
Hyponormal and Subnormal Toeplitz Operators

Carl C. Cowen

This paper is my view of the past, present, and future of Problem 5 of
Halmos’s 1970 lectures “Ten Problems in Hilbert Space ” [12] (see also [13]):

Is every subnormal Toeplitz operator either normal or analytic?

We recall that for ϕ in L∞(∂D), the Toeplitz operator Tϕ is the operator
on the Hardy space H2 of the unit disk D, given by Tϕh = Pϕh where h is
in H2 and P is the orthogonal projection of L2(∂D) onto H2. An operator
S on a Hilbert space H is subnormal if there is a normal operator N on
K ⊃ H such that H is invariant for N and N |H= S.

The question is natural because the two classes, the normal and analytic
Toeplitz operators, are fairly well understood and are obviously subnormal.
The normal Toeplitz operators were characterized by Brown and Halmos in
1964.

Theorem 1 ([4], page 98) The Toeplitz operator Tϕ is normal if and only
if ϕ = α + βρ where α and β are complex numbers and ρ, in L∞, is real
valued.

A Toeplitz operator Tϕ is called analytic if ϕ is in H∞, that is, ϕ is a
bounded analytic function on D. These are easily seen to be subnormal:
Tϕh = Pϕh = ϕh = Lϕh for h in H2, where Lϕ is the normal operator of
multiplication by ϕ on L2(∂D).

All progress on this question has begun with the study of the self-
commutator of Tϕ. A subnormal operator S is hyponormal, that is, its
self-commutator, S∗S − SS∗, is positive. It is not difficult to show that
the range of the self-commutator of a subnormal operator is an invariant
subspace of S∗ ([20], Theorem 5).

Halmos almost certainly believed the answer to his question would be
yes, and his intuition was soon bolstered as several results appeared that
showed the answer is yes for certain classes. I’ll prove the first of these, a
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1972 theorem of Ito and Wong, because its proof is typical in its use of the
self-commutator. An inner function is a function in H∞ that has modulus
1 almost everywhere on the unit circle.

Theorem 2 ([14], Theorem 1). If ϕ is a polynomial in χ and χ̄, where χ
is an inner function, then Tϕ is subnormal if and only if it is normal or
analytic.

Proof. Since Tf◦χ is unitarily equivalent to an inflation of Tf for any f in
L∞, it is sufficient to prove the result for χ(z) = z ([8], Theorem 1).

Suppose Tϕ is subnormal but not analytic, say

ϕ = a−nz̄
n + · · ·+ a0 + · · ·+ amz

m

where n > 0 and a−n 6= 0. Let C = T∗ϕ Tϕ − TϕT∗ϕ , the self-commutator of
Tϕ.

If j ≥ k = max{m,n}, then, zjϕ and zjϕ̄ are both analytic so zkH2 ⊂
kernel C. That is, range C is contained in span {1, z, . . . , zk−1}.

If C were not 0, then we could choose f of maximal degree in range C,
say, f = b0 + · · ·+ blz

l, where bl 6= 0. But since Tϕ is subnormal, range C is
invariant for T∗ϕ and T∗ϕ f = · · ·+ ā−nblz

n+l which would have higher degree
than f . Thus C = 0 and Tϕ is normal.

Ito and Wong were apparently the first to consider hyponormal Toeplitz
operators. In the same paper ([14], page 158), they gave the interesting
example Tz+ 1

2
z̄. This was the first easy example of a hyponormal operator

that is not subnormal. Their example generalizes.

Proposition 3 Let A be hyponormal. Then A+ λA∗ is hyponormal if and
only if |λ| ≤ 1.

Proof.
(A+ λA∗)∗(A+ λA∗)− (A+ λA∗)(A+ λA∗)∗ =

(1− |λ|2)(A∗A−AA∗).

Later, Amemiya, Ito, and Wong showed by a similar argument that the
answer to Halmos’s question is yes if Tϕ is quasinormal.

Theorem 4 [2] If Tϕ commutes with T∗ϕ Tϕ then either Tϕ is normal or ϕ
is analytic and ϕ = λχ, where χ is an inner function.
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Corollary If Tϕ is subnormal with rank 1 self-commutator, then ϕ = α+βχ
where α and β are numbers and χ is an inner linear fractional transforma-
tion.

(This corollary also follows from a more general theorem of B. Morrel
[18], page 508.)

The deepest work in this direction is that of Abrahamse, for which we
need the following definition.

Definition ([16], page 187) A function ϕ in L∞(∂D) is of bounded type (or
in the Nevanlinna class ) if there are functions ψ1, ψ2 in H∞(D) such that

ϕ(eiθ) = ψ1(eiθ)
ψ2(eiθ)

for almost all θ in ∂D.

Clearly, rational functions in L∞(∂D) are of bounded type: they are quo-
tients of analytic polynomials. A polynomial p in z and z̄ is of bounded type
because on the unit circle, p(z, z̄) = p(z, z−1) which is a rational function.

Theorem 5 [1]
If (1) Tϕ is hyponormal,

(2) ϕ or ϕ̄ is of bounded type,
and (3) ker(T∗ϕ Tϕ − TϕT∗ϕ ) is invariant for Tϕ,

then Tϕ is normal or analytic.

Since (3) holds for any subnormal operator ([20], Theorem 5), Abra-
hamse obtains the conclusion for subnormals.

Corollary If Tϕ is subnormal and ϕ or ϕ̄ is of bounded type, then Tϕ is
normal or analytic.

Abrahamse concluded his paper by asking several questions, including
the following:

Which hyponormal weighted shifts are unitarily equivalent to
Toeplitz operators ?

Is the Bergman shift unitarily equivalent to a Toeplitz operator?

Recall that an operator W is a (unilateral) weighted shift if there is an
orthonormal basis e0, e1, . . . and weights wn > 0 such that Wej = wjej+1

for j = 0, 1, 2, . . .. An easy calculation shows W is hyponormal if and only
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if w0 ≤ w1 ≤ w2 ≤ · · ·. It is more difficult to show that W is subnormal if
and only if

(w0w1 · · ·wk−1)
2 =

∫
t2kdν(t)

for some probability measure ν with support in [0, ‖W‖] (due independently
to Berger and to Gellar and Wallen [7], page 159). The Bergman shift is the
subnormal shift with weights w2

n = (n+ 1)(n + 2)−1 for n = 0, 1, 2, · · ·.
Sun Shunhua proved the following remarkable theorem by carefully ex-

amining the action of the self-commutator on e0 in the shifted basis.

Theorem 6 [22] If Tϕ is a hyponormal weighted shift, then there is a num-
ber α, 0 ≤ α ≤ 1 so that the weights are w2

n = (1− α2n+2)‖Tϕ‖2.

The case α = 0 is Tz. Sun Shunhua left open the question of existence
for the cases α > 0, but this did answer Abrahamse’s second question.

Corollary The Bergman shift is not unitarily equivalent to a Toeplitz op-
erator.

Proof.
n+ 1

n+ 2
6= 1− α2n+2 for any α > 0

Examination of the proof of the theorem reveals that such a ϕ must have
ψ = ϕ − αϕ̄ in H∞. Moreover, the matrix for Tψ in the shifted basis is a
compact perturbation of

0 −α 0 0
1 0 −α 0
0 1 0 −α
0 0 1 0

. . .


which is the matrix for Tz−αz̄ in the usual basis. It follows that the Fredholm
indices and the essential spectra of these Toeplitz operators must be the
same. Since Tψ is an analytic Toeplitz operator, ψ must be a conformal
mapping of D onto the interior of the ellipse with vertices ±(1 + α)i and
passing through ±(1−α), and ϕ = (1− α2)−1(ψ +αψ̄). Knowing that this
would have to be the symbol made it possible to verify that this works.
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Theorem 7 [9] Let 0 < α < 1 be given and let ψ be a conformal map of
the disk onto the interior of the ellipse with vertices ±(1 + α)i and passing
through ±(1 − α). If ϕ = (1 − α2)−1(ψ + αψ̄), then Tϕ is a weighted shift
with weight sequence w2

n = 1 − α2n+2 and is subnormal but neither normal
nor analytic.

The next step forward was Sun Shunhua’s characterization of those
Toeplitz operators such that Tϕ + T∗ϕ and TϕT

∗
ϕ commute, what Camp-

bell called the Θ-class. Surprisingly, the answer again involved these ellipse
maps: ϕ = ψ + βψ̄ gives rise to a Θ-class Toeplitz operator for a certain
choice of β. Moreover, since |β| < 1, the operator Tϕ is hyponormal and a
theorem of Campbell, [5], implies Tϕ is subnormal.

Thus, at this point, we know that Tψ+0ψ̄ (which is analytic), Tψ+αψ̄ ,
Tψ+βψ̄ , and Tψ+1ψ̄ (which is normal) are all subnormal, and from the gen-
eralization of Ito and Wong’s observation, Tψ+λψ̄ is hyponormal for |λ| ≤ 1.
This strongly suggests the question:

For which λ is Tψ+λψ̄ subnormal?

The answer to this question is provided by the following recent theorem.

Theorem 8 ([10], Theorem 2.4) Let λ be a complex number, let 0 < α < 1,
and let ψ be the conformal map of the disk onto the interior of the ellipse
with vertices ±i(1 + α) passing through ±(1 − α) where 0 < α < 1. For
ϕ = ψ + λψ̄, the Toeplitz operator Tϕ is subnormal if and only if λ = α or
λ = (αkeiθ + α)(1 + αk+1eiθ)−1 for some k = 0, 1, 2, . . . and 0 ≤ θ < 2π.

Note that k = 0 in the theorem means |λ| = 1, that is, Tψ+λψ̄ is normal;
λ = α (which corresponds to k =∞) is the weighted shift case; k = 1, θ = π

is the analytic case Tψ+0ψ̄ ; and the Θ-class case of Sun Shunhua corresponds
to k = 2.

This theorem follows by simple algebra from the Cowen-Long result and
the following result on the special weighted shifts that are multiples of the
Toeplitz operators in Theorem 7.

Proposition 9 [10] Let T be the weighted shift with weights

w2
n =

n∑
j=0

α2j .

Then T + µT∗ is subnormal if and only if µ = 0 or |µ| = αk for k =
0, 1, 2, . . ..
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The proof of the proposition is a modification of the matrix construc-
tions of Ando [3] and Stampfli [21] for the minimal normal extension of a
subnormal operator. The heart of the matter is: If S is subnormal and(
S B

0 A

)
is its minimal normal extension, what choice do we have for B?

The answer: We may replace B by B̃ as long as BB∗ = B̃B̃∗ and their
kernels have the same dimension. In particular, by polar factorization, we
may replace B by a non-negative operator.

Sketch of proof. Let D be the diagonal operator whose k-th diagonal
entry is αk. Then, D is positive and D2 = T∗T −TT∗. Using rotations and
the fact that T is subnormal and T + T∗ is normal, it is sufficient to give
the proof for µ = s, where 0 < s < 1. Let A0 = T + sT∗.

Suppose A0 is subnormal, and

(
A0 X1

0 Y1

)
is its minimal normal ex-

tension. The normality of this matrix implies X1X
∗
1 = A∗0A0 − A0A

∗
0 =

(1 − s2)D2. A theorem of Olin ([17], page 228) implies that either X1 has
kernel (0) or X1 has infinite-dimensional kernel. Letting B1 = r1D where
r2

1 = (1 − s2), it follows that the minimal normal extension has a represen-
tation as either(

A0 B1

0 A1

)
or

 A0 B1 0
0 A1 X2

0 0 Y2

 .
In either case, normality implies that A1 = αT + sα−1T∗. In the former
case, we also get A∗1A1−A1A

∗
1 = −B1B

∗
1 which means α = s. In the latter

case, using a positivity condition that is a consequence of the normality, we
find that α < s < 1 is impossible.

After n − 1 such steps, if s 6= αk for k = 1, 2, . . . , n − 1, we have shown
that s < αn−1 and that, for Ak = αkT+sα−kT∗ and Bk = rkD, the minimal
normal extension is unitarily equivalent either to

A0 B1 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · An


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in which case normality implies s = αn or to
A0 B1 · · · 0 0
0 A1 · · · 0 0
...

...
. . .

...
...

0 0 · · · An Xn+1

0 0 · · · 0 Yn+1


and normality implies that αn < s < αn−1 is impossible.

A miracle has occurred: all the entries in the matrix model were explicitly
computable for this weighted shift!

Standard facts about unitary equivalence of shifts and Theorem 7 give
some non-obvious unitary equivalences of Toeplitz operators.

Corollary [10] The analytic Toeplitz operator Tψ is unitarily equivalent to
each of the non-analytic Toeplitz operators Tϕ with

ϕ = ie−iθ/2(1− α2)−1
[
(1 + α2eiθ)ψ + α(1 + eiθ)ψ̄

]
for −π < θ < π.

Proof. Since T is a weighted shift, T + sT∗ is unitarily equivalent to
T + λT∗ whenever |λ| = s. Rewriting this unitary equivalence in terms of
the Toeplitz operator Tψ gives the result.

Now Theorem 7 is interesting and surprising, but it is not very encour-
aging. It says that the subnormality of these Toeplitz operators depends on
some combinatorial coincidences and suggests that subnormality of Toeplitz
operators may be the wrong question to be studying. Perhaps more progress
can be made studying the hyponormality of Toeplitz operators.

Very little work has gone into discovering which symbols in L∞ give
hyponormal Toeplitz operators and into developing an adequate theory for
them. Much of what is known is in the form of “folk theorems”. I will give
some elementary observations and suggest some questions for further study.
The intuition is that Tϕ is hyponormal if the analytic part of ϕ dominates
the conjugate analytic part. Some of the results below may be interpreted
as making a precise statement supporting this intuition. For example, in
the following unpublished proposition of Wogen, we feel χϕ is the same size
as ϕ but is “more analytic”.
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Proposition 10 [25] If χ is inner and ϕ in L∞ is such that Tϕ is hyponor-
mal, then Tχϕ is also hyponormal.

Proof. For h in H2, since Tχ is an isometry and Tϕ is hyponormal, we have

‖Tχϕh‖ ≥ ‖Tχ̄Tχϕh‖ = ‖Tϕh‖ ≥ ‖T∗ϕ h‖ = ‖Tϕ̄h‖ ≥ ‖Tχ̄Tϕ̄h‖ = ‖T∗χϕh‖.

Thus, Tχϕ is also hyponormal.

We recall the definition of Hankel operators (see for example [19]). As
usual, P is the projection from L2 onto H2.

Definition For ϕ in L∞ the Hankel operator Hϕ : H2 → (H2)⊥ is given
by Hϕh = (I − P )ϕh, for h in H2.

The following proposition is not completely general because not all ϕ can
be split as in the hypothesis. With care, regarding the Toeplitz operators
as unbounded operators, it can be improved to general L∞ functions.

Proposition 11 Suppose f and g are in H∞ and suppose ϕ = f + ḡ. The
following are equivalent.

(1) Tϕ is hyponormal.
(2) For every h in H2 ‖fh‖2 − ‖P f̄h‖2 ≥ ‖gh‖2 − ‖P ḡh‖2.
(3) T∗f Tf − TfT∗f ≥ T∗g Tg − TgT∗g .

(4) H ∗̄
f
Hf̄ ≥ H ∗̄gHḡ.

(5) For every h in H2, we have ‖Hf̄h‖ ≥ ‖Hḡh‖.

Proof. Compute.

Corollary Let χ be inner, and let F and G be in H∞ with f = χF and
g = χG. If Tf+ḡ is hyponormal, then TF+Ḡ is also hyponormal.

Proof. Using (2) above, we have

‖Fh‖2 − ‖PF̄h‖2 = ‖f(χh)‖2 − ‖P f̄(χh)‖2

≥ ‖g(χh)‖2 − ‖P ḡ(χh)‖2 = ‖Gh‖2 − ‖PḠh‖2.
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Using (4) and the fact that for χ inner, H ∗̄χHχ̄ is the projection of H2

onto (χH2)⊥, we get the following corollary.

Corollary Let χ be inner and g be in H∞. Then Tχ+ḡ is hyponormal if
and only if g is in (zχH2)⊥ and ‖Hḡ‖ ≤ 1.

If χ is a finite Blaschke product, then (zχH2)⊥ is finite dimensional and
for each g in (zχH2)⊥, Hḡ is finite rank, so finding the set of g such that
Tχ+ḡ is hyponormal is a computation in finite dimensional linear algebra.
For example, it is tedious but not difficult to verify that Tz2+ḡ is hyponormal
if and only if g = α+ βz + γz2 where |β|+ |γ|2 ≤ 1.

We are interested more generally in the set of g such that Tf+ḡ is hy-
ponormal for a given f . This motivates the following definition. To avoid
difficulties with splitting functions in L∞, we formulate the definition for
f and g in H2 without regard to whether they are the analytic parts of
functions in L∞.

Definition Let H = {h ∈ H∞ : h(0) = 0 and ‖h‖2 ≤ 1}. For f in H2, let
Gf denote the set of g in H2 such that for every h in H2,

sup
h0∈H

|<hh0, f> | ≥ sup
h0∈H

|<hh0, g> |

Note that in the definition of H, we have used the H2 norm of the H∞

function h, and that H is dense in the unit ball of zH2. To see how this
definition is relevant to our work, suppose p is in H∞ and h is in H2. Then
we have

sup
h0∈H

|<hh0, p> | = sup
h0∈H

|<p̄h, h̄0> | = sup
h0∈H

|<(I − P )p̄h, h̄0> | = ‖Hp̄h‖.

Thus, when f and g are both in H∞, this means, by (5) of proposition 11,
that Tf+ḡ is hyponormal if and only if g is in Gf . The following theorem
gives some elementary properties of Gf .
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Theorem 12 For f in H2, the following hold.
(0) Gf = Gf+λ for all complex numbers λ.
(1) f is in Gf .
(2) If g is in Gf , then g + λ is in Gf for all complex numbers λ.
(3) Gf is balanced and convex; that is, if g1 and g2 are in Gf and

|s|+ |t| ≤ 1, then sg1 + tg2 is also in Gf .
(4) Gf is weakly closed.
(5) If χ is inner and χg is in Gf , then g is in Gf .

Proof. Properties (0), (1), and (2) are obvious.
(3) For h in H2, we have

sup
h0∈H

|<hh0, f> | ≥ |s| sup
h0∈H

|<hh0, f> |+ |t| sup
h0∈H

|<hh0, f> |

≥ |s| sup
h0∈H

|<hh0, g1> |+ |t| sup
h0∈H

|<hh0, g2> |

≥ sup
h0∈H

|<hh0, sg1 + tg2> |.

(4) Let h be in H2. Suppose gα is in Gf for each α in a directed set and
suppose gα → g weakly. Fix h1 in H. Thus,

|<hh1, g> | = lim
α
|<hh1, gα> | ≤ |<hh1, f> | ≤ sup

h0∈H
|<hh0, f> |.

Since this is true for all such h1, we have g in Gf .
(5) Let h be in H2. Since h0 ∈ H implies χh0 ∈ H, for χg in Gf , we have

sup
h0∈H

|<hh0, f> | ≥ sup
h0∈H

|<hh0, χg> |

≥ sup
h0∈H

|<h(χh0), χg> | = sup
h0∈H

|<hh0, g> |,

so g is in Gf .

Corollary T∗z Gf ⊂ Gf .

Proof. By (2) g in Gf implies g − g(0) is in Gf and (5) implies T∗z g =
(g − g(0))/z is in Gf .
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I am proposing the study of the hyponormal Toeplitz operators; the
study of the properties of Gf seems like a reasonable place to start. Several
questions seem interesting.

Question 1 Can Gf be characterized? In particular, do (1) to (5) of The-
orem 12 characterize Gf?

For f = z2, these properties determine Gf , and the computations are easier
than the norm computations referred to earlier: By (1) and (2), z2−a2 ∈ Gz2

for all a in the unit disk, so (5) implies

−āz2 + (1− |a|2)z + a =

(
z − a
1− āz

)−1

(z2 − a2) is in Gz2.

Using (2) and (3) we see that Gz2 ⊃ {g(z) = βz + γz2 : |β|+ |γ|2 = 1}, and
finally that Gz2 ⊃ {g(z) = α+ βz + γz2 : |β|+ |γ|2 ≤ 1}.

Translation by scalars was used to advantage in the above computation,
but it may not always be helpful. It may be more convenient to work with
the set

G′f = {g ∈ Gf : g(0) = 0}

since if g is in G′f (taking h ≡ 1 in the definition of Gf ) we have

‖g‖2 = sup
h0∈H

|<h0, g> | ≤ sup
h0∈H

|<h0, f> | = ‖f‖2.

This means that G′f is convex and weakly compact.

Question 2 What are the extreme points of G′f? In particular, if g ∈ G′f
but λg 6∈ G′f for |λ| > 1, is g an extreme point of G′f?

A function g is an extreme point of G′z2 if and only if g(z) = βz + γz2

where |β|+|γ|2 = 1, but of course we want a description of the extreme points
of G′f that can be used to compute G′f , not vice versa. The set of extreme
points came up naturally in the computation of Gz2 using the properties (1)
to (5) above; perhaps it is always so. For the special subset in the question
to be the set of extreme points, would require a certain rotundity of the set
G′f . The corollary of Theorem 11 characterizes this subset for f inner, and

for f = z2, all are extreme points.
In the study of subnormal Toeplitz operators, these results suggest two

more questions.
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Question 3 For which f in H∞ is there λ, 0 < λ < 1 with Tf+λf̄ subnor-
mal?

Question 4 Suppose ψ is as in Theorem 7. Are there g in Gψ, g 6= λψ+ c,
such that Tψ+ḡ is subnormal?

Note that Abrahamse’s work [1] relates directly to questions 3 and 4. If
ϕ = f + ḡ with f , g, in H∞, then ϕ is of bounded type if and only if ḡ is
of bounded type. Thus Tϕ subnormal, neither normal nor analytic, implies
that f̄ and ḡ are not of bounded type.

Although isolated results and examples have appeared in the literature,
hyponormality of Toeplitz operators has not been systematically studied.
I believe that the study of hyponormal Toeplitz operators is of more im-
portance to the understanding of Toeplitz operators than is the study of
subnormality, and that in any case, more progress needs to be made on the
hyponormality questions before substantial progress on the subnormality
questions can be made. I hope I have given you some hints on where to
start.
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