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Abstract. Starting with a general formula, precise but difficult to use, for

the adjoint of a composition operator on a functional Hilbert space, we com-

pute an explicit formula on the classical Hardy Hilbert space for the adjoint

of a composition operator with rational symbol. To provide a foundation for

this formula, we study an extension to the definitions of composition, weighted

composition, and Toeplitz operators to include symbols that are multiple val-

ued functions. These definitions can be made on any Banach space of analytic

functions on a plane domain, but in this work, our attention is focused on the

basic properties needed for the application to operators on the standard Hardy

and Bergman Hilbert spaces on the unit disk.

1. Introduction and preliminaries

In the study of operator theory, multiplication or Toeplitz operators, composition
operators, and weighted composition operators have played an important role as
basic examples and motivators of the theory. The definitions of these operators
have used functions in typical ways that incorporate the arithmetic and algebra of
the interactions of functions with each other. While it has seemed natural to use
single valued functions, in this note, we show that it is not necessary to do so.

The goal of this paper is to introduce composition operators and weighted com-
position operators on Banach spaces of analytic functions with multiple valued sym-
bols and to describe some of their basic properties such as information about bound-
edness on some of the most common spaces, including the Hardy and Bergman
spaces on the unit disk in the complex plane. Using this definition, we compute the
adjoint of composition operators on H2(D) with rational symbol. In retrospect, it
can be seen that the description of the commutants of analytic Toeplitz operators
whose symbols are finite Blaschke products as given by Cowen [1, section 2] are
multiple valued weighted composition operators.

In addition, we consider some similar constructions in which the resulting func-
tions are not analytic on the expected domain but rather require projection into
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a subspace of analytic functions to complete the definition. In this situation, we
generalize the notion of Toeplitz operator.

If H is a functional Hilbert space on a plane domain Ω and ϕ is an analytic
self-map of Ω, then for f in H

Cϕf = f ◦ ϕ

defines a composition operator. Although boundedness, compactness, and other
properties have been characterized for composition operators in many contexts,
other interesting and seemingly basic problems remain open. The computation of
adjoints of composition operators is one of these problems.

There have been two exceptions to this statement. In the case that ϕ is a linear
fractional map mapping the unit disk into itself, Cowen [2] showed that the adjoint
C∗ϕ can be expressed as a product of Toeplitz operators and a composition operator
(see also [3, chapter 9]) and this computation has been extended to many other
spaces in one and several variables. Second, when ϕ (not the identity function) is
an inner function with ϕ(0) = 0, since Cϕ is an isometry of infinite multiplicity on
H2(D), the adjoint is easily computed. This computation can be extended to the
case when ϕ has a fixed point in the open disk because then Cϕ is similar to such
an isometry.

In this paper, we begin with a general formula, that might be considered mathe-
matical folklore, for the adjoint of a composition operator that is usually difficult to
use effectively even though in many cases it can be expressed as an integral operator
(see also Sarason [7]). The expression was noted in [3, p. 322] for the case of Cϕ
acting on H2(D) having a symbol that is an inner function. This idea is developed
in Section 2 to provide a formula for the adjoint of a composition operator acting
on some Hilbert spaces of analytic functions on D, such as H2(D) and weighted
Bergman spaces.

Recently, Wahl [9] used this kind of formula to provide a formal computation
of the adjoint C∗ϕ for the multivalent function ϕ(z) = (1 − 2c)z2/(1 − 2cz2) with
0 < c < 1/2, and from this derived other interesting properties of these composition
operators. In Section 3 we compute, in a way similar to Wahl, the adjoint on
H2(D) for Cϕ where ϕ(z) = (z2 + z)/2 and this computation is used to motivate
the definition of multiple valued weighted composition operators. Finally, we prove
basic properties of these operators and show that when ϕ is a rational function,
the adjoint of Cϕ on the Hardy Hilbert space H2(D) is a multiple valued weighted
composition operator.

Finally, in Section 4, we consider some similar constructions in which the result-
ing functions are not analytic on the expected domain but rather require projection
into a subspace of analytic functions to complete the definition. In this situation,
we generalize the notion of Toeplitz operator.
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We begin by recalling the definition of a functional Banach space, which will be,
mainly, the setting of our work.

Definition 1.1. [3, page 2] A Banach space of complex valued functions on a set Ω
is called a functional Banach space on Ω if the vector operations are the pointwise
operations, f(x) = g(x) for each x in Ω implies f = g, f(x) = f(y) for each
function in the space implies x = y, and for each x in Ω, the linear functional
f 7→ f(x) is continuous.

When Ω is a domain in the complex plane, a functional Banach space whose func-
tions are analytic on Ω will usually be called a Banach space of analytic functions. If
H is a Hilbert space of analytic functions, the final property in the definition above
guarantees the existence of vectors in H, often called reproducing kernel functions,
that give the value of functions f in H at points x in Ω by taking inner products:

〈f,Kx〉 = f(x)

As is well known, in any Hilbert space of analytic functions, if ϕ is an analytic
map of Ω into itself, this leads to an easy formula for the adjoint of a composition
operator acting on a reproducing kernel function. For any f in the space,

(1) 〈f, C∗ϕKx〉 = 〈Cϕf,Kx〉 = 〈f ◦ ϕ,Kx〉 = f(ϕ(x)) = 〈f,Kϕ(x)〉

Since this is true for any f in the space, C∗ϕKx = Kϕ(x).
A similar idea gives a simple formula for the value at a point of the function

C∗ϕf for f in the space:

(C∗ϕf)(x) = 〈C∗ϕf,Kx〉 = 〈f, CϕKx〉 = 〈f,Kx ◦ ϕ〉

In the context in which the inner product is given by an integral, a very common
situation, this formula becomes an expression for the adjoint of a composition
operator as an integral operator. This idea becomes the basis for the results of the
next section.

2. A formula for the adjoint in Hardy and weighted Bergman spaces

An explicit expression for the adjoint of a composition operator induced by any
analytic function ϕ mapping the unit disk into itself in the Hardy space can be
easily computed. In fact, the underlying idea is, as above, simple and it has to do
with reproducing kernels.

Let Kw(z) denote the reproducing kernel at w in D for H2(D), which is given by

Kw(z) =
1

1− wz
, (z ∈ D)

It is well known (see [4], for instance) that for any two Hardy functions f and g,
the inner product in H2(D), denoted by 〈f, g〉H2(D), can be computed by means of
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an integral of their boundary values

〈f, g〉H2(D) =
∫ 2π

0

f(eiθ)g(eiθ)
dθ

2π

Now, if f is in H2(D), it follows

C∗ϕf(z) = 〈C∗ϕf,Kz〉H2(D) = 〈f, CϕKz〉H2(D) =
∫ 2π

0

f(eiθ)

1− ϕ(eiθ)z

dθ

2π

Therefore, we easily get

A formula for C∗ϕ on the Hardy space. Let ϕ be an analytic function on D
such that ϕ(D) ⊂ D. Then the adjoint of the composition operator Cϕ on H2(D) is
given by

(2) (C∗ϕf)(z) =
∫ 2π

0

f(eiθ)

1− ϕ(eiθ)z

dθ

2π
, (f ∈ H2(D))

Observe that no extra hypotheses on ϕ have been necessary.
Next, we deal with the formula for the adjoint of a composition operator on

weighted Bergman spaces. Of course, the underlying idea is the same as in the
Hardy space case.

For α > −1, recall that the weighted Bergman space A2
α consists of analytic

functions f on D for which the norm

‖f‖2
α =

∫
D
|f(z)|2(1− |z|2)α dA(z)

is finite. Here, dA(z) =
1
π
dx dy denotes the normalized Lebesgue area measure on

D. Observe that A2
α are Hilbert spaces of analytic functions on D. In addition, if

α = 0, A2
α turns out to be the classical Bergman space A2.

A little computation shows that the reproducing kernel functions in A2
α are

Kw(z) =
α+ 1

(1− wz)α+2
, (w ∈ D)

Therefore, the same argument as before yields

A formula for C∗ϕ on weighted Bergman spaces. Let ϕ be an analytic function
on D such that ϕ(D) ⊂ D. Then the adjoint of the composition operator Cϕ on A2

α

is given by

(3) (C∗ϕf)(z) =
∫

D

(α+ 1)f(w)
(1− ϕ(w)z)α+2

(1− |w|2)α dA(w),

where f ∈ A2
α.

In particular, we may deduce C∗ϕ acting on the orthogonal system {zn}∞n=0 in
A2
α. If Dw denotes the differential operator respect to the variable w, D0

w the
identity operator, and Dn

w the n-th power of Dw, a little computation shows that
‖zn‖2

α = n!/(α+ 1)(α+ 2) · · · (α+ n+ 1) (see also [3, Chapter 3]). Therefore,
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Corollary 2.1. Let ϕ be a analytic self-map of the unit disk. If fn(z) = zn, n ≥ 0,
then in the weighted Bergman space A2

α the following holds

(C∗ϕfn)(z) =
1

(α+ 2) · · · (α+ n+ 1)
Dn
w

(
1

(1− ϕ(w)z)α+2

)∣∣∣
w=0

2.1. Weighted Dirichlet spaces. For α > −1, we recall that the weighted Dirich-
let space Dα is the collection of analytic functions f on D for which the complex
derivative f ′ belongs to the weighted Bergman space A2

α. Different norms, although
all of them equivalent, turn out the weighted Dirichlet spaces in Hilbert spaces of
analytic functions. Since the adjoint of an operator in a Hilbert space depends
strongly on the norm considered, one can deduce the corresponding expression for
C∗ϕ once the choice of the norm is accomplished and the reproducing kernels Kw

are determined. In particular, this is the case with the formula obtained in [5] for
the adjoint of linear fractional composition operators on the Dirichet space modulo
constant functions.

3. The Analytic Case: Multiple valued weighted composition

operator

In this section, we consider the generalization to the multiple valued case of
composition operators on spaces of analytic functions and analytic Toeplitz oper-
ators which are, of course, just multiplication operators. Basic properties of such
operators acting on functional Banach spaces of analytic functions are also studied.

In particular, we will describe the adjoint of a composition operator induced by
a rational function acting on the Hardy space as a multiple valued composition
operator. We begin by considering an example which sheds some light on the spirit
of the whole section.

3.1. An example. Let ϕ(z) = (z2 + z)/2, with z in D. It is clear that ϕ takes D
into itself and induces a bounded composition operator on H2(D). We have

C∗ϕf(z) =
1
π

∫ 2π

0

f(eiθ)
2− (e−2iθ + e−iθ)z

dθ

=
1
π

∫ 2π

0

e2iθf(eiθ)
2e2iθ − (1 + eiθ)z

dθ

=
1
πi

∫
∂D

ζf(ζ)
2ζ2 − (1 + ζ)z

dζ,(4)

where in last line the change of variable ζ = eiθ has been carried out. Now, observe
that 2ζ2 − (1 + ζ)z = 2(ζ − ζ1)(ζ − ζ2), where

ζ1 =
z +

√
z2 + 8z
4

and ζ2 =
z −

√
z2 + 8z
4

.
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If z 6= 0, upon applying the Residue’s Theorem, it follows that the integral in (4)
is equal to

1
ζ1 − ζ2

(ζ1f(ζ1)− ζ2f(ζ2))

or equivalently, we have

C∗ϕf(z) =
z +

√
z2 + 8z

2
√
z2 + 8z

f

(
z +

√
z2 + 8z
4

)
− z −

√
z2 + 8z

2
√
z2 + 8z

f

(
z −

√
z2 + 8z
4

)
for z in the disk and different from zero. This means, formally, that we may express
C∗ϕ by

(5) C∗ϕf(z) =
∑

ψ(z)(f ◦ σ)(z),

where ψ(z) =
(
z ±

√
z2 + 8z

)
/2
√
z2 + 8z, σ(z) = (z ±

√
z2 + 8z)/4 and the sum

is taken over all the branches of ψ and σ combined, roughly speaking, in a special
way. The important point to note here is that we are not allowed to combine all the
branches of ψ and σ. Although Equation (5) is a formal expression, the principal
significance of this example is the relationship between the adjoint of a composition
operator and certain weighted composition operators. In what follows, we formalize
such a relation.

3.2. Multiple Valued Composition Operators.

Definition 3.1. Suppose Ω is a domain in the complex plane and b is a point of
Ω, the base point. Let K be a finite set in Ω that does not include b, suppose ψ
and σ are functions analytic in a simply-connected neighborhood of b in Ω \K and
suppose they are arbitrarily continuable in Ω \ K. We say (ψ, σ) is a compatible
pair of multiple valued (analytic) functions on Ω if for any path γ in Ω \K along
which the continuation of σ yields the same branch as at the beginning, it is also
the case that continuation of ψ along γ yields the same branch as at the beginning.

The definition above apparently depends on the base point b and the finite set
K and on the functions ψ and σ defined in a neighborhood of b identified in the
statement. However, informally, we regard ψ and σ as the names of the multiple
valued functions defined in Ω \K and the intent of the definition is to connect each
branch of σ at a point with a specific branch of ψ at that point; the initial branches
of ψ and σ defined in the simply connected neighborhood of b gives one pairing of
the branches and continuation of these gives all other pairings of the branches that
can occur in this context. Because this association is independent of the base point
b and because the smallest allowable K for given Ω and σ follow from the definition
of σ, we do not usually include the base point and the set K in the description,
but just say (ψ, σ) is a compatible pair of multiple valued functions on Ω, with the
specific pairing of their branches as part of the definition of the compatible pair.
Note that it is a consequence of the definition that if (ψ, σ) is a compatible pair
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on Ω then the number of branches of ψ at a point is a divisor of the number of
branches of σ at that point (provided that either is finite). The number of branches
of σ at each point will be called the cardinality of the pair or sometimes the pair
of integers ( number of branches of ψ, number of branches of σ) will be called the
cardinality of the pair. Also note that if σ has a removable singularity at a point
z0 in K and if ψ is bounded in a punctured neighborhood of z0, then ψ has a
removable singularity at z0 as well: because each branch of σ is single valued in a
neighborhood of z0, the fact that each branch of σ is associated with a particular
branch of ψ means that ψ is also single valued in a neighborhood of z0.

For example, suppose Ω is the unit disk, K = {0}, and suppose b = 1/16 has
been chosen as the base point. Let σ(z) = z1/4 with σ(b) = 1/2, let ψ1(z) = z1/2

with ψ1(b) = 1/4, and let ψ2(z) = z1/2 with ψ2(b) = −1/4. Then (ψ1, σ) and ψ2, σ)
are both compatible pairings on the disk, but they are different from each other
because pairings of the branches are different. Note also that if ψ(z) = z3 with
ψ(b) = 1/4096, we also have (ψ, σ) as a compatible pairing, although perhaps a less
interesting compatible pairing than the other two examples.

Definition 3.2. Suppose Ω is a domain in the complex plane, suppose K is a finite
subset of Ω and suppose H is a Banach space of analytic functions on Ω. Suppose,
further, that ψ and σ are analytic functions that are arbitrarily continuable in Ω\K
and that (ψ, σ) is a compatible pair with finite multiplicity. If σ maps Ω \K into
Ω such that, for each branch σj of σ, the cluster set of σj for z near b in K (for
each b in K) does not intersect the boundary of Ω, and limz→b ψj(z)(z− b) = 0 for
all b in K and each branch ψj, the multiple valued weighted composition operator
Wψ,σ on H is the operator defined by

Wψ,σf(z) =
∑

ψ(z)f(σ(z))

for f in H where the sum is taken over all the branches of the pair (ψ, σ), and z in
Ω \K.

Note: In the balance of this paper, we will write limz→b ψ(z)(z − b) = 0 to mean
limz→b ψj(z)(z−b) = 0 for all branches ψj of ψ, and similar shorthand, rather than
emphasize the separate branches of ψ or σ.

Before going further, we point out that the formula Wψ,σf(z) =
∑
ψ(z)f(σ(z))

defines an analytic function in Ω for each f analytic on Ω. Indeed, because σ and
ψ are arbitrarily continuable in Ω \K and because σ maps Ω \K into Ω, included
in the domain of f , the formula makes sense in a neighborhood of each point of
Ω \K and is arbitrarily continuable in Ω \K. Moreover, because ψ and σ form a
compatible pair, and each branch of σ occurs in the sum exactly once, continuing
the locally defined terms of the sum only permutes their order and the sum is single
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valued. Finally, for each b in K,

lim
z→b

(z − b)
(∑

ψ(z)f(σ(z))
)

=
∑

lim
z→b

(z − b)ψ(z)f(σ(z))

Now, for each branch of ψ, we have limz→b(z − b)ψ(z) = 0. Since σ maps Ω \K
into Ω and the cluster set of each branch of σ as z approaches b does not intersect
the boundary of Ω, we have |f(σ(z))| is bounded and z approaches b, so we have
limz→b(z − b)ψ(z)f(σ(z)) = 0 for each branch of σ. Since

lim
z→b

(z − b)
(∑

ψ(z)f(σ(z))
)

= 0

for each b in K, each point of K is a removable singularity of
∑
ψ(z)f(σ(z)) and

Wψ,σf is well defined.
Now, we proceed to define multiple valued composition operators. Note that if

σ is a multiple valued analytic function on Ω \K that maps Ω \K into Ω and ψ is
constant function 1, then (ψ, σ) is a compatible pair on Ω.

Definition 3.3. Suppose Ω is a domain in the complex plane, suppose K is a finite
subset of Ω, and suppose H is a Banach space of analytic functions on Ω. Suppose,
further, that σ is an analytic function as in Definition 3.2 that is arbitrarily con-
tinuable in Ω\K, takes values in Ω, and has finite multiplicity. The multiple valued
composition operator Cσ on H is Cσ = W1,σ, that is, it is the operator defined by

Cσf(z) =
∑

f(σ(z))

for f in H, where the sum is taken over all the branches of σ.

Remark 3.4. Note that the restriction to finite multiplicity of σ in the above
definition (and also in Definition 3.2) is sufficient to guarantee convergence of the
series in the definition of the operators. In fact, if we consider the inner function
ϕ(z) = exp(z + 1)/(z − 1) defined on D and take σ to be the multiple valued map
ϕ−1, it follows that the series

∑
σ(z), taken over all the branches of σ, diverges for

all z in D, except on a set of logarithmic capacity zero.

On the other hand, it might seem that the condition on compatibility of σ and
ψ is too restrictive. For example, one might contemplate extending this pair of
definitions to include multiple valued Toeplitz operators or to pairs (ψ, σ) where
the number of branches of ψ is greater than the number of branches of σ. This
turns out to be unnecessary. For example, suppose σ(z) = z and ψ(z) =

√
z and we

consider the multiple valued weighted composition operator on H2(D), or better,
the multiple valued Toeplitz operator on H2(D) given by

Tψf(z) =
(√
zf(σ(z)) + (−

√
z)f(σ(z))

)
=
(√
zf(z) + (−

√
z)f(z)

)
as defined above. Then

Tψf(z) =
(√
z + (−

√
z)
)
f(z) = 0
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More generally, if ψ is any multiple valued function on Ω \K with finite multi-
plicity n and σ(z) = z, the analogy to the above definition would give

Wψ,σf(z) =
∑

ψ(z)f(σ(z)) =
(∑

ψ(z)
)
f(z)

But since
∑
ψ(z) is arbitrarily continuable in Ω \ K and since each term in the

sum continues to a different branch also in the original sum, the summands are just
permuted in the sum and the total is the same. That is, the function

∑
ψ(z) is

arbitrarily continuable and single valued in Ω\K and since limz→b(z−b)
∑
ψ(z) = 0

for each b in K, this means that
∑
ψ(z) is analytic in Ω. Thus, the “multiple valued

Toeplitz operator” intended to be defined is really just an ordinary single valued
Toeplitz operator.

Now, we prove the following result on boundedness of these operators.

Theorem 3.5. If Wψ,σ is a multiple valued weighted composition operator on
H2(D) such that ψ and σ satisfy the conditions of Definition 3.2. Assume also
that M = lim sup|z|→1− |ψ(z)| < ∞. Then Wψ,σ is a bounded operator on H2(D)
and

‖Wψ,σ‖ ≤M

√
n
∑ 1 + |σ(0)|

1− |σ(0)|
,

where the latter sum is taken over the branches of σ, and n is the multiplicity of
the compatible pair (ψ, σ).

Proof. Let R be a positive number such that R < 1 and R > maxb∈K |b|. Let
MR = supR<|z|<1 |ψ(z)|. For such R, we see that MR < ∞ because ψ is analytic
at z for R < |z| < 1, continuous for |z| = R, and lim sup|z|→1− |ψ(z)| = M < ∞.
In fact, limR→1−MR = M .

Suppose f is in H2(D), and suppose hf is the least harmonic majorant for |f |2,
which means that hf (0) = ‖f‖2 (See [4, Chap. ?] for the connection between
the Hardy space and harmonic majorants). Then denoting by h̃f the harmonic
conjugate of hf with value 0 at 0, we have hf + ih̃f is analytic in the open unit
disk and ∑

hf ◦ σ + ih̃f ◦ σ

is analytic and single valued in D \K. In particular, then,
∑
hf ◦ σ is a positive

harmonic function in the open unit disk.
If z satisfies R < |z| < 1, then∣∣∣∑ψ(z)f(σ(z))

∣∣∣2 ≤
(∑

|ψ(z)||f(σ(z))|
)2

≤ M2
R

(∑
|f(σ(z))|

)2

≤ M2
R n

∑
|f(σ(z))|2

≤ M2
R n

∑
hf (σ(z))
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Note that the penultimate inequality is obtained by using Cauchy–Schwartz inequal-
ity for the inner product of the vector of ones with the vector of values of |f(σ(z))|.
This inequality says that the positive harmonic function M2

R n
∑
hf (σ(z)) domi-

nates the subharmonic function |
∑
ψ(z)f(σ(z))|2 on the annulus R < |z| < 1 from

which it follows that it dominates on the whole open unit disk.
Applying Harnack’s inequality to hf , we get∑

hf (σ(0)) ≤
∑

hf (0)
1 + |σ(0)|
1− |σ(0)|

=
(∑ 1 + |σ(0)|

1− |σ(0)|

)
‖f‖2

Combining these inequalities and noting that the MR’s converge to M , we get,
for each f in H2(D),

‖Wψ,σf‖ ≤M

√
n
∑ 1 + |σ(0)|

1− |σ(0)|
‖f‖

and the desired inequality follows immediately. �

Corollary 3.6. If σ is a multiple valued map of multiplicity n of D \ K into D,
then Cσ is bounded on H2(D) and

‖Cσ‖ ≤

√
n
∑ 1 + |σ(0)|

1− |σ(0)|

Next result generalizes to multiple valued weighted composition operators the
well known result given by Equation 1 for ordinary composition operators.

Theorem 3.7. Suppose K is a finite set in the domain Ω, (ψ, σ) is a compatible pair
of multiple valued functions on Ω \K, and n is the cardinality of the pair. Suppose
Wψ,σ is a multiple valued weighted composition operator on a Banach space B of
functions analytic on Ω. If Kα is the kernel for evaluation of functions of B at the
point α of Ω, then for each α in Ω \K, there are points β1, β2, · · · , βn of Ω such
that W∗

ψ,σKα is a linear combination of the Kβj , that is,

W∗
ψ,σKα =

n∑
j=1

ajKβj

Proof. To show that the desired equality, we firstly observe that

〈f,W∗
ψ,σKα〉 = 〈Wψ,σf,Kα〉 =

(∑
ψf ◦ σ

)
(α) =

∑
ψ(α)f(σ(α)) =

∑
ajf(βj)

where the points β1, β2, · · · , βn are the images of α under the branches of σ and
the numbers a1, a2, · · · , an are the values at α under the branches of ψ.

That is,
〈f,W∗

ψ,σKα〉 =
∑

aj〈f,Kβj
〉

and the last sum is either 〈f,
∑
ajKβj 〉 or 〈f,

∑
ajKβj 〉 depending on whether B

is a Hilbert space or not. Notice that the numbers aj and βj do not depend on f ,
only on α and the functions ψ and σ. Since the above equality holds for all f in
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B, we see that W∗
ψ,σKα is

∑
ajKβj

or
∑
ajKβj

, a linear combination of evaluation
kernels for at most n points of Ω, as was required. �

3.3. C∗ϕ as a multiple valued weighted composition operator. In this sub-
section, we express the adjoint of composition operators induced by rational maps
as multiple valued weighted composition operators. In fact, expressions generalize,
in some sense, the expression for the adjoint of composition operators induced by
linear fractional maps obtained in [2].

Theorem 3.8. Let ϕ be a rational map taking D into itself. Let ϕ̃−1 denote the
multiple valued algebraic function defined by ϕ̃−1(z) = ϕ−1(1/z). Then, for any f
in H2(D)

C∗ϕf(z) = BWψ, σf(z),

where B is the backward shift operator and Wψ, σ is the multiple valued weighted

composition operator induced by σ = 1/ϕ̃−1 and ψ = (̃ϕ−1)′/ϕ̃−1.

Before proceeding further, observe that σ is a multiple valued function that
takes D into itself since the the rational map ϕ is assumed to do so. In addition, no
branches of ϕ̃−1 vanish in D, and ψ and σ satisfy the properties of Definition 3.2,
so Wψ,σ is well defined on D.
Proof of Theorem 3.8. In order to get an expression for C∗ϕ, let f and g be polyno-
mials. Let g̃ be the holomorphic function in {z : |z| > 1} defined by g̃(z) = g(1/z).
It holds that if g has non-tangential limit g(ζ) at ζ in ∂D, then so does g̃ and
g̃(ζ) = g(ζ). Then,

〈f, C∗ϕg〉H2(D) =
1
2π

∫ 2π

0

f(ϕ(eiθ))g(eiθ) dθ

=
∫
∂D
f(ϕ(ζ))g̃(ζ)

dζ

ζ
.

Let ϕ−1(D) denote the component in C which contains D. Observe that since ϕ has
no poles in ϕ−1(D), and g̃ is holomorphic {z : |z| > 1}, Cauchy’s Theorem yields

〈f, C∗ϕg〉H2(D) =
∫
∂ϕ−1(D)

f(ϕ(ζ))g̃(ζ)
dζ

ζ
.(6)

Now, since ϕ is a rational map, there exists a positive integer N and N arcs of
curve Γj ⊂ ∂ϕ−1(D) such that

∂ϕ−1(D) =
N⋃
j=1

Γj ,

Γj ∩ Γk = ∅ for j 6= k and, for each j = 1, · · · , N the arc of curve Γj is mapped
onto ∂D by ϕ. Thus, the integral in (6) is equal to

N∑
j=1

∫
Γj

f(ϕ(ζ))g̃(ζ)
dζ

ζ
.(7)
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At this point, we may proceed with the change of variables ϕ(ξ) = η in each of the
integrals involved in the sum in (7), since ϕ takes Γj bijectively onto ∂D. Once
again, abusing the notation, we will write ϕ−1 for all branches ϕ−1

j of ϕ−1. Then,
it follows

〈f, C∗ϕg〉H2(D) =
∫
∂D
η f(η)

 N∑
j=1

g̃(ϕ−1(η))
ϕ−1(η)ϕ′(ϕ−1(η))

 dη

η

Now, observe that whenever η is in ∂D we have

g̃(ϕ−1(η)) = g

(
1

ϕ̃−1(η)

)
.

Therefore, a little computation shows that

〈f, C∗ϕg〉H2(D) =
∫
∂D
η f(η)

(∑ (̃ϕ−1)′(η)

ϕ̃−1(η)
g

(
1

ϕ̃−1(η)

))
dη

η

which is the desired expression.

This gives a simple condition for the functions in the kernel of C∗ϕ when ϕ is a
rational function.

Corollary 3.9. Let ϕ be a rational function taking D into itself and let ψ and σ

be defined as in the statement of Theorem 3.8. Then f in H2(D) is in the kernel
of C∗ϕ if and only if ∑

ψ(z) f(σ(z)) =
∑

ψ(0)f(σ(0))

for all z in D.

Proof. The function f in H2(D) is in the kernel of C∗ϕ if and only if BWψ, σf is the
zero function. Since the kernel of the backward shift operator B is the subspace of
constant functions, this means f is in the kernel of C∗ϕ if and only if Wψ, σf is a
constant function. That is, the value of

∑
ψ(z) f(σ(z)) is the same for every z in

D as it is at z = 0.

4. The Measurable Case: projected multiple valued weighted

composition operators

The definitions in Section 3 can be extended to cases in which the multiple valued
functions which are symbols for the operator are no longer analytic in the expected
domain. In this case, in addition to considering the generalization to multiple
valued functions, we must project the function constructed by the operator in L2

back into the subspace of analytic functions, as in the case of Toeplitz operators,
to complete the definition. The purpose of this section is to carry out the study of
such operators.
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We begin with a Hilbert space of analytic functions H that is a closed subspace
of L2(X, dµ) where each function of H can be extended to a subset of full measure
in X. For some positive integer n, let Y be X × {1, 2, 3, · · · , n} with the product
topology and let π be the map π(x, j) = x for (x, j) in Y . When ∆ is an open
subset of Y such that π(∆) has full measure in X, we say that ∆ almost covers X
with finite multiplicity.

Suppose S is a measurable map of ∆ to X and Ψ is a measurable complex
valued function on ∆. Alternatively, we may describe this as n maps S1, S2,
· · · , Sn on X, where for each j, the function §j(x) is defined on the open set
{x : (x, j) ∈ ∆ ∩X × {j} } by Sj(x) = S(x, j). Similarly, we define functions Ψj

by Ψj(x) = Ψ(x, j).

Definition 4.1. The compatible pair (ψ, σ) of multiple valued (measurable) func-
tions on X is the collection of the maps defined above by Y , ∆, Ψ, and S where the
‘values’ of ψ at a point x of X are the values {Ψj(x)|(x, j) ∈ ∆} and the ‘values’
of σ at a point x of X are the values {Sj(x)|(x, j) ∈ ∆}.

Definition 4.2. Suppose (ψ, σ) is a compatible pair of multiple valued (measurable)
functions on X as in the definition above. We say (ψ, σ) is a simple compatible
pair of multiple valued (measurable) functions on X if each of the functions Sj is
one-to-one on its domain {x|(x, j) ∈ ∆}.

In some sense, to call ψ and σ ‘multiple valued functions’ is an abuse of ter-
minology, but since the very term ‘multiple valued function’ is self-contradictory,
this seems to the authors to be a minor transgression that is covered by the careful
definition above of its meaning. With this in mind, we will use terminology like ψ
is in L∞, or σ is C1, and so on, to mean more precisely Ψ is in L∞(∆) and S is C1

on ∆.
Note that the conditions on X, π, and ∆ guarantee that ψ and σ are defined

almost everywhere on X and each function has at most n values at any point.
When (ψ, σ) is a simple pair, we also have the consequence that no point of X has
more than n preimages under σ.

We also point out that this structure is a generalization of the structure intro-
duced in Section 3 for multiple valued weighted composition operators. To see this,
depending on the specific example, X might be Ω or (part of) ∂Ω and the domain
∆ of Y is obtained by removing the set K as well as judiciously chosen branch
cuts so as to separate the branches from one another. The compatibility conditions
stated in Section 3 become the requirement that Ψ and S have the same domain
∆.

Definition 4.3. Suppose X is a measurable space as above and suppose (ψ, σ) is
a compatible pair of multiple valued (measurable) functions on X. The multiple
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valued weighted composition operator Wψ,σ on L2(X, dµ) is the operator given by

(Wψ,σf)(x) =
∑
j

Ψj(x)f(Sj(x))

Definition 4.4. Suppose H is a Hilbert space of analytic functions that is a closed
subspace of L2(X, dµ) as above and suppose (ψ, σ) is a compatible pair of multiple
valued (measurable) functions on X. Then the projected multiple valued weighted
composition operator Vψ,σ is given by

Vψ,σf = PWψ,σf

where f is in H and P is the orthogonal projection of L2(X, dµ) onto H.

Theorem 4.5. Suppose (ψ, σ) is a simple compatible pair of multiple valued func-
tions the unit circle such that σ is of class C1 on the circle and (σ′)−1 and ψ are in
L∞(∂D). If Wψ,σ is the multiple valued weighted composition operator on L2(∂D)
defined by this compatible pair as above, then Wψ,σ is bounded and

‖Wψ,σ‖ ≤ ‖ψ‖∞
√
n ‖(σ′)−1‖∞

where n is the multiplicity of σ.

Corollary 4.6. Suppose (ψ, σ) is a simple compatible pair of multiple valued func-
tions the unit circle such that σ is of class C1 on the circle and (σ′)−1 and ψ are
in L∞(∂D). If Vψ,σ is the projected multiple valued weighted composition operator
on H2(D) defined by this compatible pair as above, then Vψ,σ is bounded and

‖Vψ,σ‖ ≤ ‖ψ‖∞
√
n ‖(σ′)−1‖∞

where n is the multiplicity of σ.

From the definitions above, we are actually assuming that we have ∆ open in
{1, 2, · · · , n} × ∂D and a map S from ∆ into ∂D such that Sj is C1 on

∆j = {eiθ|(eiθ, j) ∈ ∆}

an open subset of the unit circle and that each Sj is one-to-one on ∆j .

Proof. Suppose f is in L2(∂D). Then

(Wψ,σf)(eiθ) =
∑
j

Ψj(eiθ)f(Sj(eiθ))

To find the norm of this function, we must integrate∣∣∣∣∣∣
∑
j

Ψj(eiθ)f(Sj(eiθ))

∣∣∣∣∣∣
2

≤

∑
j

|Ψj(eiθ)||f(Sj(eiθ))|

2

≤ ‖ψ‖2
∞

∑
j

|f(Sj(eiθ))|

2
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Now the Cauchy-Schwartz inequality using the vector of ones in Cn implies∑
j

|f(Sj(eiθ))|

2

≤ n
∑
j

∣∣f(Sj(eiθ))
∣∣2

The simplicity of the pair (ψ, σ) means that we can change variables in the
integral ∫

∆j

∣∣f(Sj(eiθ))
∣∣2 dθ

2π

by eit = Sj(eiθ) for eit in Sj(∆j) to get∫
∆j

∣∣f(Sj(eiθ))
∣∣2 dθ

2π
≤

∫
Sj(∆j)

∣∣f(eit)
∣∣2 ∣∣∣∣∣ 1

S′j(eiθ(t))

∣∣∣∣∣ dt2π

≤

∥∥∥∥∥ 1
S′j

∥∥∥∥∥
∞

∫
Sj(∆j)

∣∣f(eit)
∣∣2 dt

2π

≤

∥∥∥∥∥ 1
S′j

∥∥∥∥∥
∞

‖f‖2.

Putting this all together, we get∫ ∣∣∣∣∣∣
∑
j

Ψj(eiθ)f(Sj(eiθ))

∣∣∣∣∣∣
2

dθ

2π
≤

∫ ∑
j

|Ψj(eiθ)||f(Sj(eiθ))|

2

dθ

2π

≤ ‖ψ‖2
∞

∫ ∑
j

|f(Sj(eiθ))|

2

dθ

2π

≤ ‖ψ‖2
∞n

∑
j

∫
∆j

∣∣f(Sj(eiθ))
∣∣2 dθ

2π

≤ ‖ψ‖2
∞n

∑
j

∥∥∥∥∥ 1
S′j

∥∥∥∥∥
∞

‖f‖2

≤ ‖ψ‖2
∞n

∥∥∥∥ 1
σ′

∥∥∥∥
∞
‖f‖2

Thus, we get

‖Wψ,σf‖2 ≤ ‖ψ‖2
∞n

∥∥∥∥ 1
σ′

∥∥∥∥
∞
‖f‖2

for every f in L2(∂D) which means

‖Wψ,σ‖ ≤ ‖ψ‖∞

√
n

∥∥∥∥ 1
σ′

∥∥∥∥
∞

as we wished to prove. �

The Corollary follows trivially from the Theorem because the projection from
L2 to H2(D) has norm one.
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