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Abstract

In this paper, we collect a few fairly well known facts about the nu-
merical range and assemble them into an effective algorithm for computing
the numerical range of an n× n matrix. Particular attention is paid to the
case in which a line segment is embedded in the boundary of the numerical
range, a case in which multiplicity is present. The result is a parametriza-
tion of the curve that forms the boundary of the numerical range. A Matlab
implementation of the algorithm is included.

If A is an n× n complex matrix, the numerical range of A is the subset
of the complex plane given by

w(A) = {〈Av, v〉 : v ∈ Cn with ‖v‖ = 1}

The classical Toeplitz–Hausdorff Theorem [2] asserts that the numerical
range of every n × n matrix is a convex set. One approach to the proof
of this theorem is to show by direct computation that the numerical range
of every 2×2 matrix is an ellipse with its interior and observe that if 〈Au, u〉
and 〈Av, v〉 are two points of the numerical range of A, then the numerical
range of the compression of A to the subspace spanned by u and v is an el-
lipse that contains these two points and is contained in the numerical range
of A. Thus, since the ellipse is a convex set, the line segment joining 〈Au, u〉
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and 〈Av, v〉 is in the numerical range of the compression and, hence, in the
numerical range of A. This approach was applied to the computation of the
numerical range by Marcus and Pesce [5] who showed that the numerical
range of A is the union of the numerical ranges of all the compressions to
two dimensional real subspaces and computed some numerical ranges from
that fact. Our approach more closely resembles the approach of Li, Sung,
and Tsing [4] in their computation of c–numerical ranges.

Lemma 1 If H is Hermitian, w(H) = {t : λ1 ≤ t ≤ λn} where λ1 and λn
are the least and greatest eigenvalues of H respectively. Moreover, if ‖v‖ = 1
and 〈Hv, v〉 = λn, then v is an eigenvector for the eigenvalue λn.

Proof. Suppose v1, v2, · · ·, vn is an orthonormal basis for Cn consisting
of eigenvectors of H corresponding to eigenvalues λ1, λ2, · · ·, λn which are
arranged in increasing order.

If v = α1v1 + α2v2 + · · · + αnvn is a vector with norm 1 so that |α1|2 +
|α2|2 + · · ·+ |αn|2 = 1, then, since the eigenvalues of a Hermitian matrix are
real,

〈Hv, v〉 = λ1|α1|2 + λ2|α2|2 + · · ·+ λn|αn|2

≤ λn|α1|2 + λn|α2|2 + · · ·+ λn|αn|2

= λn

Note that if λj < λn and αj 6= 0, then the inequality above is strict, so
〈Hv, v〉 = λn if and only if v is a linear combination of eigenvectors of H
whose eigenvalue is λn, that is, if and only if v is an eigenvector of H with
eigenvalue λn. This proves the second conclusion.

Replacing each λj by λ1 gives the inequality 〈Hv, v〉 ≥ λ1 for all v with
‖v‖ = 1. Finally, letting vs =

√
sv1 +

√
1− svn for 0 ≤ s ≤ 1 gives ‖vs‖ = 1

and 〈Hvs, vs〉 = sλ1 + (1− s)λn. Thus, w(H) = [λ1, λn]

We need to investigate the situation in which the numerical range lies
to the left of a line Re(z) = µ and intersects the line. To do so, we use the
canonical decomposition of a matrix into its Hermitian and skew–Hermitian
parts: A = H + iK where H = H∗ = (A + A∗)/2 and K = K∗ = (A −
A∗)/(2i).

Lemma 2 Suppose A is an n× n matrix and A = H + iK where H = H∗
and K = K∗. If µ is a real number such that Re(〈Av, v〉) ≤ µ for every v in
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Cn with ‖v‖ = 1, then either w(A) does not intersect the line Re(z) = µ or
w(A) ∩ {z : Re(z) = µ} is the point or line segment µ+ iw(PKP ) where P
is the orthogonal projection of Cn onto the eigenspace {u ∈ Cn : Hu = µu}.

Proof. If v is in Cn and ‖v‖ = 1, then

〈Av, v〉 = 〈(H + iK)v, v〉 = 〈Hv, v〉 + i〈Kv, v〉

Since the numerical ranges of H and K are both real, this means that if w
is in the numerical range of A, then the real part of w is in the numerical
range of H and the imaginary part of w is in the numerical range of K. In
particular, if µ is the maximum of {Re(〈Av, v〉) : v ∈ Cn with ‖v‖ = 1},
then µ is greatest number in the numerical range of H, that is, µ = λn, the
largest eigenvalue of H. Moreover, Lemma 1 implies that if v is a vector in
Cn with ‖v‖ = 1 and µ = Re(〈Av, v〉) = 〈Hv, v〉, then Hv = µv. That is,

w(A) ∩ {z : Re(z) = µ} = {µ+ i〈Ku, u〉 : Hu = µu}

Now since P is the orthogonal projection of Cn onto the eigenspace {u ∈ Cn :
Hu = µu}, Pu = u for all such u and 〈Ku, u〉 = 〈KPu,Pu〉 = 〈PKPu, u〉.
Since PKP is Hermitian, Lemma 1 shows its numerical range is a point or
line segment.

We can put these results to use in describing the boundary of the numeri-
cal range and then in constructing an algorithm for computing the numerical
range. The idea of the theorem is to find the points on the boundary of the
numerical range that touch lines in each direction by observing that the
numerical range of a multiple of a matrix is that multiple of the numerical
range. To do this, we rotate the matrix and use Lemma 2 to find the point
or segment in the boundary so that Re(〈Av, v〉) ≤ µ for every v in Cn with
‖v‖ = 1 and w(A) ∩ {z : Re(z) = µ} is non-empty.

Theorem 3 Let A be an n× n matrix. For 0 ≤ t ≤ 2π, let Ht and Kt be
Hermitian matrices so that e−itA = Ht + iKt and let Pt be the projection of
Cn onto the eigenspace of Ht corresponding to the largest eigenvalue of Ht.
Let v+

t and v−t be eigenvectors of Ht with ‖v+
t ‖ = ‖v−t ‖ = 1 corresponding

to the largest eigenvalue of Ht such that v+
t and v−t are eigenvectors of

PtKtPt corresponding to the greatest and smallest eigenvalues, respectively,
of PtKtPt. Then for each t, the numbers 〈Av+

t , v
+
t 〉 and 〈Av−t , v−t 〉 are in

the boundary of the numerical range of A and w(A) is the convex hull of
these numbers.
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Proof. The proof of Lemma 2 shows that

Re
(
〈e−itAv, v〉

)
≤ µt

where ‖v‖ = 1 and µt is the largest eigenvalue of Ht. In particular, if v is a
point of Cn with ‖v‖ = 1, then Re(〈e−itAv, v〉) ≤ µt. Since there is v with
‖v‖ = 1 and Re(〈e−itAv, v〉) = µt, any point of the numerical range 〈Av, v〉
must be on the boundary of the numerical range.

Since the numerical range is a convex set and each of the numbers above
is in the numerical range, the convex hull of these numbers must be in the
numerical range. Conversely, if w is in the numerical range of A but w is
not in the convex hull of the points in statement of the theorem, then there
is a line separating w from this convex hull. Suppose t is such that e−it

times the line is vertical and the convex hull of the numbers described in the
theorem is to the left of the line. Then the choice of w gives Re(e−itw) > µt
which is impossible. Moreover, by Lemma 2, each point of the numerical
range with Re(e−itw) = µt is on the line segment joining 〈Av+

t , v
+
t 〉 and

〈Av−t , v−t 〉. Thus, every point of the numerical range is a convex combina-
tion of the points mentioned in the theorem.

Our algorithm for calculating the numerical range follows the construc-
tion given above. We calculate 〈Av−t , v−t 〉 and 〈Av+

t , v
+
t 〉 for t in [0, 2π]. Of

course, for most t, the eigenspace of Ht corresponding to the largest eigen-
value is one dimensional, so we can usually take v+

t = v−t . The boundary
curve is now parametrized by t with the understanding that the segment
joining 〈Av−t , v−t 〉 and 〈Av+

t , v
+
t 〉 is inserted at the appropriate point when-

ever these points are different.
If the eigenspace of Ht corresponding to the largest eigenvalue has di-

mension j with j > 1, let u1, u2, · · ·, uj be an orthonormal basis for the
eigenspace. Letting Q be the n × j matrix whose columns are u1, u2,
· · ·, uj , then Q∗KtQ is the matrix for the restriction of PtKtPt to the
eigenspace with respect to this basis. Therefore, if (a+

1 , a
+
2 , · · · , a+

j ) and

(a−1 , a
−
2 , · · · , a−j ) are eigenvectors of this matrix corresponding to the great-

est and least eigenvalues, then we may take v+
t = a+

1 u1 + a+
2 u2 + · · ·+ a+

j uj

and v−t = a−1 u1 + a−2 u2 + · · ·+ a−j uj .
Below is an implementation of these ideas in Matlab. The script finds

630 points on the boundary of the numerical range of an n×n matrix (asked
for as input) corresponding to rotates by e−iθ where θ ranges from 0 to 2π
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incremented by .01 radians and fills the resulting polygon in the complex
plane: this is our approximation of the numerical range.

%

% This script finds the numerical range of an n x n matrix by

% finding the real and imaginary parts of rotates of the matrix

% and finding the associated boundary point of that rotate by

% finding the largest eigenvalue of the real part and using the

% corresponding eigenvector’s contribution to the numerical range.

% Multiplicity of the largest eigenvalue, as occurs in a normal

% matrix, is handled by plotting the end points of the corresponding

% segment in the boundary of the numerical range.

%

A=input(’For what matrix do you want the numerical range? ’)

nm=ceil(norm(A));

th=[0:.01:6.29];

k=1;

w=zeros(1,630);

for j=1:630

Ath=(exp(i*(-th(j))))*A;

Hth=(Ath+Ath’)/2;

[r e]=eig(Hth);

e=real(diag(e));

m=max(e);

s=find(e==m);

if size(s,1)==1

w(k)=r(:,s)’*A*r(:,s);

%

% This is the point of the numerical range contributed by

% v_t=r(:,s) when the eigenspace of Hth (H_t) is one dimensional.

%

else

Kth=i*(Hth-Ath);

pKp=r(:,s)’*Kth*r(:,s);

%

% The matrix Q described above is r(:,s)

%

[rr ee]=eig(pKp);

ee=real(diag(ee));
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mm=min(ee);

sm=find(ee==mm);

w(k)=rr(:,sm(:,1))’*r(:,s)’*A*r(:,s)*rr(:,sm(:,1));

%

% This is the point of the numerical range contributed by

% v_t^- = r(:,s)*rr(:,sm(:,1))

%

k=k+1;

mM=max(ee);

sM=find(ee==mM);

w(k)=rr(:,sM(:,1))’*r(:,s)’*A*r(:,s)*rr(:,sM(:,1));

%

% This is the point of the numerical range contributed by v_t^+

%

end

k=k+1;

end

fill(real(w),imag(w),’y’)

axis([-nm,nm,-nm,nm])

axis(’equal’)
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[3] R. Kippenhahn, Über den Wertevorrat einer Matrix, Math. Nachr.
6(1951), 193–228.

[4] C. K. Li, C. H. Sung, and N. K. Tsing c–convex matrices: charac-
terizations, inclusion relations, and normality, Linear and Multilinear
Alg. 25(1989), 275–287.

[5] M. Marcus and C. Pesce, Computer generated numerical ranges
and some resulting theorems, Linear and Multilinear Alg. 20(1987),
121–157.

[6] H. Shapiro, On a conjecture of Kippenhahn about the characteristic
polynomial of a pencil generated by two Hermitian matrices, I, Linear
Alg. Appl. 43(1982), 201–221.

[7] H. Shapiro, On a conjecture of Kippenhahn about the characteristic
polynomial of a pencil generated by two Hermitian matrices, II, Linear
Alg. Appl. 45(1982), 97–108.

[8] H. Shapiro, Hermitian pencils with a cubic minimal polynomial, Lin-
ear Alg. Appl. 48(1982), 81–103.

Department of Mathematics
Purdue University
West Lafayette, Indiana 47907-1395
e–mail: cowen@math.purdue.edu
WWW: http://www.math.purdue.edu/˜cowen

7


