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Abstract

For ϕ in L∞(∂D), let ϕ = f + g where f and g are in H2. In this
note, it is shown that the Toeplitz operator Tϕ is hyponormal if
and only if g = c+ Thf for some constant c and some function h
in H∞(∂D) with ‖h‖∞ ≤ 1.

For ϕ in L∞(∂D), the Toeplitz operator Tϕ is the operator on H2 of the
unit disk D given by Tϕu = Pϕu where P is the orthogonal projection of
L2(∂D) onto H2. An operator A is called hyponormal if its self-commutator
A∗A−AA∗ is positive. The goal of this paper is to characterize hyponormal
Toeplitz operators.

Brown and Halmos began the systematic study of the algebraic prop-
erties of Toeplitz operators and showed, [3, page 98], that Tϕ is normal if
and only if ϕ = α+ βρ where α and β are complex numbers and ρ is a real
valued function in L∞. There are many results concerning hyponormality of
Toeplitz operators in the literature and properties of hyponormal Toeplitz
operators have played an important role in work on Halmos’s Problem 5,
[7], “Is every subnormal Toeplitz operator either normal or analytic?” but a
characterization has been lacking. (For references, see the bibliography; [6]
surveys much of the literature.)
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Theorem 1 If ϕ is in L∞(∂D), where ϕ = f + g for f and g in H2, then
Tϕ is hyponormal if and only if

g = c+ Thf.

for some constant c and some function h in H∞(∂D) with ‖h‖∞ ≤ 1.

The basis of the proof is a dilation theorem; we will use the notation and
formulation of Sarason [13, Theorem 1]. The unilateral (forward) shift on
H2 will be denoted by U . Moreover, the proof uses standard results about
Hankel operators, for example, see [12]. For ψ in L∞, the Hankel operator
Hψ is the operator on H2 given by

Hψu = J(I − P )(ψu)

where J is the unitary operator from H2⊥ onto H2

J(e−inθ) = ei(n−1)θ.

Denoting by v∗ the function v∗(eiθ) = v(e−iθ), another way to put this is
that Hψ is the operator on H2 defined by

<zuv, ψ> = <Hψu, v
∗> , for all v ∈ H∞. (1)

Necessary facts about Hankel operators include

• Hψ1 = Hψ2 if and only if (I − P )ψ1 = (I − P )ψ2.

• ‖Hψ‖ = inf{‖ϕ‖∞ : (I − P )ψ = (I − P )ϕ}.

• H∗ψ = Hψ∗ .

• Either Hψ is one-to-one or ker(Hψ) = χH2 where χ is an inner func-
tion. The closure of the range of Hψ is H2 in the former case and
(χ∗H2)⊥ in the latter.

• HψU = U∗Hψ.

Proof. Let ϕ = f + g where f and g are in H2.
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The first step of the proof is one of the equivalences of Proposition 11 of
[6]. For every polynomial p in H2,

<(T∗ϕ Tϕ − TϕT∗ϕ )(p), p> = <Tϕp, Tϕp> − <T∗ϕ p, T∗ϕ p>
= <fp+ P ḡp, fp+ P ḡp> − <Pf̄p+ gp, P f̄p+ gp>

= <f̄p, f̄p> − <Pf̄p, P f̄p> − <̄gp, ḡp> + <Pḡp, P ḡp>

= <f̄p, (I − P )f̄p> − <̄gp, (I − P )ḡp>

= <(I − P )f̄ p, (I − P )f̄p> − <(I − P )ḡp, (I − P )ḡp>

= ‖Hf̄p‖2 − ‖Hḡp‖2.

Since the polynomials are dense in H2 and since the Hankel and Toeplitz
operators involved are bounded, we see that Tϕ is hyponormal if and only if
for all u in H2,

‖Hḡu‖ ≤ ‖Hf̄u‖. (2)

Let K denote the closure of the range of Hf̄ , and let S denote the
compression of U to K. Since K is invariant for U∗, the operator S∗ is the
restriction of U∗ to K.

Suppose first that Tϕ is hyponormal. Define an operator A on the range
of Hf̄ by

A(Hf̄u) = Hḡu.

If Hf̄u1 = Hf̄u2, so that Hf̄ (u1 − u2) = 0, then the inequality (2) implies
that Hḡ(u1 − u2) = 0 too and it follows that A is well defined. Moreover,
inequality (2) implies ‖A‖ ≤ 1 so A has an extension to K, which will also
be denoted A, with the same norm.

Now by the intertwining formula for Hankel operators and the fact that
K is invariant for U∗, we have

HḡU = AHf̄U = AU∗Hf̄ = AS∗Hf̄

and also
HḡU = U∗Hḡ = U∗AHf̄ = S∗AHf̄ .

Since the range of Hf̄ is dense in K, we find that AS∗ = S∗A on K, or
taking adjoints, that

SA∗ = A∗S.

By [13, Theorem 1] (or by the usual theory of the unilateral shift ifK = H2),
there is a function k in H∞(∂D) with ‖k‖∞ = ‖A∗‖ = ‖A‖ such that A∗ is
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the compression to K of Tk. Since K is invariant for T∗k = Tk, this means
that A is the restriction of Tk to K and

Hḡ = TkHf̄ . (3)

Conversely, if equation (3) holds for some k in H∞(∂D) with ‖k‖∞ ≤ 1,
then clearly inequality (2) holds for all u, and Tϕ is hyponormal.

The proof will be completed by analyzing the relationship given by equa-
tion (3). Using the formulation (1), equation (3) holds if and only if for all
H∞ functions u, v,

<zuv, g> = <Hḡu, v
∗> = <TkHf̄u, v

∗>
= <Hf̄u, kv

∗> = <zuk∗v, f>
= <zuv, k∗f> = <zuv, T

k∗f> .

Since the closed span of {zuv : u, v ∈ H∞} is zH2 this means that equa-
tion (3) holds if and only if

g = c+ Thf

for h = k∗. (Note that ‖k‖∞ = ‖k∗‖∞.)

In the cases for which Tϕ is normal, h is a constant of modulus 1 and
in the cases for which Tϕ is known to be subnormal but not normal, h is a
constant of modulus less than 1.

It is of some interest to investigate the uniqueness of the functions h that
relate f and g. Suppose h1 and h2 are in H∞ and c1 +Th1

f = g = c2 +Th2
f .

This is possible if and only if

TzTh1
f = TzTh2

f,

that is, if and only if
Tzh1−zh2

f = 0.

Thus, f must be in (zχH2)⊥ where χ is the inner factor of h1 − h2. If f
is not in any such subspace, the corresponding function h must be unique
for every g. On the other hand, if χ is an inner function such that f is in
(zχH2)⊥ and c1 + Th1

f = g, then for any h3 in H∞ and

h2 = h1 + zχh3,

4



it follows that g = c2 + Th2
f for some constant c2.

In [6], the author made the following generalization of the set of g in H2

for which Tf+g is hyponormal.

Definition Let H = {v ∈ H∞ : v(0) = 0 and ‖v‖2 ≤ 1}. For f in H2, let
Gf denote the set of g in H2 such that for every u in H2,

sup
v0∈H

|<uv0, g> | ≤ sup
v0∈H

|<uv0, f> |

To see how this definition is relevant to our work, note that if f is in
H∞ and u is in H2, then by equation (1),

sup
v0∈H

|<uv0, f> | = ‖Hf̄u‖.

Thus, when f and g are bounded analytic, Tf+g is hyponormal if and only
if g is in Gf .

For f in H2, not necessarily the analytic part of a function in L∞, if we
regard Hf̄ as a bounded operator from H∞ into H2, then we may proceed
exactly as above to prove the following theorem.

Theorem 2 If f and g are in H2, then g is in Gf if and only if

g = c+ Thf.

for some constant c and some function h in H∞(∂D) with ‖h‖∞ ≤ 1.

We can now easily answer Question 1 of [6].

Corollary 3 For f in H2, the following hold.
(1) f is in Gf .
(2) If g is in Gf , then g + λ is in Gf for all complex numbers λ.
(3) Gf is balanced and convex; that is, if g1 and g2 are in Gf

and |s1|+ |s2| ≤ 1, then s1g1 + s2g2 is also in Gf .
(4) Gf is weakly closed.
(5) TχGf ⊂ Gf for every inner function χ.

Conversely, if G is a set that satisfies properties (1) to (5), then G ⊃ Gf .
Proof. That Gf has the indicated properties is Theorem 12 of [6].

To prove the converse statement, note that f is in G and by (3), (4), and
(5), G contains Thf whenever h is in the weakly closed convex hull of the
set of inner functions. By a theorem of Marshall [11, Corollary, page 496],
the norm closed convex hull of the Blaschke products in H∞ is the unit ball
of H∞. Property (2) and Theorem 2 now imply the desired inclusion.
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