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Abstract. Linear fractional maps in several variables generalize classical lin-
ear fractional maps in the complex plane. In this paper, we describe some
geometric properties of this class of maps, especially for those linear fractional
maps that carry the open unit ball into itself. For those linear fractional maps
that take the unit ball into itself, we determine the minimal set containing
the open unit ball on which the map is an automorphism which provides a
means of classifying these maps. Finally, when ϕ is a linear fractional map, we
describe the linear fractional solutions, f , of Schroeder’s functional equation
f ◦ ϕ = Lf .

1. Introduction

Linear fractional maps are basic in the theory of analytic functions in the
complex plane and in the study of those functions that map the unit disk into itself.
We would expect the analogues of these maps in higher dimensions to play a similar
role in the study of analytic functions in CN and in the study of those functions
that carry the unit ball in CN into itself. In particular, the linear fractional maps of
the unit disk can be classified, most analytic maps of the unit disk into itself inherit
one of these classifications, and the classification informs the understanding of the
map, for example, of its iteration or the properties of the composition operators with
it as symbol. Based on the classification, the solutions of Schroeder’s functional
equation can be determined and the more general maps of the disk inherit solutions
of Schroeder’s functional equation.

In this paper, we wish to begin analogous development for several variable
analytic maps of the unit ball into itself by building a classification of the several
variable linear fractional maps and by solving Schroeder’s functional equation for
these linear fractional maps. In [4], Cowen and MacCluer define and study a class
of linear fractional maps in several variables, relate them to Krĕın spaces, and prove
basic facts about their composition operators; this paper will use their notation and
point of view.

Definition A map ϕ will be called a linear fractional map if

ϕ(z) = (Az +B)(〈z, C〉+D)−1

where A is an N × N matrix, B and C are (column) vectors in CN , and D is a
complex number. We will regard z as a column vector also and 〈·, ·〉 denotes the
usual Euclidean inner product on CN .
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Clearly, the domain of a linear fractional map is the set of z in CN for which
〈z, C〉+D 6= 0. The unit ball BN in CN is the set {z : |z| < 1} and the unit sphere is
the set {z : |z| = 1}. In many cases, we want the domain of ϕ to include the closed
ball. Since z = −DC/|C|2 is a zero of 〈z, C〉 +D, for the domain of ϕ to include
the unit ball requires | −DC/|C|2| > 1 or, equivalently, |D| > |C|. Conversely, if
|D| > |C|, then by the Cauchy-Schwarz inequality we will have 〈z, C〉+D 6= 0 for
z in the closed ball. In particular, D is non-zero for these linear fractional maps.

Identifying a 1 × 1 matrix with its entry, we occasionally write 〈z, C〉 = C∗z.
For example, using this identification we can see that a linear fractional map is
constant if (and only if) A = BC∗/D. We will usually avoid the case of constant
maps.

In order to use tools from the theory of Krĕın spaces, we will sometimes identify
CN with equivalence classes of points in CN+1. If v = (v1, v2) where v1 is in CN
and v2 6= 0 is in C, identify v with v1/v2; in particular, z ↔ (z, 1). We introduce a
Krĕın space structure on CN+1 by letting [v, w] = 〈Jv, w〉 where 〈·, ·〉 is the usual
(Euclidean) inner product on CN+1 and

J =

(
I 0
0 −1

)
In this setting, v represents a point of the unit sphere if and only if |v1| = |v2| which
occurs if and only if [v, v] = |v1|2 − |v2|2 = 0 and v represents a point of the unit
ball if and only if [v, v] < 0.

Definition If ϕ(z) = (Az+B)(〈z, C〉+D)−1 is a linear fractional map, the matrix

mϕ =

(
A B
C∗ D

)
will be called a matrix associated with ϕ.

Notice that if ϕ is a linear fractional map with ϕ(z) = w and v is a point of
CN+1 associated with z, then mϕv is associated with the point w and vice versa.
If ϕ1 and ϕ2 are linear fractional maps, direct computation of ϕ1 ◦ϕ2 and mϕ1mϕ2

shows that ϕ1 ◦ ϕ2 is a linear fractional map with associated matrix mϕ1◦ϕ2 =
mϕ1mϕ2 . In particular, if ϕ has a linear fractional inverse, mϕ−1 = (mϕ)−1 and if
mϕ is invertible, ϕ has a linear fractional inverse.

Note that, if g(z) = Az for some matrix A, then mg =

(
A 0
0 1

)
, or more

generally, mg =

(
αA 0

0 α

)
for α 6= 0, are matrices associated with g.

2. Classification of Linear Fractional Maps

In this section, we consider linear fractional maps that take the unit ball BN
into itself. An analytic map of the (open) ball to itself may have fixed points in the
ball or it may have no fixed points in the ball. If an analytic map, ϕ, of the ball to
itself has no fixed points in the ball, there is a point ζ with |ζ| = 1 such that the
iterates of ϕ converge to ζ uniformly on compact subsets of the ball. In this case,
we will refer to ζ as the Denjoy-Wolff point of ϕ. Of course, if ϕ is continuous on
the closed unit ball, such as a linear fractional map that takes the ball into itself,
then the Denjoy-Wolff point ζ is a fixed point of ϕ. If ϕ has a fixed point in the
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ball to which the iterates converge (as must be the case when N = 1 and ϕ is not
an automorphism), we will also call this point the Denjoy-Wolff point of ϕ.

In one dimension, linear fractional maps can model those analytic self maps of
the disk that have non-zero derivative at their Denjoy-Wolff point. In particular,
given ϕ : D → D, there exists an open set Ω and an analytic map σ : D → Ω such
that σ ◦ ϕ = Φ ◦ σ, where Φ is a linear fractional map of Ω onto Ω [2, p. 63]. If we
also insist that Ω be the smallest set containing σ(D) for which Φ(Ω) = Ω, then the
model parameters (σ, Ω, and Φ) are unique up to holomorphic equivalence. This
leads to a classification of analytic maps of the disk into itself according to which
linear fractional maps can be used to model the map. Of course, at the same time,
this classifies linear fractional maps. The classification results in four cases: half
plane / dilation, half plane / translation, plane / dilation, and plane / translation.
The domain Ω, which we have taken to be either the complex plane or a half-plane,
will be referred to as the characteristic domain for the model.

In several variables, the ability to model general analytic maps remains an
open question, but some progress has been made [3, 1]. We believe the first step in
obtaining such a model is to better understand linear fractional maps in dimension
two and higher. In this section, we provide a complete classification of linear frac-
tional maps in two dimensions and a partial classification in N dimensions with the
goal of providing the foundation of the classification of analytic maps of the ball
into itself.

Thus, we will try to find a small number of linear fractional maps Φ and
domains Ω in CN such that, given a linear fractional map ϕ of the ball into itself,
we can find one of these Φ and Ω and an open map σ of BN into Ω so that

σ ◦ ϕ = Φ ◦ σ(1)

where Φ(Ω) = Ω and Ω is the smallest set containing σ(BN ) that is invariant for
Φ. It is the case, since we are assuming ϕ is linear fractional, that it is sufficient to
take σ to be invertible and a linear fractional map as well. For dimension two, it
will turn out that we can choose the characteristic domain Ω to be one of C2, the
half-space {(z1, z2) : Re z1 > 0}, or the Siegel half-space {(z1, z2) : Re z1 > |z2|2}
(which is equivalent to the ball B2).

Notice that Φ is an automorphism of Ω, that is, Φ is an invertible linear
fractional map and Φ−1(Ω) = Ω also. Since σ(BN ) ⊂ Ω, we get Φ−1(σ(BN )) ⊂
Φ−1(Ω) = Ω. Continuing, we get Φ−n(σ(BN )) ⊂ Ω for every positive integer n.
To say that Ω is the smallest domain that satisfies the conditions associated with
Equation (1) means that Ω = ∪∞n=1Φ

−n(σ(BN )). In particular, for every point w
in Ω, there is n so that Φn(w) is in σ(BN ).

Suppose ϕ is a linear fractional map on BN that satisfies σ ◦ϕ = Φ ◦ σ. If η is
an automorphism of the ball and ψ = η−1 ◦ ϕ ◦ η, let τ = σ ◦ η. Then

τ ◦ ψ = σ ◦ η ◦ η−1 ◦ ϕ ◦ η = σ ◦ ϕ ◦ η = Φ ◦ σ ◦ η = Φ ◦ τ

and τ(BN ) = σ(η(BN )) = σ(BN ). This means that the data Φ and Ω for the
solution of Equation (1) for ϕ are the same for any ψ that is equivalent to ϕ under
conjugation as above. Moreover, if p is a fixed point of ϕ, then q = η−1(p) is a
fixed point of ψ:

ψ(q) = η−1(ϕ(η(η−1(p)))) = η−1(ϕ(p)) = η−1(p) = q
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In particular, we can normalize the linear fractional maps that we consider with
no loss of generality and no change in the classification data. In general, if a linear
fractional map has an attractive fixed point in the ball, we will use an automorphism
to change the attractive fixed point to be 0. If a linear fractional map has an
attractive fixed point ζ on the unit sphere, we will use a rotation to move it to e1,
the “east pole” of the unit ball.

There are two special cases, somewhat degenerate, of linear fractional maps of
the ball into itself that will not be considered in this paper. First, we will exclude
linear fractional maps that are not invertible as maps of CN onto itself; these map
the ball into a lower dimensional affine set. We will also exclude linear fractional
maps of the ball that do not have a Denjoy-Wolff point; for such maps there is
an affine subset of dimension one or more, having non-trivial intersection with the
ball, on which the map acts as a generalized rotation.

The easiest case occurs when ϕ has an attractive fixed point in the interior
of the ball, which we can assume to be the origin. In that case, there exists a
linear fractional map σ such that σ ◦ ϕ = ϕ′(0)σ [3, Example 3]. That is, Φ in
Equation (1) is multiplication by ϕ′(0). Since σ maps BN onto a neighborhood of
the origin, and the non-degeneracy conditions above mean ϕ′(0) is invertible and
all its eigenvalues are less than one in modulus, we see that Ω must be CN . This
case will be referred to as the whole space / dilation case.

For the remainder of this section, we will assume ϕ has no fixed points in
the open ball and that e1 is the Denjoy-Wolff point of ϕ, as any boundary fixed
point can be moved to e1 with the use of a generalized rotation and our map could
be replaced by the equivalent map obtained by conjugating by this generalized
rotation.

To do the full classification, we will make heavy use of the Jordan Canonical
Form of mϕ. In particular, when ϕ is a linear fractional map, mϕ can be factored
as

mϕ = SΛS−1(2)

where the columns of S are (generalized) eigenvectors of mϕ and Λ is in Jor-
dan Canonical Form, chosen so that its off-diagonal elements are ones on the sub-
diagonal. If ϕ is a linear fractional map of the ball into itself and ψ is an auto-
morphism of the ball, then ψϕψ−1 is another linear fractional map of the ball into
itself that is equivalent to ϕ. Moreover, we see that

mψmϕm
−1
ψ = mψSΛS−1m−1

ψ = (mψS)Λ(mψS)−1(3)

so that both ϕ and ψϕψ−1 yield the same Jordan canonical form matrix.
Recalling from [4, Thm. 9] that the eigenvectors of mϕ correspond to fixed

points of ϕ, we see the case that Λ is diagonal corresponds to the linear fractional
map ϕ having N + 1 distinct fixed points. This theorem also says that the affine
set containing several fixed points of ϕ is fixed as a set by ϕ. For maps of the ball
into itself, the character of the fixed points different from the Denjoy-Wolff point
change depending on whether the line joining the fixed point and the Denjoy-Wolff
point is tangent to the ball or not, because if it is not, this line, which is fixed as
a set by ϕ, intersects the interior of the ball. With this in mind, as a definition, if
p is a point of the unit sphere, we call a point q in CN p-tangential if q lies in the
hyperspace tangent to the ball at the point p. If the Denjoy-Wolff point of ϕ is e1,
it is not difficult to show that for all but one column of S, the associated point in
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CN must be e1-tangential [7, page 891]. The points in CN that are e1-tangential
are precisely those whose first coordinate is 1 and the associated vectors in CN+1

have their first and last coordinates equal. The vectors in CN+1 whose first and
last coordinates are zero correspond to the points in the hyperplane at infinity that
are e1-tangential.

In order to proceed with the classification, we first normalize the map by
replacing it with a conjugate linear fractional map whose fixed points are more
convenient. Equation (3) shows that this is the same as giving S a simpler form.
Since we have already assumed the Denjoy-Wolff point of our map is e1, we will
move all other e1-tangential fixed points off to e1-tangential points at infinity while
keeping e1 fixed. We will then move the remaining fixed point to an infinite point
that is not in the e1-tangential hyperspace. If some columns of S are generalized
eigenvectors which do not correspond to actual fixed points, we will still perform
the equivalent algebraic manipulations.

In order to do this normalization, we must be familiar with two particular
classes of automorphisms of BN . The first type, ψb, has exactly one fixed point,
and corresponds to a Heisenberg translation when considered on the Siegel half-
space. That is, ψb = Ψ−1 ◦ hb ◦ Ψ where Ψ(z) = (z + e1)/(−z1 + 1), b is on the
boundary of the Siegel half-space {z : Re(z1) > |z2|2 + · · · + |zN |2}, and hb is the
Heisenberg translation hb(z) = Az + b where

A =


1 2b2 · · · 2bN
0 1 · · · 0
...

. . .
. . .

...
0 · · · 0 1


The map Ψ is a biholomorphic map that takes the ball onto the Siegel half-space,
−e1 to 0 on the boundary of the Siegel half-space, and e1 to the infinite point in
the direction of e1, which we sometimes write as e1,∞. For each b, the Heisenberg
translation hb is an automorphism of the Siegel half-space. Moreover, noting that
the matrix for hb is

mhb =

(
A b
0 1

)
we see that hb fixes e1,∞ (which corresponds to the vector (e1, 0) in CN+1), maps
the hyperplane at infinity (which corresponds to the hyperplane {(v, 0) : v ∈ CN} in
CN+1) onto itself since mhb(v, 0) = (Av, 0), and maps finite points to finite points.

In the equation mϕ = SΛS−1, the columns of S correspond to the Denjoy-
Wolff point e1, N − 1 points that are e1-tangential, and one point that is not
e1-tangential. We want to choose ψ = ψb in Equation (3) so that the columns of
mψS correspond to e1, N−1 points at infinity that are e1-tangential, and one point
that is not e1-tangential. A vector corresponds to an e1-tangential point at infinity
exactly when its first and last entries are zero, and each of these corresponds to a
fixed point of the biholomorphic map Ψ.

Components b2, b3, · · · , bN of b are entries of A and we can choose b1 =
|b2|2 + · · · + |bN |2 to get a point on the boundary of the Siegel half-space. Since
N − 1 of the columns of S correspond to e1-tangential points, we can find b so that
mhb moves the vectors corresponding to their images under Ψ to vectors whose
first and last components are zero. This corresponds to moving the e1-tangential
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points of interest to e1-tangential points at infinity. Replacing S by mψbS corre-
sponds to replacing ϕ by an equivalent linear fractional map whose fixed points
(and their generalizations) are, with a single exception, at e1 and e1-tangential
points at infinity.

The second type, τk, is chosen to fix e1 as well as the above mentioned hyper-
space hyperspace of e1-tangential points at infinity. To be specific, τk is the linear
fractional map with associated matrix (in block form) 1 + |k|2 0 |k|2 − 1

0 2kIN−1 0
|k|2 − 1 0 1 + |k|2


where IN−1 is the N − 1 dimensional identity matrix. With an appropriate choice
of k, the column of mψbS corresponding to the point that is not e1-tangential can
be transformed so that it has a 0 as its bottom entry as long as this point was
not a second fixed point on the boundary of BN . This corresponds to moving that
point to some infinite point. Incidentally, τk can also be used, in conjunction with
two rotations to move a second boundary point to −e1 which will later be used for
convenience.

Thus, if a linear fractional map of the ball into itself has no fixed point in the
open ball and has a single fixed point on the unit sphere, we can replace it with
an equivalent linear fractional map of the ball into itself that has its Denjoy-Wolff
point at e1 and its other fixed points (and generalizations) at infinity.

While subjectively different, the two boundary fixed point case is in fact equiv-
alent to the one boundary fixed point case in a neighborhood of the Denjoy-Wolff
point. The map η with

mη =

 2 0 0
0 IN−1 0
1 0 1


is an automorphism of CN together with its points at infinity which fixes e1, pre-
serves the e1-tangential hyperplane as a set, and moves −e1 to the infinity as-
sociated to (1, 0, 0). Equivalently, η({z : −1 < Re z1 < 1}) = {z : Re z1 < 1}
demonstrating the equivalence of the strip (the natural characteristic domain for a
non-automorphic linear fractional map fixing ±e1) and the half-space result given
below.

We can therefore say that every linear fractional map ϕ that has a boundary
fixed point is equivalent to one where the S of Equation (2) is of the block form

S =

 a 0 1
B C 0
0 0 1


where B is (N−1)×1 and C is (N−1)×(N−1) unless e1 and the column (a,B, 0)
are both associated with the same Jordan Block. In that case, the columns of S
may need to be permuted once more. With one more automorphism, C can be
made to be triangular, but this fact is not essential to the following analysis.

We now simply assume that mϕ has been factored as in Equation (2) with S
having the form given in the previous paragraph. If Λ is diagonalizable, or even if
e1 is a fixed point of multiplicity one, then the resulting ϕ must actually be affine.
Additionally, after conjugating by translation by e1 to move the attractive fixed
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point to the origin, the resulting version of ϕ can be seen to be multiplication by a
matrix with norm less than 1.

In one variable, when ϕ is linear fractional and the Denjoy-Wolff point is on
∂D and has multiplicity one, the characteristic domain for the model is always a
half-plane. In two dimensions, the characteristic domain is often a half-space, but
can also be a Siegel half-space. These will be referred to as the half-space / dilation
and Siegel half-space / dilation cases, respectively.

Theorem 1. If ϕ is a linear fractional map which has Denjoy-Wolff point on the
boundary of B2 and which has three distinct fixed points, then the characteristic
domain for the model will be a half-space or a Siegel half-space.

Proof. Since ϕ has three distinct fixed points, the matrix mϕ is diagonalizable.
Using a rotation to move the Denjoy-Wolff point to e1 and the above mentioned
automorphisms (τk, ψb) if necessary, we can assume without loss of generality that
the matrix associated with ϕ has, for some complex number β, the form

mϕ =

 1 0 1
β 1 0
0 0 1

 λ1 0 0
0 λ2 0
0 0 1

 1 0 1
β 1 0
0 0 1

−1

for which the powers, and thus the iterates of ϕ, are easily calculated. It should
also be mentioned that it is easy to determine whether such a ϕ maps the ball into
itself, using the techniques of [7]. Combining the discussion after Theorem 5 with
Theorem 1 from [7] and the realization that 0 < λ1 < 1, we find the necessary
condition

(1− λ1)(λ1 − |λ2|2)− |λ1 − λ2|2|β|2 ≥ 0

which immediately implies that λ1 ≥ |λ2|2.
In considering the model of Equation (1) in this case, we can temporarily use

Φ = ϕ and σ(z) = z. Then, to find the characteristic domain of ϕ, we need to find

Ω = ∪∞n=1ϕ
−n(σ(BN )) = ∪∞n=1ϕ

−n(BN )

Or to put it differently, Ω is the set of points for which there is n so that ϕn(w) is
in BN . Since ϕn(z1, z2) = (λn1 (z1−1)+1, β(λn1 −λn2 )(z1−1)+λn2z2), for λ1 > |λ2|2,
we find that this is inside the ball for sufficiently large n if and only if Re z1 < 1,
a half-space. When λ1 = |λ2|2, we must have β = 0 in order for ϕ to map the
ball into itself. It is then easy to calculate that ϕn(z1, z2) will be in the ball for
sufficiently large n if and only if Re z1 < 2− |z2|2, a Siegel half-space.

For the purposes of the more general model, we normalize both the half-space
and the Siegel half-space to Re z1 > 0 and Re z1 > |z2|2, respectively, so that Φ
becomes multiplication by a matrix of norm less than 1. The final version of σ is
σ(z) = e1 − z. �

As the number of dimensions increases, the necessary conditions and the ex-
plicit iteration become rather unwieldy, though evidence supports the following
conjecture.

Conjecture 2. If ϕ is a linear fractional map which has Denjoy-Wolff point on
the boundary of BN for which the corresponding matrix mϕ is diagonalizable, then
the characteristic domain for the model will be a set of the form {z : Re z1 > 0} or
{z : Re(z1) > |z2|2 + . . .+ |zk|2} where k ≤ N . When k = N , this is a classic Siegel
half-space. When k < N , the regions are known as Siegel domains of Type I.



8 COWEN, CROSBY, HORINE, ORTIZ, RICHMAN, YEOW, ZERBE

It is apparent that the characteristic domain should be at most quadratically
bounded since the ball is defined by a quadratic polynomial. That is, when ϕ is
linear fractional, ϕn(z1, z2, . . . , zN) will be of the form (f1(z)/g(z), . . . , fN(z)/g(z))
where fk and g are affine maps and therefore, ϕn(z1, . . . , zN ) ⊂ BN if and only if
z1, . . . , zN satisfy a particular quadratic inequality. Letting n tend toward infinity
will not change the type of inequality.

When N = 3, using the factorization of mϕ from Equation (2), we can show
that S must have the form

S =

 1 0 1
B C 0
0 0 1


If λ1 > |λ2|2 and λ1 > |λ3|2, it becomes a fairly simple calculation to show that
the characteristic domain is a half-space. The term which gives rise to this persists
in the many variable case. Moreover, when λ1 = |λ2|2 = |λ3|2, in order for ϕ to
be a self map of the ball, it must be the case that B = 0 and C = I2, analogously
to the two variable case. In this situation, the iteration is again trivial, and the
characteristic domain becomes the Siegel half-space {z : Re(z1) > |z2|2 + |z3|2}.

For any number of variables, we can take S to have the form

S =

 1 0 1
0 In−1 0
0 0 1


By then choosing λ1 = |λj |2 when j ∈ J , we get the result that ϕn(z) ∈ BN if and
only if Re z1 < 2−

∑
j∈J |zj |2. We can then permute the variables, which is justified

by the symmetry of the problem in z2, . . . , zN and normalize to get a characteristic
domain of the desired form.

The behavior of a map near a fixed point of multiplicity greater than one is, of
necessity, more complicated. Therefore, the model for linear fractional maps with
boundary fixed point with multiplicity greater than 1 will be non-trivial. It should
be noted that that these maps are generally analyzed more easily on a Siegel half-
space than on the ball. In particular, we will use the map Ψ defined above to move
e1 out to a point at infinity. We then become interested in the automorphisms
of CN which map {z : Re z1 > |z2|2 + . . . + |zN |2} into itself and fix the point
e1,∞ = Ψ(e1) which is the point associated to the vector (1, 0, . . . , 0).

By the use of direct calculation when N = 2, we find these automorphisms to
include the Heisenberg translations, the translations parallel to the axis of the Siegel
half-space (i.e. z� z+e1), and the contractions acting on the second variable (i.e.
(z1, z2) � (z1, cz2) for |c| ≤ 1 as well as their products. The accompanying table
illustrates the possibilities.

In particular, direct calculation shows that when ϕ is a linear fractional map
which has a triple fixed point at e1, then ϕ is equivalent to a product of a Heisenberg
translation and, if not an automorphism, a translation parallel to the axis. It is easy
to see that except in the automorphism case, any point in C2 will be mapped into the
Siegel half-space upon iteration of this product, so C2 is the characteristic domain.
This case will be called the whole space / Heisenberg translation - translation case.
The automorphism case will be referred to as the Siegel half-space / Heisenberg
translation case.
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When ϕ has a double fixed point, there are two possibilities. If e1 and the other
fixed point have the same eigenvalues associated to them in the matrix factorization,
then the map is equivalent to a simple translation. It is again easy to see that the
characteristic domain will be the whole space, so we will refer to this case as the
whole space / translation case. Finally, the map may be asymptotic to a translation.
On the Siegel half-space, these maps are of the form

(z1, z2)→ (z1 + a,mz2 + b)

where Re a ≥ 0, |m| ≤ 1, and |b|2 ≤ (Re a)(1 − |m|2). These three conditions
are necessary and sufficient to guarantee that this maps the Siegel half-space into
itself. The first condition is best viewed as a translation term, the second as a
compression. The third condition is there to guarantee that any off-axis translation
is dominated by the other terms. Regardless of the value of b, an iterate of this
function will map any point in C2 into the Siegel half-space, so the characteristic
domain is again the whole space, so we refer to these functions as belonging to the
whole space / asymptotic translation case.

Table of examples in two dimensions

Case Sample ϕ(z1, z2)

Whole space / dilation ϕ(z) =
(z1

2
,
z2

5

)
Half-space / dilation ϕ(z) =

(
z1 + 4

5
,
2z2

5

)
Siegel half-space / dilation ϕ(z) =

(
z1 + 3

4
,
z1

2

)
Whole space / Heis. trans.-translation ϕ(z) =

(
z2 + 1

−z1 + z2 + 2
,
−z1 + z2 + 1

−z1 + z2 + 2

)
Siegel half-space / Heis. trans. ϕ(z) =

(
z1 + 2z2 + 1

−z1 + 2z2 + 3
,
−2z1 + 2z2 + 2

−z1 + 2z2 + 3

)
Whole space / translation ϕ(z) =

(
z1 + 1

−z1 + 3
,

2z2

−z1 + 3

)
Whole space / asymptotic translation ϕ(z) =

(
z1 + 1

−z1 + 3
,
−z1 + z2 + 1

−z1 + 3

)

In N dimensions, the same compression, translation, and Heisenberg transla-
tion factors can be used to create linear fractional maps with a boundary points
fixed with any multiplicity. The characteristic domain is then determined by the
various factors. In particular, eigenvalues of modulus 1 in a contraction factor can
result in different characteristic domains which are of Siegel type I, analogous to
those mentioned in Conjecture 2.
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3. Schroeder’s Equation

For an arbitrary analytic map ϕ of the disk D to itself, fixing 0 and with
ϕ′(0) = λ satisfying 0 < |λ| < 1, Koenigs [6] in 1884 gave an essentially unique
analytic function f in D solving Schroeder’s functional equation

f ◦ ϕ = λf(4)

In the years since then, all analytic solutions of Schroeder’s functional equation
have been found for analytic maps of the disk into itself.

When ϕ is an analytic map of BN into BN , we may seek a CN -valued analytic
function f on BN solving the several variable Schroeder equation

f ◦ ϕ = Lf(5)

where L is an N × N matrix. In [4, Theorem 19], Cowen and MacCluer give the
following theorem as a solution of Schroeder’s functional equation in a special case.

Theorem 3. Suppose ϕ : BN → BN is a linear fractional map with ϕ(0) = 0.
Then there is an invertible linear fractional map f defined in a neighborhood of 0,
with f ◦ ϕ = ϕ′(0)f . Moreover, if no eigenvalue of ϕ′(0) has modulus 1, then the
domain of f includes the unit ball, BN .

Our goal in this section is to find, for linear fractional maps ϕ, all invert-
ible linear fractional solutions f of Schroeder’s functional equation in several vari-
ables. The following theorem describes how various solutions of Schroeder’s equa-
tion might be related to other solutions. The remaining results of the section
complete the goal of finding linear fractional solutions of Schroeder’s functional
equation when ϕ is a linear fractional map.

Theorem 4. Suppose L1 is an N × N matrix and suppose f1 is an invertible
linear fractional solution of f1 ◦ ϕ = L1f1. If L2 is a matrix similar to L1, say
L2 = PL1P

−1 for some invertible N × N matrix P , then f2 = Pf1 is a solution
of f2 ◦ ϕ = L2f2. Conversely, if L1 has no eigenvalues that are roots of unity, L2

is similar to L1, and f1, f2 are invertible functions satisfying f1 ◦ ϕ = L1f1 and
f2 ◦ ϕ = L2f2, then there is an invertible matrix P so that L2 = PL1P

−1 and
f2 = Pf1.

Proof. Let mf1 ,mf2 ,mϕ,mL1 , and mL2 be the matrices associated with the linear
fractional maps f1, f2, ϕ and multiplication by L1 and L2, respectively. Without
loss of generality, we choose the constants so that

mL1 =

(
L1 0
0 1

)
and mf1mϕ = mL1mf1 and mf2mϕ = mL2mf2

Then mϕ = m−1
f1
mL1mf1 = m−1

f2
mL2mf2 so that(

mf2m
−1
f1

)
mL1 = mL2

(
mf2m

−1
f1

)
(6)

Suppose that in block form (
mf2m

−1
f1

)
=

(
A B
C D

)
where A is N ×N . We then have that(

A B
C D

)(
L1 0
0 1

)
=

(
αL2 0
0 α

)(
A B
C D

)
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where α 6= 0 and therefore

AL1 = αL2A, B = αL2B, CL1 = αC, and D = αD.

Since L1 and L2 were assumed to be similar, they have the same set of eigenvalues,
say µ1, µ2, . . . , µk. From Equation (6), we have that mL1 is similar to mL2 and
therefore have the same eigenvalues. Since

mL1 =

(
L1 0
0 1

)
and mL2 =

(
αL2 0
0 α

)
we see that the eigenvalues of mL1 are {1, µ1, µ2, . . . , µk} while the eigenvalues of
mL2 are {α, αµ1, . . . , αµk}. Since these sets are the same, and indeed, the same as
{αj , αjµ1, . . . , α

jµk} for every integer j, we see that αmust be a root of unity. Since
no root of unity is an eigenvalue of L1, no root of unity can be an eigenvalue of L2.
Thus, αL2B = B implies that B = 0. Similarly, CL1 = αC implies L∗1C

∗ = αC∗

and no root of unity is an eigenvalue of L∗1 so C∗ = 0 and C = 0. Hence,

mf2m
−1
f1

=

(
A 0
0 D

)
and mf2 =

(
A 0
0 D

)
mf1 .

Thus by taking P = D−1A, we have f2 = Pf1 and since AL1 = L2A, we also have
L2 = PL1P

−1. �

It is worth examining the reason for the hypothesis that no root of unity
is an eigenvalue of L1. The reason is evident with the following example: Let
f1(z1, z2) = (z1, z2), let f2(z1, z2) = (z2/z1, 1/z1), and let ϕ(z1, z2) = (ζz1, ζ

2z2)
where ζ3 = 1 and ζ 6= 1. Also, consider

L1 = L2 =

(
ζ 0
0 ζ2

)
It can be easily verified that mf1mϕ = mL1mf1 where a 1 is in the lower right
corner of each of these matrices. Using

mL2 =

(
αL2 0
0 α

)
we easily obtain that mf2mϕ = mL2mf2 when α = ζ. It is of course clear that f2

can not be written as Pf1 for any constant 2× 2 matrix P .
In the theorem below, [v] denotes the subspace spanned by the vector v.

Theorem 5. Suppose ϕ is a linear fractional map on CN . There is an N × N
matrix L and an invertible linear fractional map f so that f ◦ ϕ = Lf if and
only if there is an eigenvector v for mϕ with non-zero eigenvalue and a subspace
M ⊂ CN+1 such that M is invariant for mϕ and M ⊕ [v] = CN+1. In this case, L
is similar to the restriction of mϕ to M .

Proof. (⇒) Suppose ϕ, f , and L are as in the hypothesis and satisfy f ◦ ϕ = Lf .
Choose the constants so that mfmϕ = mLmf for

mL =

(
L 0
0 1

)
Since f is invertible, we can rewrite the above equation as mϕm

−1
f = m−1

f mL.

Denote the first N columns of m−1
f by u1, u2, . . . , uN and the last column by v.

Let M = span{u1, u2, . . . , uN}. Since the columns of m−1
f are linearly independent,
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we have immediately that M ⊕ [v] = span{u1, u2, . . . , uN , v} = CN+1. Blocking
m−1
f by columns, we get

mϕm
−1
f

(
u1 u2 · · · uN v

)
=
(
mϕu1 mϕu2 · · · mϕuN mϕv

)
.

On the other hand,

m−1
f mL =

(
u1 u2 · · · uN v

)

l11 l12 · · · l1N 0
l21 l22 · · · l2N 0
...

...
...

lN1 lN2 · · · lNN 0
0 0 . . . 0 1


=

(∑N
j=1 lj1uj

∑N
j=1 lj2uj · · ·

∑N
j=1 ljNuj v

)
Comparing the two expressions, we see that

mϕuj =

N∑
j=1

ljkuj

for each k = 1, . . . , N , soM is invariant formϕ. Also, we see that v is an eigenvector
of mϕ with eigenvalue 1.

(⇐) Conversely, suppose that v is an eigenvector for mϕ with eigenvalue
α 6= 0 and M is an invariant subspace for mϕ such that M ⊕ [v] = CN+1. Let
{u1, u2, . . . , uN} be a basis for M so that {u1, u2, . . . , uN , v} will be a basis for
CN+1. Let S be the matrix whose columns are u1, u2, . . . uN , v. The matrix S is
invertible and the choice of its columns means that in block form,

S−1mϕS =

(
L0 0
0 α

)
for some N × N matrix L0. The right hand side matrix is mL for L = α−1L0

and defining a linear fractional map f by mf = S−1, we see that mfmϕ = mLmf .
That is, f is an invertible linear fractional map and L is an N × N matrix such
that f ◦ ϕ = Lf .

�

By the basic Jordan block of size l associated with the eigenvalue λ, we mean
the l × l matrix whose diagonal entries are λ and whose subdiagonal entries are 1.
The Jordan Canonical Form Theorem says that every matrix is similar to a block
diagonal matrix whose diagonal entries are basic Jordan blocks, and that the set of
basic Jordan blocks is completely determined by the matrix. If A is a matrix, we
say that “A has basic Jordan blocks J1, . . . , Jk” if these are the blocks that occur
in the Jordan canonical form for A.

Corollary 6. Let ϕ be a linear fractional map on CN , let mϕ be a matrix repre-
senting ϕ, and suppose mϕ has basic Jordan blocks J1, J2, . . . , Jk associated with
eigenvalues λ1, λ2, . . . , λk. Let L be an N ×N matrix.

There is an invertible linear fractional map f satisfying f ◦ϕ = Lf if and only
if there is a 1×1 Jordan block Jj with λj 6= 0 for which λjL has basic Jordan blocks
J1, . . . , Jj−1, Jj+1 . . . , Jk.
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Proof. The corollary follows immediately from the proof of Theorem 5. Each basic
Jordan block of mϕ corresponds to an invariant subspace for mϕ, with the 1 ×
1 blocks corresponding to an eigenspace of mϕ. By taking the eigenvector v to
be an eigenvector associated with the 1 × 1 Jordan block Jj (and putting λj in
the lower right corner of the corresponding matrix) and the subspace M to be
the subspace spanned by the invariant subspaces associated with the basic Jordan
blocks J1, . . . , Jj−1, Jj+1 . . . , Jk, the proof of Theorem 5 shows that the resulting
matrix mL is

mL =

(
λjL 0
0 λj

)
which is similar to mϕ and has the same basic Jordan blocks. In particular, the
matrix λjL has the blocks of mϕ except Jj . �

Corollary 7. Let ϕ be a linear fractional map on CN such that mϕ is invertible
and diagonalizable and let L be an N ×N matrix.

If the eigenvalues of mϕ are λ1, λ2, · · · , and λN+1, then there is an invert-
ible linear fractional map f satisfying f ◦ ϕ = Lf if and only if L is a diago-

nalizable matrix whose eigenvalues are {λ1

λj
, λ2

λj
, . . . ,

λj−1

λj
,
λj+1

λj
, . . . ,

λN+1

λj
} for some

j = 1, 2, . . . , N + 1.

Proof. Since mϕ is diagonalizable, the basic Jordan blocks for mϕ are all 1 × 1.
This corollary is a restatement of the previous corollary with the observation that
the basic Jordan block J` is just (λ`) for each ` = 1, 2, . . . , N + 1. �

The ideas of Theorem 5 have other consequences as well. Suppose mϕ and f

are linear fractional maps of CN with f invertible, suppose L is an N ×N matrix
for which 1 is not an eigenvalue, and suppose they satisfy Schroeder’s equation
f ◦ ϕ = Lf . If p is a fixed point of ϕ that is in the domain of f , then Lf(p) =
f(ϕ(p)) = f(p). Since 1 is not an eigenvalue of L, this means f(p) = 0. Moreover,
since f is invertible, p is the only point of CN that f maps to 0. At the level of mϕ,
referring to the proof of Theorem 5, the vector 0 in CN corresponds to the vector
z0 = (0, 0, . . . , 0, 1) in CN+1, and v is the vector for which mf (v) = z0. In other
words, the vector v represents the fixed point p of ϕ.

Because there is only one point that f maps to 0 and f maps every fixed point
of ϕ that is in its domain to 0, all the fixed points of ϕ besides the fixed point p
must fail to be in the domain of f . Moreover, an affine combination of points not
in the domain of f will also fail to be in the domain of f , so the affine set that is
spanned by the fixed points of ϕ besides p is in not in the domain of f . Perhaps
more clearly, at the level of mϕ, referring to the proof of Theorem 5, vectors not in
the domain of f correspond to the vectors w in CN+1 such that mf (w) is a vector
whose last component is 0. The proof of Theorem 5 shows that this is exactly the
subspace M . In other words, the vectors not in the domain of f are the vectors
of CN represented by vectors in M : this will be a hyperplane in CN , it is the
hyperplane {z : C∗z +D = 0} if

mϕ =

(
A B
C D

)
The construction of M shows that this hyperplane includes all the fixed points of
ϕ besides p.
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