Hyponormality of Toeplitz Operators

Carl C. Cowen*

Proc. Amer. Math. Soc. 103(1988) 809-812.

Abstract

For φ in $L^{\infty}(\partial D)$, let $\varphi = f + \overline{g}$ where f and g are in H^2 . In this note, it is shown that the Toeplitz operator T_{φ} is hyponormal if and only if $g = c + T_{\overline{h}}f$ for some constant c and some function h in $H^{\infty}(\partial D)$ with $||h||_{\infty} \leq 1$.

For φ in $L^{\infty}(\partial D)$, the Toeplitz operator T_{φ} is the operator on H^2 of the unit disk D given by $T_{\varphi}u = P\varphi u$ where P is the orthogonal projection of $L^2(\partial D)$ onto H^2 . An operator A is called hyponormal if its self-commutator $A^*A - AA^*$ is positive. The goal of this paper is to characterize hyponormal Toeplitz operators.

Brown and Halmos began the systematic study of the algebraic properties of Toeplitz operators and showed, [3, page 98], that T_{φ} is normal if and only if $\varphi = \alpha + \beta \rho$ where α and β are complex numbers and ρ is a real valued function in L^{∞} . There are many results concerning hyponormality of Toeplitz operators in the literature and properties of hyponormal Toeplitz operators have played an important role in work on Halmos's Problem 5, [7], "Is every subnormal Toeplitz operator either normal or analytic?" but a characterization has been lacking. (For references, see the bibliography; [6] surveys much of the literature.)

⁰1980 Mathematics Subject Classification (1985 Revision). Primary 47B35, 47B20.

⁰Key Words and Phrases. Toeplitz operator, subnormal operator.

^{*}Supported in part by National Science Foundation Grant DMS 87-10006.

Theorem 1 If φ is in $L^{\infty}(\partial D)$, where $\varphi = f + \overline{g}$ for f and g in H^2 , then T_{φ} is hyponormal if and only if

$$g = c + T_{\overline{h}}f.$$

for some constant c and some function h in $H^{\infty}(\partial D)$ with $||h||_{\infty} \leq 1$.

The basis of the proof is a dilation theorem; we will use the notation and formulation of Sarason [13, Theorem 1]. The unilateral (forward) shift on H^2 will be denoted by U. Moreover, the proof uses standard results about Hankel operators, for example, see [12]. For ψ in L^{∞} , the Hankel operator H_{ψ} is the operator on H^2 given by

$$H_{\psi}u = J(I - P)(\psi u)$$

where J is the unitary operator from $H^{2\perp}$ onto H^2

$$J(e^{-in\theta}) = e^{i(n-1)\theta}.$$

Denoting by v^* the function $v^*(e^{i\theta}) = \overline{v(e^{-i\theta})}$, another way to put this is that H_{ψ} is the operator on H^2 defined by

$$\langle zuv, \overline{\psi} \rangle = \langle H_{\psi}u, v^* \rangle, \quad \text{for all } v \in H^{\infty}.$$
 (1)

Necessary facts about Hankel operators include

- $H_{\psi_1} = H_{\psi_2}$ if and only if $(I P)\psi_1 = (I P)\psi_2$.
- $||H_{\psi}|| = \inf\{||\varphi||_{\infty} : (I P)\psi = (I P)\varphi\}.$
- $H_{\psi}^* = H_{\psi^*}$.
- Either H_{ψ} is one-to-one or $\ker(H_{\psi}) = \chi H^2$ where χ is an inner function. The closure of the range of H_{ψ} is H^2 in the former case and $(\chi^*H^2)^{\perp}$ in the latter.
- $\bullet \ H_{\psi}U = U^*H_{\psi}.$

Proof. Let $\varphi = f + \overline{g}$ where f and g are in H^2 .

The first step of the proof is one of the equivalences of Proposition 11 of [6]. For every polynomial p in H^2 ,

Since the polynomials are dense in H^2 and since the Hankel and Toeplitz operators involved are bounded, we see that T_{φ} is hyponormal if and only if for all u in H^2 ,

$$||H_{\bar{q}}u|| \le ||H_{\bar{f}}u||. \tag{2}$$

Let K denote the closure of the range of $H_{\bar{f}}$, and let S denote the compression of U to K. Since K is invariant for U^* , the operator S^* is the restriction of U^* to K.

Suppose first that T_φ is hyponormal. Define an operator A on the range of $H_{\bar f}$ by

$$A(H_{\bar{f}}u) = H_{\bar{g}}u.$$

If $H_{\bar{f}}u_1 = H_{\bar{f}}u_2$, so that $H_{\bar{f}}(u_1 - u_2) = 0$, then the inequality (2) implies that $H_{\bar{g}}(u_1 - u_2) = 0$ too and it follows that A is well defined. Moreover, inequality (2) implies $||A|| \leq 1$ so A has an extension to K, which will also be denoted A, with the same norm.

Now by the intertwining formula for Hankel operators and the fact that K is invariant for U^* , we have

$$H_{\bar{g}}U = AH_{\bar{f}}U = AU^*H_{\bar{f}} = AS^*H_{\bar{f}}$$

and also

$$H_{\bar{g}}U = U^*H_{\bar{g}} = U^*AH_{\bar{f}} = S^*AH_{\bar{f}}.$$

Since the range of $H_{\bar{f}}$ is dense in K, we find that $AS^* = S^*A$ on K, or taking adjoints, that

$$SA^* = A^*S$$

By [13, Theorem 1] (or by the usual theory of the unilateral shift if $K = H^2$), there is a function k in $H^{\infty}(\partial D)$ with $||k||_{\infty} = ||A^*|| = ||A||$ such that A^* is

the compression to K of T_k . Since K is invariant for $T_k^* = T_{\overline{k}}$, this means that A is the restriction of $T_{\overline{k}}$ to K and

$$H_{\bar{q}} = T_{\bar{k}} H_{\bar{f}}. \tag{3}$$

Conversely, if equation (3) holds for some k in $H^{\infty}(\partial D)$ with $||k||_{\infty} \leq 1$, then clearly inequality (2) holds for all u, and T_{φ} is hyponormal.

The proof will be completed by analyzing the relationship given by equation (3). Using the formulation (1), equation (3) holds if and only if for all H^{∞} functions u, v,

$$\langle zuv, g \rangle = \langle H_{\bar{g}}u, v^* \rangle = \langle T_{\bar{k}}H_{\bar{f}}u, v^* \rangle$$

 $= \langle H_{\bar{f}}u, kv^* \rangle = \langle zuk^*v, f \rangle$
 $= \langle zuv, \overline{k^*}f \rangle = \langle zuv, T_{\overline{k^*}}f \rangle.$

Since the closed span of $\{zuv: u, v \in H^{\infty}\}$ is zH^2 this means that equation (3) holds if and only if

$$g = c + T_{\overline{h}}f$$

for $h = k^*$. (Note that $||k||_{\infty} = ||k^*||_{\infty}$.)

In the cases for which T_{φ} is normal, h is a constant of modulus 1 and in the cases for which T_{φ} is known to be subnormal but not normal, h is a constant of modulus less than 1.

It is of some interest to investigate the uniqueness of the functions h that relate f and g. Suppose h_1 and h_2 are in H^{∞} and $c_1 + T_{\overline{h_1}}f = g = c_2 + T_{\overline{h_2}}f$. This is possible if and only if

$$T_{\overline{z}}T_{\overline{h_1}}f = T_{\overline{z}}T_{\overline{h_2}}f,$$

that is, if and only if

$$T_{\overline{zh_1 - zh_2}} f = 0.$$

Thus, f must be in $(z\chi H^2)^{\perp}$ where χ is the inner factor of $h_1 - h_2$. If f is not in any such subspace, the corresponding function h must be unique for every g. On the other hand, if χ is an inner function such that f is in $(z\chi H^2)^{\perp}$ and $c_1 + T_{\overline{h_1}}f = g$, then for any h_3 in H^{∞} and

$$h_2 = h_1 + z\chi h_3$$

it follows that $g = c_2 + T_{\overline{h_2}}f$ for some constant c_2 .

In [6], the author made the following generalization of the set of g in H^2 for which $T_{f+\overline{g}}$ is hyponormal.

Definition Let $\mathcal{H} = \{v \in H^{\infty} : v(0) = 0 \text{ and } ||v||_2 \leq 1\}$. For f in H^2 , let G_f denote the set of g in H^2 such that for every u in H^2 ,

$$\sup_{v_0 \in \mathcal{H}} | <\!\! uv_0, g\!\!> | \leq \sup_{v_0 \in \mathcal{H}} | <\!\! uv_0, f\!\!> |$$

To see how this definition is relevant to our work, note that if f is in H^{∞} and u is in H^{2} , then by equation (1),

$$\sup_{v_0 \in \mathcal{H}} | <\!\! u v_0, f\!\!> \!| = \| H_{\bar{f}} u \|.$$

Thus, when f and g are bounded analytic, $T_{f+\overline{g}}$ is hyponormal if and only if g is in G_f .

For f in H^2 , not necessarily the analytic part of a function in L^{∞} , if we regard $H_{\bar{f}}$ as a bounded operator from H^{∞} into H^2 , then we may proceed exactly as above to prove the following theorem.

Theorem 2 If f and g are in H^2 , then g is in G_f if and only if

$$g = c + T_{\overline{h}}f$$
.

for some constant c and some function h in $H^{\infty}(\partial D)$ with $||h||_{\infty} \leq 1$.

We can now easily answer Question 1 of [6].

Corollary 3 For f in H^2 , the following hold.

- (1) f is in G_f .
- (2) If g is in G_f , then $g + \lambda$ is in G_f for all complex numbers λ .
- (3) G_f is balanced and convex; that is, if g_1 and g_2 are in G_f and $|s_1| + |s_2| \le 1$, then $s_1g_1 + s_2g_2$ is also in G_f .
- (4) G_f is weakly closed.
- (5) $T_{\overline{\chi}}G_f \subset G_f$ for every inner function χ .

Conversely, if G is a set that satisfies properties (1) to (5), then $G \supset G_f$.

Proof. That G_f has the indicated properties is Theorem 12 of [6].

To prove the converse statement, note that f is in G and by (3), (4), and (5), G contains $T_{\overline{h}}f$ whenever h is in the weakly closed convex hull of the set of inner functions. By a theorem of Marshall [11, Corollary, page 496], the norm closed convex hull of the Blaschke products in H^{∞} is the unit ball of H^{∞} . Property (2) and Theorem 2 now imply the desired inclusion.

References

- [1] M. B. Abrahamse. Subnormal Toeplitz operators and functions of bounded type, *Duke Math. J.* **43**(1976), 597-604.
- [2] I. Amemiya, T. Ito, and T. K. Wong. On quasinormal Toeplitz operators, *Proc. Amer. Math. Soc.* **50**(1975), 254-258.
- [3] A. Brown and P. R. Halmos. Algebraic properties of Toeplitz operators, *J. reine angew. Math.* **213**(1963-64), 89-102.
- [4] C. C. Cowen and J. J. Long. Some subnormal Toeplitz operators, *J. reine angew. Math.* **351**(1984), 216-220.
- [5] C. C. Cowen. More subnormal Toeplitz operators, *J. reine angew. Math.* **367**(1986), 215-219.
- [6] C. C. Cowen. Hyponormal and subnormal Toeplitz operators, to appear in *Surveys of Recent Results in Operator Theory, Vol. 1* edited by J. B. Conway and B. B. Morrel.
- [7] P. R. Halmos. Ten problems in Hilbert space, *Bull. Amer. Math. Soc.* **76**(1970), 887-933.
- [8] P. R. Halmos. Ten years in Hilbert space, Integral Equations and Operator Theory 2(1979), 529-564.
- [9] T. Ito and T. K. Wong. Subnormality and quasinormality of Toeplitz operators, *Proc. Amer. Math. Soc.* **34**(1972), 157-164.
- [10] J. J. Long. Hyponormal Toeplitz Operators and Weighted Shifts, Thesis, Michigan State University, 1984.
- [11] D. E. Marshall. Blaschke products generate H^{∞} , Bull. Amer. Math. Soc. 82(1976), 494-496.
- [12] S. C. Power. Hankel Operators on Hilbert Space, Pitman, Boston, 1982.
- [13] D. Sarason. Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc. 127(1967), 179-203.
- [14] Sun Shunhua. Bergman shift is not unitarily equivalent to a Toeplitz operator, *Kexue Tongbao* **28**(1983), 1027-1030.

[15] Sun Shunhua. On Toeplitz operators in the Θ -class, *Scientia Sinica* (Series A) **28**(1985), 235-241.

Purdue University West Lafayette, Indiana 47907