeplitz
operator factors form a ‘cocycle’ of Toeplitz operators. It is worthy of note that
for each t with Re t ≥ 0, the linear fractional map ϕt maps the unit disk into itself,
properly if Re t > 0 and ϕt is an automorphism if t is on the imaginary axis and
for each such t, ϕt(1) = ϕ′t(1) = 1.

Let P = {t : Re t > 0} denote the right half plane. For t in P, let At = TftCϕt

where

(11) ft(z) =
1

(1 + t− tz)κ

and

(12) ϕt(z) =
t+ (1− t)z
1 + t− tz

Note that the relationship between a0 and t can be expressed as a0 = ϕt(0) =
t/(1 + t) for |a0 − 1

2 | <
1
2 . However, a1 = ϕ′t(0) = (1 + t)−2 is not real unless t

is real, so At is not Hermitian on H2(βκ) for t not real. It is somewhat tedious,
but not difficult, to use the semigroup structure proved in Theorem 13 and the
calculation A∗t = At to show that the At are all normal operators, but we put this
off to do it more easily later (Corollary 19).

Theorem 13. The At, for t in the right half plane P, form an analytic semigroup
of weighted composition operators on H2(βκ).

Let ∆ be the infinitesimal generator of the semigroup {At}. The domain of ∆
is DA = {f ∈ H2(βκ) : (z − 1)2f ′ ∈ H2(βκ)}. For such f ,

∆(f)(z) = (z − 1)2f ′(z) + κ(z − 1)f(z)

Proof. To show AtAs = At+s, it suffices to show that the cocycle relationship
(Equation (9)) and the semigroup relationship (Equation (10)) hold. For the ft
and ϕt given above, the required equalities are

fs(z) · ft(ϕs(z)) =
1

(1 + s− sz)κ
1

(1 + t− t s+(1−s)z
1+s−sz )κ

=
1

(1 + (s+ t)− (s+ t)z)κ
= fs+t(z)

and

ϕs(ϕt(z)) =
s+ (1− s) t+(1−t)z

1+t−tz

1 + s− s t+(1−t)z
1+t−tz

=
(s+ t) + (1− (s+ t))z
1 + (s+ t)− (s+ t)z

= ϕs+t(z)

Thus, the set {At : Re t > 0} is a semigroup of weighted composition operators.
Since operator valued functions are analytic in the norm topology if and only if

they are analytic in the weak-operator topology (Theorem 3.10.1 of [18, p. 93]), it
is sufficient to check that the map t 7→ 〈Ath,Kz〉 is analytic for each t in the right
half plane. This is easy to see because h is analytic and

〈Ath,Kz〉 = ft(z)h(ϕt(z)) =
1

(1 + t− tz)κ
h

(
t+ (1− t)z
1 + t− tz

)
which is clearly analytic in t for fixed z.
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Finally, we must show the strong continuity at t = 0. First note that for
|t| ≤ 1/3, when |z| < 1,

|ft(z)| =
1

|1 + t− tz|κ
≤ 1

(1− |t‖1− z|)κ
≤ 1

(1− 2/3)κ
= 3κ

so for |t| ≤ 1/3, we have ‖ft‖∞ ≤ 3κ. Similarly, the results of Exercises 2.1.5
and 3.1.3 of [9] imply that the norms ‖Cϕt‖ are uniformly bounded if |t| ≤ 1/3
and t is in P, so, we see that the norms ‖At‖ are uniformly bounded on this set.

Observe that for α in the disk,

(AtKα)(z) = ft(z)Kα(ϕt(z)) =
1

(1 + t− tz − α(t+ (1− t)z))κ

As t approaches 0, the functionsAtKα converge uniformly, and therefore inH2(βκ),
to Kα. Since the kernel functions have dense span in H2(βκ) and the norms ‖At‖
are uniformly bounded for t in P with |t| ≤ 1/3, it follows that for each f in
H2(βκ), we also have limt→0,t∈P Atf = f . Thus, At is strongly continuous at
t = 0 and the proof that {At} is an analytic semigroup is complete.

To consider the infinitesimal generator, let f be a function in H2(βκ) and sup-
pose z is a point of the disk. Then we have

(∆f)(z) = lim
t→0+

1
t

((At − I)f) (z) = lim
t→0+

ft(z)f(ϕt(z))− f(z)
t

= lim
t→0+

ft(z)
f(ϕt(z))− f(z)

ϕt(z)− z

ϕt(z)− z

t
+
ft(z)− 1

t
f(z)

= 1 · f ′(z) · (1− z)2 − κ(1− z)f(z) = (z − 1)2f ′(z) + κ(z − 1)f

This means that if f is in the domain DA of ∆, then (z − 1)2f ′(z) + κ(z − 1)f(z)
must be in H2(βκ). Since the operator of multiplication by z − 1 is bounded on
H2(βκ), when f is in H2(βκ), (z − 1)f is also in H2(βκ), so we conclude that if f
is in the domain of ∆, then (z − 1)2f ′ = ∆(f)− (z − 1)f must be in H2(βκ).

To complete the proof, we must show that if f is a function in H2(βκ) such
that (z − 1)2f ′ is also in H2(βκ), then f is in the domain of ∆. Clearly, every
polynomial is in DA because for a polynomial, the convergence of the limit in the
calculation above is uniform on the closed disk, and therefore is a limit in the
H2(βκ) norm.

The remainder of the proof closely follows the proof of the determination of the
domain of the infinitesimal generator in [11]. We very briefly outline and update
that proof here.

Suppose f is a function in H2(βκ) and suppose (z − 1)2f ′ is also in H2(βκ).
Letting f(z) =

∑∞
k=0 akz

k, a straightfoward calculation gives

(z − 1)2f ′(z) = a1 + (−2a1 + 2a2)z +
∞∑
k=2

((k − 1)ak−1 − 2kak + (k + 1)ak+1) zk

Since (z−1)2f ′ is also inH2(βκ), this series converges inH2(βκ) norm to (z−1)2f ′.
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For each positive integer n, let pn be the polynomial

pn(z) =
n∑
k=0

n− k

n
akz

k

which is the polynomial approximation to f suggested by Cesáro summation. Then
limn→∞ pn = f and the convergence is in the H2(βκ) norm. In addition, we let rn
be the polynomial rn(z) = (z − 1)2p′n(z).

Now, let qn be the polynomial

qn(z) = a1 +
n− 1
n

(−2a1 + 2a2)z

+
n∑
k=2

n− k

n
((k − 1)ak−1 − 2kak + (k + 1)ak+1) zk

which is the polynomial approximation to (z − 1)2f suggested by Cesáro summa-
tion. Then limn→∞ qn = (z − 1)2f ′ and the convergence is in the H2(βκ) norm.

In [11], it was proved that limn→∞ ‖qn−rn‖H2 = 0. The norm of any polynomial
p in H2(βκ) satisfies ‖p‖H2(βκ) ≤ ‖p‖H2 , so we have limn→∞ ‖qn − rn‖H2(βκ) = 0.
Since limn→∞ qn = (z − 1)2f ′, this means that limn→∞ rn = (z − 1)2f ′ also.

Now, limn→∞ pn = f which implies, because multiplication by z−1 is bounded,
that limn→∞(z−1)pn = (z−1)f . We note that ∆(pn) = (z−1)2p′n+κ(z−1)pn =
rn + κ(z − 1)pn which means that limn→∞ ∆(pn) = limn→∞ rn + limn→∞ κ(z −
1)pn = (z − 1)2f ′ + κ(z − 1)f .

Thus, we have limn→∞ pn = f and limn→∞ ∆(pn) = (z − 1)2f ′ + κ(z − 1)f .
Since ∆ is a closed operator, this means that f is in DA, the domain of ∆, and
that ∆(f) = (z − 1)2f ′ + κ(z − 1)f . �

We want to find the potential eigenvectors and eigenvalues of the infinitesimal
generator and consider their contribution to the spectra of ∆ and the At.

Lemma 14. If f is analytic in the disk and (z − 1)2f ′ + κ(z − 1)f = λf(z), then

f(z) = fλ(z) =
C

(1− z)κ
e

λ
1−z

for some constant C.

Proof. If (z − 1)2f ′ + κ(z − 1)f = λf(z), then

(z − 1)2f ′(z) = (−κ(z − 1) + λ) f(z)

Thus
f ′(z)
f(z)

= − κ

z − 1
+

λ

(z − 1)2

Integrating both sides, we get

ln f(z) = −κ ln(z − 1)− λ
1

z − 1
+ c

for some constant c. This implies

f(z) =
C

(1− z)κ
e

λ
1−z
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for some constant C. �

Corollary 15. For κ ≥ 1, the functions fλ of Lemma 14 do not belong to H2(βκ),
and for t > 0, the operator At has no eigenvalues.

Proof. Because {At}t≥0 is a strongly continuous semigroup of bounded operators,

σp(At) ⊂ etσp(∆) ∪ {0}
and specifically, if λ is in σp(∆), then eλt is in σp(At). (See [22, p. 46], for example.)
Because At = TftCϕt and both the Toeplitz operator and the composition operator
are one-to-one, 0 is not in the point spectrum of At. From Lemma 14, we know
that λ is in σp(∆) if and only if

fλ(z) =
1

(1− z)κ
e

λ
1−z ∈ H2(βκ)

and if fλ(z) is in H2(βκ) then the above containment means that eλt is an eigen-
value of At. Now for t > 0, the operators At are Hermitian and this means any
eigenvalues must be real and eλt real for all t > 0 implies λ is real. In this case, if
ν < λ, then |fν(z)| ≤ |fλ(z)| for all z in D, so fν is also in H2(βκ) and eνt is also
an eigenvalue of At. For self-adjoint operators on a Hilbert space, the eigenvectors
corresponding to distinct eigenvalues are orthogonal. Since the number of real
numbers less than λ is uncountable and H2(βκ) is a separable Hilbert space, it is
not possible for eνt to be an eigenvalue for every ν < λ, so it is not possible for
eλt to be an eigenvalue for any real number λ. It follows that no fλ is in H2(βκ),
and that the operators At have no eigenvalues. �

Besides being part of an analytic semigroup, these Hermitian weighted compo-
sition operators have another special property: each of these operators is cyclic on
H2(βκ).

Theorem 16. For κ ≥ 1, let H2(βκ) be the weighted Hardy space with kernel
functions Kw(z) = (1 − wz)−κ. If Wf,ϕ is the Hermitian weighted composition
operator on H2(βκ) with

f(z) = (1− a0z)−κ and ϕ(z) = a0 +
a1z

1− a0z

where 0 < a0 < 1 and a1 = (1 − a0)2, then Wf,ϕ is a (star) cyclic Hermitian
operator, indeed, the vector 1 in H2(βκ) is a (star) cyclic vector for Wf,ϕ.

Proof. We note that because Wf,ϕ is Hermitian, a vector is a star-cyclic vector
exactly when it is a cyclic vector.

Since 0 < a0 < 1 and a1 = (1− a0)2, for t = a0/(1− a0) we have Wf,ϕ = At in
the notation above. For w in the unit disk,

AtKw = C∗ϕt
T∗ft

Kw = ft(w)Kϕt(w) = ft(w)Kϕt(w)

Since the vector 1 in H2(βκ) is K0, we have At(1) = ft(0)Kϕt(0). Now,

At
(
ft(0)Kϕt(0)

)
= At(At(1)) = A2t(1) = f2t(0)Kϕ2t(0)

and in general, clearly, Ant (1) = fnt(0)Kϕnt(0).
To check cyclicity, we need to investigate the span of these vectors. Since the

factor fnt(0) is just a non-zero number, 1 is a cyclic vector for At if and only if
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span{Kϕnt(0)} is dense in H2(βκ). This span is dense if and only if 0 is the only
vector orthogonal to all the vectors Kϕnt(0). Since 〈h,Kϕnt(0)〉 = h(ϕnt(0)), this
means that the span is dense if and only if the only function h in H2(βκ) such
that h(ϕnt(0)) = 0 for n = 1, 2, 3, · · · is the zero function. Note that since t is real
and positive, each of the points ϕnt(0) = nt/(1+nt) is in the interval [0, 1) on the
real axis.

Because Kw(z) = (1−wz)−κ, we see ‖Kw‖ = (1−|w|2)−κ/2 and by the Cauchy-
Schwartz inequality, for each h in H2(βκ), there is a constant C so that for all w
in the unit disk,

|h(w)| = |〈h,Kw〉| ≤ ‖h‖‖Kw‖ =
‖h‖

(1− |w|2)κ/2
≤ C exp{(1− |w|)−.2}

This means that every function in H2(βκ) satisfies the growth condition in the
hypothesis of a theorem of Shapiro and Shields [25] (or see [12, p. 116]) on zero
sets of analytic functions on the disk. It follows from this theorem that the set of
points {ϕnt(0)} is the zero set of a non-zero function in H2(βκ) if and only if the
sequence is a Blaschke sequence. To check this, consider the sum

∞∑
n=1

(1− |ϕnt(0)|) =
∞∑
n=1

(
1− nt

1 + nt

)
=

∞∑
n=1

1
1 + nt

= ∞

Since this sum is infinite, the sequence is not a Blaschke sequence and therefore
the vectors {Kϕnt(0)} have dense span in H2(βκ). This means 1 is a cyclic vector
for At = Wf,ϕ. �

We will see that the estimate used in the proof of Theorem 13 above for ‖At‖ can
be improved: in fact, it follows from Theorem 17 and Corollary 19 that ‖At‖ = 1
for all t in P.

Theorem 16 says that, for t > 0 (i.e. 0 < a0 ≤ 1), each of the operators At is
cyclic, which means that each is unitarily equivalent to an ordinary multiplication
operator (see, for example, [2, p. 269]). The following result gives this explicitly.
The results here are similar to those in the Hardy space case as presented in [11],
but the strategy here will be to use the weighted composition operators to discover
facts about the invariant subspaces in the weighted Bergman spaces, rather than
using facts about invariant subspaces of the Hardy space to get properties of the
operators At.

The relevant L2 space is L2([0, 1], µ) where µ is the absolutely continuous prob-
ability measure [14, p. 581] given by

dµ =
(ln(1/x))κ−1

Γ(κ)
dx

In the theorem below, the multiplication operator Mh is defined as usual:
(Mhg) (x) = h(x)g(x) for g in L2([0, 1], µ).

Theorem 17. For each t in P, the multiplication operator Mxt on L2([0, 1], µ)
and the weighted composition operator At on H2(βκ) are unitarily equivalent.
In fact, the operator U : H2(βκ) → L2 given by, for s in P,

U(fs) = xs

is unitary and satisfies UAt = MxtU .
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Proof. First note that functions in L∞([0, 1]) are in L2([0, 1], µ) so the Lebesgue
Dominated Convergence Theorem shows that uniform convergence on [0, 1] implies
norm convergence in L2([0, 1], µ). It also follows that if h is in L∞([0, 1]) then Mh

is a bounded operator on this Hilbert space with norm ‖Mh‖ = ‖h‖∞.
The Stone-Weierstrass Approximation Theorem shows that {xn}n=0,1,2,···, has

dense span in L2([0, 1], µ). In particular, this means the span of {xs : s ∈ P} is
dense in L2([0, 1], µ).

In the proof of Theorem 16, we saw that

fn(z) = fn(0)Kϕn(0)(z)

for n = 0, 1, 2, · · · , has dense span in H2(βκ), so the span of {fs : s ∈ P} is dense
in H2(βκ).

Thus, if U satisfies U(fs) = xs, we see that for each s in P, using Equation (9),
we have

UAt(fs) = Ufs+t = xs+t = Mxtxs = MxtU(fs)
Since the span of {fs : s ∈ P} is dense in H2(βκ), we conclude UAt = MxtU .

We will show that U is isometric on the span of {fs} for s in P. For r and s in
P, we have

〈fr, fs〉 = 〈fr(z),
(

1
1 + s− sz

)κ
〉 = 〈fr(z),

(
1

1 + s

)κ( 1
1− s

1+sz

)κ
〉

=
(

1
1 + s

)κ
〈fr(z),K s

1+s
(z)〉

=
(

1
1 + s

)κ( 1
1 + r − r s

(1+s)

)κ
=

1
((1 + r)(1 + s̄)− rs̄)κ

=
1

(1 + s̄+ r)κ
.

Similarly, for r and s in P, in L2([0, 1], µ), we have

〈xr, xs〉L2 =
∫ 1

0
xrxs

(− lnx)κ−1

Γ(κ)
dx =

1
Γ(κ)

∫ 1

0
xr+s̄(− lnx)κ−1 dx

=
1

Γ(κ)
Γ(κ)

(1 + s̄+ r)κ

=
1

(1 + s̄+ r)κ
.

(When κ is a positive integer the integral above can be evaluated by applying
integration by parts repeatedly but the general integral can be found in integral
tables, for example, see [14, p. 581].)

Now, the vectors {fs} have dense span in H2(βκ) and the vectors {xs} have
dense span in L2([0, 1], µ). The inner product calculations above show that U
is isometric on these spans and therefore has a unique extension to an isometric
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operator of H2(βκ) onto L2([0, 1], µ), that is, it is a unitary operator between these
spaces. �

Corollary 18. For each t with t > 0, the Hermitian weighted composition operator
At is unitarily equivalent to Mxt. In particular, for each t > 0, these operators
satisfy ‖At‖ = 1 and have spectrum σ(At) = [0, 1].

Proof. For each t with 0 < t <∞, Theorem 17 implies At = U∗MxtU so

‖At‖ = ‖Mxt‖ = sup{|xt| : 0 ≤ x ≤ 1} = 1

and
σ(At) = σ(Mxt) = {xt : 0 ≤ x ≤ 1} = [0, 1]

�

Corollary 19. For each t in the right half plane P, the weighted composition
operator At is unitarily equivalent to Mxt. In particular, for each t in the right half
plane P, the weighted composition operator At is normal and satisfies A∗t = At.
Moreover, for t = a + ib with a > 0, these operators satisfy ‖At‖ = 1 and have
spectrum that is a spiral, σ(At) = {0} ∪ {eayeiby : y ≤ 0}.

Proof. For each t in the right half plane P, Theorem 17 implies At = U∗MxtU .
Multiplication operators Mh are normal for every h in L∞([0, 1]) and satisfy M∗

h =
Mh. Since unitary equivalence preserves normality and adjoints, we have

A∗t = (U∗MxtU)∗ = U∗M∗
xtU = U∗Mxt̄U = At

and

‖At‖ = ‖Mxt‖ = sup{|xt| : 0 ≤ x ≤ 1} = sup{xa : 0 ≤ x ≤ 1} = 1

and, letting x = ey for 0 < x ≤ 1

σ(At) = σ(Mxt) = {xt : 0 ≤ x ≤ 1} = {0} ∪ {eyt : y ≤ 0} = {0} ∪ {eayeiby : y ≤ 0}
�

As we would expect, from the Hermitian and the non-Hermitian, normal cases, t
imaginary corresponds to At being unitary. Such weighted composition operators
have been considered by Forelli [13] who showed that they are isometries of H2

and Bourdon and Narayan [1] who showed that they are unitary on H2.

Corollary 20. For each t imaginary, the weighted composition operator At is
unitarily equivalent to Mxt, which is a unitary operator. In particular, for each t
on the imaginary axis, the weighted composition operator At is unitary and satisfies
A∗t = At = A−t. Moreover, for such t, these operators have spectrum the unit
circle, σ(At) = {eiy : y ≤ 0}.

Proof. The calculations in the proof of Theorem 13 that show AsAt = As+t do not
depend on Re t > 0, so the equation A∗t = At = A−t shows that A∗t At = AtA

∗
t = I

and At is unitary for t on the imaginary axis.
For each t in the right half plane P, Theorem 17 says UAt = MxtU . Writing

t = a+ ib and taking weak operator limits we see that

UAib = w-lim
a→0+

UAa+ib = w-lim
a→0+

Mxa+ibU = MxibU
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so At and Mxt are unitarily equivalent also for t on the imaginary axis. The
spectral result is correct because σ(Mxt) = {xt : 0 < x ≤ 1}. �

In the case of the usual Hardy space, H2, the spectral subspaces for the weighted
composition operators were [11] the subspaces χH2 where χ is an atomic singular
inner function with atom at {1}. Our goal will be to prove the analogue of this
result for the weighted Bergman spaces H2(βκ) = A2

κ−2.
We define subspaces Hc of H2(βκ) = A2

κ−2 as follows: Let H0 = H2(βκ). For c
a negative real number, define the subspace Hc by

(13) Hc = closure {ec
1+z
1−z f : f ∈ H2(βκ)}

These subspaces are well known and have been studied because they are rela-
tively simple invariant subspaces for multiplication by z on H2(βκ) that are not
associated with a zero set. The properties of these subspaces that we need are
summarized in Lemma 21 below, but we will not prove it. Good sources for this
kind of result are the books of Hedenmalm, Korenblum, and Zhu [17], especially
Section 3.2, pp. 55-59, or Duren and Schuster [12], Section 8.2, where proofs are
given for the usual (unweighted) Bergman space. Other sources are Theorem 2 of
Roberts [23] or Korenblum [19].

Lemma 21. For each negative number c, the subspace Hc is a proper subspace
of H2(βκ) and if c1 and c2 are negative real numbers with c2 < c1, then Hc2 is a
proper subspace of Hc1. Finally, ∩c≤0Hc = (0).

The idea underlying the focus on these subspaces is that the eigenvectors of our
operators, if they had any eigenvectors, should be

1
(1− z)κ

e
λ

1−z =
e

λ
2

(1− z)κ
e

λ
2

1+z
1−z

If these were eigenvectors for A1, say, then the spectral subspace associated with
[0, r] for 0 ≤ r ≤ 1 would be spanned by the eigenvectors whose eigenvalues
are in [0, r]. This will be the case for A1 if and only if λ is a number so that
0 < eλ ≤ r. So suppose r is given and λ0 = ln r so that eλ0 = r. Looking at
the “eigenvectors”, it looks like the subspace containing the eigenvectors for the
eigenvalues with 0 < eλ < r ought, if they were actually in H2(βκ), to span the

subspace e
λ0
2

1+z
1−zH2(βκ) = H(ln r)/2.

Theorem 22 below shows directly that these are invariant subspaces for the At.
We want to prove that these are, indeed, the spectral subspaces we are looking for.
In [11], this was accomplished for the Hardy space by using the special properties
of these well-studied subspaces to identify the projections and construct the spec-
tral integrals. However, in the context of H2(βκ) = A2

κ−2, these subspaces are not
as well understood as in the Hardy space. Instead, we will reverse the strategy:
we will use the unitary U to carry information from the multiplication operators
on L2([0, 1], µ), which are well understood, back to the weighted composition op-
erators on H2(βκ), and use this information to better understand these invariant
subspaces of the Bergman spaces.

Theorem 22. For 0 ≤ t and c ≤ 0, the subspace Hc is invariant for At.
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Proof. Suppose f is in H2(βκ) so that (exp(c(1 + z)/(1− z))) f is in Hc. Then

At

(
ec

1+z
1−z f

)
=

1
(1 + t− tz)κ

ec 1+
t+(1−t)z
1+t−tz

1− t+(1−t)z
1+t−tz

 f ◦ ϕt

=
1

(1 + t− tz)κ
(
ec(2t+

1+z
1−z )

)
f ◦ ϕt = ec

1+z
1−z

e2ct

(1 + t− tz)κ
f ◦ ϕt

= ec
1+z
1−zAt(e2ctf)

and we see this latter vector is also in Hc. Since

{(exp(c(1 + z)/(1− z))) f : f ∈ H2(βκ)}

is dense in Hc and Hc is closed, this shows that Hc is invariant for At. �

For t > 0, the functions xt are increasing for 0 ≤ x ≤ 1. This means the
spectral subspaces for the (Hermitian) multiplication operators Mxt are just the
subspaces Lδ = {f ∈ L2([0, 1], µ) : f(x) = 0 for δ < x ≤ 1}, for 0 ≤ δ ≤ 1.
Obviously, L0 = (0), L1 = L2, for δ1 < δ2, the subspaces satisfy Lδ1 ⊂ Lδ2 , and
the orthogonal projection of L2 onto Lδ is the multiplication operator Mχ[0,δ]

. We
want to identify U∗Lδ in H2(βκ).

Theorem 23. For c < 0 and 0 < δ < 1, let Hc and Lδ be as above. If U is the
unitary operator of H2(βκ) onto L2([0, 1], µ) as in Theorem 17, then

U∗Lδ = H(ln δ)/2 or equivalently UHc = Le2c

Proof. Clearly the two versions of the conclusion are equivalent; we will prove the
first. Since this result follows directly from the work of [11] for H2 when κ = 1,
we may assume that κ > 1. For 0 < a < 1, let fa be the function defined by

fa(x) =

{
(ln(1/x))−κ+1 0 < x ≤ a

0 a < x ≤ 1

It is not difficult to see that limx→0+ fa(x) = 0, that fa is continuous and increasing
on (0, a] and that therefore fa is in L∞([0, 1]) and also in L2([0, 1], µ).

For t > 0, computing in L2, we have

〈fa, xt〉 =
1

Γ(κ)

∫ a

0

1
(ln(1/x))κ−1

xtdµ(x) =
1

Γ(κ)

∫ a

0
xtdx =

1
Γ(κ)

at+1

t+ 1

Let Fa = U∗fa, and computing in H2(βκ), we have

1
Γ(κ)

at+1

1 + t
= 〈fa, xt〉 = 〈U∗fa, U∗xt〉 = 〈Fa,

1
(1 + t− tz)κ

〉

=
1

(1 + t)κ
〈Fa,

1
(1− t

1+tz)
κ
〉 =

1
(1 + t)κ

Fa(
t

1 + t
)

where the last equality holds because t is positive exactly when t/(1 + t) is a
point of (0, 1) in the unit disk and the inner product is the point evaluation of Fa.



HERMITIAN WEIGHTED COMPOSITION OPERATORS 21

Rewriting the equality, we have, for every t > 0,

Fa(
t

1 + t
) =

1
Γ(κ)

(1 + t)κ−1at+1

Since Fa is analytic in the disk, the equality for all t > 0 gives equality whenever
z = t

1+t is in the disk. In particular, we find

Fa(z) =
1

Γ(κ)
1

(1− z)κ−1
e

ln a
1−z =

e(ln a)/2

Γ(κ)
1

(1− z)κ−1
e((ln a)/2)(

1+z
1−z

)

If s(x) is a simple function defined on [0, 1] such that s−1({y}) is an open
interval for each y in the range of s, we can easily approximate s in L∞ with
linear combinations of functions of the form fa − fb for 0 ≤ b < a ≤ 1. It follows
that the closure in L2([0, 1], µ) of the span of {fa : 0 < a ≤ δ} is Lδ.

Thus, we have

U∗(Lδ) = span{U∗fa : 0 < a ≤ δ}

= span

{
e(ln a)/2

Γ(κ)
1

(1− z)κ−1
e((ln a)/2)(

1+z
1−z

) : 0 < a ≤ δ

}

= span
{

1
(1− z)κ−1

e((ln a)/2)(
1+z
1−z

) : 0 < a ≤ δ

}
= H(ln δ)/2

�

For 0 < r ≤ 1, let Pr be the orthogonal projection of H2(βκ) onto the subspace
H(ln r)/2 and let P0 = 0. The set of projections {Pr}0≤r≤1 form a resolution of the
identity and each commutes with each At because each At is Hermitian and each
H(ln r)/2 is invariant for At (Theorem 22).

Corollary 24. Let t be a positive real number. Letting P0 = 0, the projections
{Pr}0≤r≤1 form a resolution of the identity for the operator At. Related to At, the
projection Pr corresponds to the interval [0, rt] as a subset of the spectrum of At.
This means we have

At =
∫ 1

0
rt dPr

Proof. For each t with t > 0, the subspace Lδ = Mχ[0,δ]
L2 is associated with {x :

0 ≤ xt ≤ δ}, so Mxt =
∫ 1
0 δ

t dMχ[0,δ]
. The unitary U implements an equivalence

between At and Mxt , so Lδ is associated with H(ln r)/2 and At =
∫ 1
0 r

t dPr. �

4. Extremal functions for invariant subspaces determined by atomic
singular inner functions

Suppose N is a subspace of the Bergman space A2
κ−2 = H2(βκ) that is invariant

for the operator of multiplication by z. If there are functions f in N so that
f(0) 6= 0 and G is a function of N so that

(14) ‖G‖ = 1 and G(0) = sup{Re f(0) : f ∈ N and ‖f‖ = 1}
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then we say G solves the extremal problem for the invariant subspace N and we
say G is an A2

κ−2 inner function. (For more information about such extremal
problems, see [17, p. 56] or [12, p. 120 or pp. 146-152], for example.)

The subspacesHc defined by Equation (13) for c < 0 are of interest to us because
they are the spectral subspaces for the operators At, but they are of wider interest
because they are invariant for multiplication by z and they are associated with the
atomic singular inner functions ec(1+z)/(1−z) for c < 0. In the study of invariant
subspaces for the Bergman shifts, it is important to solve the extremal problem
of Equation (14), but it is not always straightforward to do so. We show that the
unitary equivalence of Theorem 17 can be used to solve these problems for the
subspaces Hc. Note first that f(z) = ec(1+z)/(1−z) is in Hc and f(0) = ec 6= 0, so
the formulation of the extremal problem given above is applicable.

Our computation of the extremal functions requires the use of the incomplete
Gamma function [14, p. 949] usually defined as

(15) Γ(a,w) =
∫ ∞

w
ta−1e−t dt

where a is a complex parameter and w is a real parameter. An alternate defini-
tion [14, p. 950] in which both a and w are complex parameters is

(16) Γ(a,w) = e−wwa
∫ ∞

0
e−wu(1 + u)a−1 du

In our situation, we have a ≥ 0 and for this case, we see that Γ(a,w) is analytic
for Rew > 0.

Theorem 25. For c < 0, if Hc is the invariant subspace of the weighted Bergman
space A2

κ−2 = H2(βκ) defined by

Hc = closure{ec
1+z
1−z f : f ∈ A2

κ−2 = H2(βκ)}
then the extremal function for Hc is

(17) Gc(z) =
Γ(κ,−2c/(1− z))√

Γ(κ)
√

Γ(κ,−2c)

Proof. The Cauchy-Schwarz inequality implies that to maximize Re 〈g, f〉 where f
is given and g is a unit vector in the subspace N , then g = ζPf/‖Pf‖ where P is
the orthogonal projection onto N and ζ is chosen with |ζ| = 1 so that 〈g, f〉 > 0.

Suppose g is in Hc. Then Re g(0) = Re 〈g,K0〉 = Re 〈g, f0〉, where f0 = fs
for s = 0 as in Equation (11). Let Gc be the function in Hc that solves this
extremal problem, that is, Gc = ζPe2cf0/‖Pe2cf0‖ for ζ chosen with |ζ| = 1 so that
Gc(0) > 0. We want to find an explicit description of Gc. We will ignore ζ for the
moment, and at the end of the proof, we will find an appropriate choice for ζ.

We want to move the problem to L2; we have 〈g, f0〉 = 〈Ug,Uf0〉 = 〈Ug, x0〉 =
〈Ug, 1〉 and g is in Hc if and only if Ug is in Le2c . Writing δ for e2c, we see that
UGc = Qδ(1)/‖Qδ(1)‖ where Qδ is the projection of H2(βκ) onto Lδ, that is,
Qδ = Mχ[0,δ]

. It follows that

UGc =
1

‖χ[0,δ]‖
χ[0,δ]
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Now, to find the necessary norm,

‖Pe2cf0‖2 = ‖χ[0,δ]‖2 =
∫ 1

0
|χ[0,δ]|2 dµ =

∫ δ

0
dµ

=
∫ δ

0

(ln(1/x))κ−1

Γ(κ)
dx =

1
Γ(κ)

∫ ∞

−2c
y(κ−1)e−y dy

=
Γ(κ,−2c)

Γ(κ)
(18)

where the penultimate equality comes from the change of variables x = e−y and
the last equality is the definition of the incomplete Gamma function [14, p. 949].

Similarly, to find the function itself, for s > 0, we have

‖Pe2cf0‖〈Gc, fs〉 = ‖Pe2cf0‖〈UGc, Ufs〉 = 〈χ[0,δ], x
s〉 =

∫ δ

0
xs dµ

=
∫ δ

0
xs

(ln(1/x))κ−1

Γ(κ)
dx =

1
Γ(κ)

∫ ∞

−2c
y(κ−1)e−(s+1)y dy

=
1

(s+ 1)κΓ(κ)

∫ ∞

−2c(s+1)
u(κ−1)e−u du =

Γ(κ,−2c(s+ 1))
(s+ 1)κΓ(κ)

(19)

On the other hand, we can find the value of 〈Gc, fs〉 another way because

fs(z) =
1

(1 + s− sz)κ
=

1
(1 + s)κ

1
(1− s/(s+ 1)z)κ

=
1

(1 + s)κ
Ks/(s+1)

where Kα is the kernel for evaluation at α. Using this, we see

(20) 〈Gc, fs〉 = 〈Gc,
1

(1 + s)κ
Ks/(s+1)〉 =

1
(1 + s)κ

〈Gc,Ks/(s+1)〉 =
Gc(s/(s+ 1))

(1 + s)κ

Putting the results of Equations (18), (19), and (20) together, we get

‖Pe2cf0‖
Gc(s/(s+ 1))

(1 + s)κ
= ‖Pe2cf0‖〈Gc, fs〉 =

Γ(κ,−2c(s+ 1))
(s+ 1)κΓ(κ)

and solving for Gc, we have

Gc

(
s

s+ 1

)
=

Γ(κ,−2c(s+ 1))√
Γ(κ)

√
Γ(κ,−2c)

Examining this result, we have assumed s > 0, so s/(s + 1) is a number in
(0, 1) and c < 0, so −2c(s+ 1) is a number on the positive real axis. If z satisfies
0 < z < 1 and z = s/(s + 1), then −2c(1 + s) = −2c/(1 − z) and this result can
be rewritten as

(21) Gc(z) =
Γ(κ,−2c/(1− z))√

Γ(κ)
√

Γ(κ,−2c)

The function Gc is in H2(βκ), so it is analytic in the unit disk. The formulation
of the incomplete Gamma function in Equation (16) is analytic in the right half
plane, so if z is in the disk then −2c/(1−z) is in the right half plane. Thus, we see
that Gc(z) and the expression on the right side of Equation (21) are both analytic
for z in the disk and they agree when 0 < z < 1. This means that they are equal
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for all z in the disk and Equation (21) gives the extremal function for invariant
subspace Hc in the weighted Bergman space A2

κ−2 = H2(βκ). (Notice that for the
choice we have made, Gc(0) > 0, so ζ = 1 and our expressions are correct.) �

The dependence of the above formula on the incomplete Gamma function is
perhaps disappointing, but it is what it is! However, for κ an integer, the incom-
plete Gamma function can be explicitly computed by integration by parts. For
example, for κ = 1, the usual Hardy space, and κ = 2, the usual Bergman space,
where the results are already well known, as we would expect, our result agrees
with previous results:

For the usual Hardy space, κ = 1, we have Γ(1) = 1, and

Γ(1, w) =
∫ ∞

w
e−t dt = e−w

so, in this case,

Gc(z) =
Γ(1,−2c/(1− z))√

Γ(1)
√

Γ(1,−2c)
= ec(

1+z
1−z )

as we would expect.
For the usual Bergman space, κ = 2, we have Γ(2) = 1, and

Γ(2, w) =
∫ ∞

w
te−t dt = (w + 1)e−w

so, in this case,

Gc(z) =
Γ(2,−2c/(1− z))√

Γ(2)
√

Γ(2,−2c)
=

1
(1− 2c)1/2

(
1− 2c

1− z

)
ec

1+z
1−z

as we would expect.
For κ = 3, we have Γ(3) = 2, and

Γ(3, w) =
∫ ∞

w
t2e−t dt = (w2 + 2w + 2)e−w

so, in this case,

Gc(z) =
Γ(3,−2c/(1− z))√

Γ(3)
√

Γ(3,−2c)
=

1
(1− 2c+ 2c2)1/2

(
1− 2c

1− z
+

2c2

(1− z)2

)
ec

1+z
1−z

A closed subspace of a reproducing kernel Hilbert space is also a reproducing
kernel Hilbert space and it is often of interest to describe the reproducing kernels
for the subspace more explicitly than just the ‘projections of those for the larger
space’. In the following theorem, we give an explicit formula for the reproducing
kernels for the atomic inner function subspaces of the weighted Bergman spaces
we are considering. Corollary 27 gives these restricted kernel functions for the
usual Bergman space (κ = 2) which had previously been computed in a different
way by Yang [29] or see the report in [28].

Theorem 26. For 0 < r < 1, let Pr be the orthogonal projection onto the subspace
H(ln r)/2 in H2(βκ). If u is any point of the open unit disk, then for Ku(z) =
(1− uz)−κ

(PrKu)(z) =
1

Γ(κ)(1− uz)κ
Γ
(
κ,− (ln r)(1− uz)

(1− u)(1− z)

)
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Proof. Let us first consider the case 0 ≤ u < 1.
Let w belong to the unit disk. The subspace H(ln r)/2 is closed, therefore Kw =

bw + dw where bw is in H(ln r)/2 and dw is in H⊥
(ln r)/2. Now if g is in H(ln r)/2, then

g(w) = 〈g,Kw〉 = 〈g, bw〉+ 〈g, dw〉 = 〈g, bw〉

Thus 〈g, bw〉 = g(w) for each g in H(ln r)/2 and each w in the disk; that is, bw is the
point evaluation kernel for the Hilbert subspace H(ln r)/2. To compute bw we put
bw(z) = b(z, w). The subspace H(ln r)/2 is an invariant subspace of the operator
Wft,ϕt which is self-adjoint on A2 hence the restriction of Wft,ϕt to H(ln r)/2 is a
self-adjoint operator on H(ln r)/2. Moreover, because H(ln r)/2 is invariant for both
Cϕt and Tft , we get

Wft,ϕt(b(z, w)) = ft(z)b(ϕt(z), w)

and

W∗
ft,ϕt

(b(z, w)) = ft(w)b(z, ϕt(w))

but W∗
ft,ϕt

is self-adjoint on H(ln r)/2 therefore

ft(w)b(z, ϕt(w)) = ft(z)b(ϕt(z), w)

hence,

(22) b(z, ϕt(w)) =
ft(z)
ft(w)

b(ϕt(z), w)

Combining Equation (17), with the known relationship between extremal functions
and the kernels, (see, for example, [17, pp. 57-59]), we see that

b(z, 0)√
b(0, 0)

= Gc(z) =
Γ(κ,−(ln r)/(1− z))√

Γ(κ)
√

Γ(κ,−(ln r))

Let z = 0 in the above and we get

√
b(0, 0) =

√
Γ(κ,−(ln r))√

Γ(κ)

Therefore

b(z, 0) =
Γ(κ,−(ln r)/(1− z))

Γ(κ)

Now by letting w = 0 in Equation (22) we get,

b(z, ϕt(0)) =
(1 + t− tz)−κ

(1 + t)−κ
Γ(κ,−(ln r)/(1− ϕt(z)))

Γ(κ)

Let ϕt(0) = u then t/(t + 1) = u hence t = u/(1 − u) and 1 + t = 1/(1 − u).

Substituting this value for t in ϕt we get ϕt(z) =
u

1−u + (1− u
1−u)z

1 + u
1−u −

u
1−uz

. This results in
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ϕt(z) =
u+ (1− 2u)z

1− uz
and 1− ϕt(z) =

1− u+ uz − z

1− uz
=

(1− u)(1− z)
1− uz

. Then,

b(z, u) =
( 1
1−u −

u
1−uz)

−κ

( 1
1−u)−κ

Γ(κ,−(ln r)/( (1−u)(1−z)
1−uz ))

Γ(κ)

=
Γ(κ,−(ln r)/( (1−u)(1−z)

1−uz ))
Γ(κ)(1− uz)κ

To summarize the argument so far, we have shown that for 0 ≤ u < 1, we have

(PrKu)(z) =
1

Γ(κ)(1− uz)κ
Γ
(
κ,− (ln r)(1− uz)

(1− u)(1− z)

)
Since the function Ku(z) is analytic in z and conjugate analytic in u for z and

u in the unit disk, the same is true of (PrKu)(z). The function

1
Γ(κ)(1− uz)κ

Γ
(
κ,− (ln r)(1− uz)

(1− u)(1− z)

)
in the conclusion above is also analytic in z and conjugate analytic in u for z and
u in the unit disk. Since, for each z in the disk, this function agrees with the
function (PrKu)(z) for 0 ≤ u < 1, they are the same function for all u in the unit
disk. In other words, they are the same for all z and u in the unit disk, as we were
to prove. �

Finally, we specialize the result of Theorem 26 to get the restricted kernels for
the usual Bergman space.

Corollary 27. For 0 < r < 1, let Pr be the projection onto the subspace H(ln r)/2

in the Bergman space A2, which is H2(βκ) for κ = 2. If u is any point of the open
unit disk, then for Ku(z) = (1− uz)−2

(PrKu)(z) =
1

(1− uz)2

(
1− (ln r)(1− uz)

(1− u)(1− z)

)
e

(ln r)(1−uz)
(1−u)(1−z)

Proof. According to Theorem 26 using κ = 2,

(PrKu)(z) =
1

Γ(2)(1− uz)2
Γ
(

2,− (ln r)(1− uz)
(1− u)(1− z)

)
Since Γ(2, w) = (w + 1)e−w, we have

(PrKu)(z) =
1

(1− uz)2

(
1− (ln r)(1− uz)

(1− u)(1− z)

)
e

(ln r)(1−uz)
(1−u)(1−z)

as we were to prove. �
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