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1. Introduction

Let $ be a function, analytic in the unit disk, D, that maps the unit disk into itself
(</>(z) ^ 2). In this paper, we present some inequalities for the angular derivative of
cj). The more important of these concern the derivative of $ at its fixed points in the
closed unit disk. Since (f) and 0' need not be continuous in D we need to clarify the
terms "fixed point" and "derivative of ^ at a fixed point".

DEFINITION. If (f> is analytic in D, (f)(D) c: D, and \z*\ ^ 1, we say that z* is a

fixed point of <j> if

lim (j)(rz*) = z* .
r - . 1 -

If z* is a fixed point of (j), then the derivative of <$> at z* is the number

4>'(z*) = lim (f)'(rz*).
r - 1 -

It is a consequence of the theorem of Julia, Caratheodory, and Wolff, [7, p. 306]
or [6, p. 57], that if z* is a fixed point of </>, then (f>'(z*) exists and if \z*\ = 1 then
0'(z*) is real and 0 < </>'(z*) ^ 00. Schwarz's lemma implies there is at most one
fixed point in the open disk, and (unless $ is an elliptic Mobius transformation)
0 ^ |</>'(z*)| < 1 at such a fixed point. The classical result of Denjoy and Wolff is a
generalization of Schwarz's lemma.

D E N J O Y - W O L F F THEOREM [4, 12]. If (j>, not the identity, is analytic in D and if

</>(D) ci D, then 4> has a unique fixed point a (\a\ ^ l ) / o r which \4>'(ci)\ ^ 1.

We shall call this distinguished fixed point the Denjoy-Wolff point of (p. It is easy
to give examples for which the Denjoy-Wolff point is the only fixed point of <j), but,
as we shall see in Section 2, even for univalent functions the set of fixed points can be
quite large.

For general analytic functions, we shall prove the following result. For
convenience, we have normalized the function so that its Denjoy-Wolff point is 0
or 1.

T H E O R E M 4 . 1 . Let 4> be analytic in D with 0 ( D ) <= D; let z 0 , z l 5 . . . , zn be distinct

fixed points of (f) in D.
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(i) Ifzo = 0,then

(ii) Ifzo = \ and 0 < </>'(!) < 1,

(iii) Ifzo = l and $'(1) = 1,

Moreover, equality holds if and only if 0 is a finite Blaschke product of order n + l in
case (i) or of order n in cases (ii) and (iii).

We are not assuming here that z0, z l 5 . . . , zn is a complete list of the fixed points of
0, but the equality condition fails if we replace n by infinity. This theorem is really a
quantitative version of the uniqueness statement in the Denjoy-WolfT theorem. The
Denjoy-Wolff theorem says that if z* is a fixed point of (j), not the Denjoy-WolfT
point, then 4>'{z*) > 1, whereas Theorem 4.1 tells how much bigger (j)'{z*) must be.

We use Theorem 4.1 to obtain an inequality relating the angular derivatives at
points of (f)~l({k}) where |A| = 1. (As in the fixed point situation, (f>(zj) and (f>'{z})
refer to radial limits and \(p{z})\ = 1 implies the existence of the derivative.)

THEOREM 8.1. Let § be analytic in D with $(D) a D, and suppose, for
j = 1,2,..., n, that $(Z;) = A, where \z}\ = 1 = \k\. Then

jf, W[z,)\ A-0(0)

and equality holds if and only if (f) is a Blaschke product of order n.

More can be said when <f) is univalent, as we see in the following.

T H E O R E M 6 . 1 . Let (j) be analytic and univalent in D with <f)(D) c= D and suppose
the Denjoy-Wolff point a of 0 satisfies \a\ = 1 and (j)'{a) < 1. If z i , z 2 , --.,zn are
distinct fixed points of 0 on 3D, different from a, then

£ (log^z,.))"1 sc -(log(//(a))"1.

Moreover, equality holds if and only if

where s(z) =
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and

Theorem 7.1 is a similar result for the case when \a\ < 1, and Theorem 6.2 is a
weaker version treating the case when (f)'(a) = 1.

The given condition for equality is equivalent to a qualitative one (closely related
to the geometric motivation for the inequality) based on semigroups of iterates. For
a positive integer k, we will denote by <j)k the /c-th iterate of 4> that is, </>j = <f>,
(j)2 = (j) o (j>,..., (j)k = (j> o (frk-i- The iterates of </> form a discrete semigroup under
composition. We shall say that </> can be embedded in a continuous semigroup of
iterates if there is a function F(z, t) defined and continuous for \z\ < 1 and t ^ 0,
such that (j>t{z) = F(z, t) is an analytic map of the disk into itself for each t,
F(z, 1) = (j)(z), and 0s+,(z) = 0s(#,(z)). The equality condition of Theorem 6.1 is
equivalent to saying that D\(j)(D) consists of n — 1 analytic arcs and (j> can be
embedded in a continuous semigroup of iterates {</>,}. As t increases, the arcs
comprising D\4>t(D) grow analytically toward the Denjoy-Wolff point; the
semigroup condition is really a condition on the shape of the omitted arcs.

The proofs of the more difficult results of this paper are based on a Grunsky-type
inequality of Nehari [5] and Schiffer and Tammi [10] (see [7, p. 98] and Section 5),
but the geometric intuition behind the results is based on a model for iteration of
functions analytic in the unit disk developed in [3]. In the situation of Theorem 6.1,
there is a conformal map a of the disk into the strip |Im(| < W such that
$(z) = a~1((r(z)+l). The domain o(D) nearly extends the width of the strip near
+ oo and has (at least) n fingers that extend to — oo:

lim a(ra) = + oo and lim a{rz}) = — oo
r - 1 - r - 1 -

for j = 1, 2,. . . , n. The Ahlfors distortion theorem can be used to relate the harmonic
mean of the widths of the fingers to the derivatives at the fixed points, for example,
(f)'(a) = exp(-7r/2W).

The inequality of Theorem 6.1 is just the observation that the sum of the widths
of the fingers is no more than the width of the strip. The equality condition is that
equality arises when the fingers fill the strip and are bounded by rays. In this case,
the semigroup is defined by <f)t(z) = a~1(a(z) + t). In using this method of proof
certain technical considerations arise that seem to require special hypotheses, so the
proofs given here are non-geometric.

The outline of the paper is as follows. In Section 2, we examine the size of the
fixed point set (measure zero in general, capacity zero if 0 is univalent) and give
examples where the fixed point set is large. In Section 3, we prove a geometric
version of Theorem 4.1 involving only two fixed points, and in Section 4, we prove
the general inequalities. Section 5 is devoted to proving the Grunsky-type
inequalities needed for univalent functions. Sections 6 and 7 present the results for
univalent functions in which the Denjoy-Wolff point is on the circle (Section 6) and
in the disk (Section 7). Finally, Section 8 deals with inequalities for the angular
derivative at points of ^"^{/l}) where |A| = 1.

We wish to thank Robert Burckel, David Minda, and the referee for pointing out
several errors that occurred in the original version and for making helpful
suggestions.
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2. Tht fixed point set

By the fixed point set of 0, we mean the set

F = <z: \z\ ^ 1 and lim (f){rz) = z
i -

As noted in the introduction, F is non-empty since the Denjoy-Wolff point a is in F.
By Schwarz's lemma, either FnD — 0 or FnD = {a}. In this section, we examine
the size of F. Since F is the zero set of the bounded function (f)(z) — z, the Lebesgue
measure of F n 3D is zero. We can say more if <}> is univalent.

THEOREM 2.1. / / (j) (not the identity) is analytic and univalent in D with
cj)(D) c D, then the fixed point set of(j) has outer capacity zero.

Proof. We use the following inequality concerning capacity [7, p. 348]. Let / be
univalent in D, with f{D) a D and /(0) = 0. If A and f{A) are subsets of 3D then
capM ^ |/'(0)|1/2cap*/(>l) (where cap*£ denotes the outer logarithmic capacity
of£).

Since the result is trivial if 0 is a Mobius transformation, we assume that it is not.
Let a be the Denjoy-Wolff point of </>, and let F be the fixed point set of </>. If \a\ < 1,
we may assume that a = 0. Applying the result above to the set A = F \ { « } we
obtain cap*/l ^ |</>'(0)|1/2cap*y4. Since |0'(O)| < 1, we conclude that cap*/4 = 0, and
cap*F = 0.

For |a| = 1, let 0,(0) = bn and *H{z) = (z-bn)(l-bnzyl and /„ = ^ o ^ .
Then /„ satisfies the hypotheses of the above result for each n, and if K is a compact
subset of C\{fl} we have fn(K n F) = \]/n{K n F). Thus, by Schwarz's lemma,

cap*(K n F) ^ \f'n(0)\ll2™P*L(K n F ) < cap*^(K n F).

Now lim bn = a and an easy calculation shows that \pn converges uniformly on
n-» oo

compact subsets of C \{a} to the constant —a. This means that
lim cap*i/fn(/<C r> F) = 0, so that cap*(JC n F) = 0. Since this holds for all compact

n-* oo

subsets of C\{a} , it follows that cap*F = 0.

The following two examples show that these results are best possible.

EXAMPLE 2.2. Let K be a closed set of measure zero in 3D. There is a function (j>
analytic in D, continuous in D with (f)(D) c D whose fixed point set is K u {0}.

Let z0 be a point of 3D\K. In [9, p. 809] Rudin constructs a function q
continuous in D, analytic in D such that q(D) is contained in a closed rectangle M
with 0 and 1 on the boundary of M and q~l{{§}) = {z0} and g'HU}) = K- Let i//
be a conformal map of M onto D with î (0) = —1 and i/f(l) = 1. Then
</>(z) = zif/(q(z)) is continuous on Z), analytic in D and <f) is not the identity since
0(zo) = — z0. A point w is in the fixed point set of § if and only if w = 0 or
il/{q(wj) = 1, that is, if and only if w is in {0} u K.

EXAMPLE 2.3. Let K be a closed set of capacity zero in 3D and let a be a point of
3D\K. There is a function <j) analytic and univalent in D with 0(D) <= D whose fixed
point set is K u {a}.
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Let £(z) = {a + z)(a-z)~l and let E = ((K). Then ( maps the unit disk onto the
half plane H = {£: Re ( > 0} with ((a) = oo and £ is a compact subset of the
imaginary axis with capacity zero. By Evan's theorem [11, p. 75], there is a positive

measure \i on E such that ^i(E) = 1 and lim log|x + ry — t\d/x(t) = — oo if and

J

f Re(
Reh'(C) = rz ry^MO > 0 for £ in H, we see that h is univalent. Off E we can

only if iy is in E. Let h(Q = log (( — t)dfi{t) for £ in H. Since # is convex and since

Re( J
rz r

continue h across the imaginary axis and since Re h' = 0 on i R \ £ the image of this
set consists of rays parallel to the real axis. It follows that
h(H) a {w: |Im w\ < n/2}, and h(H) has the property that w e h(H) implies that
w + reh{H) for all r > 0. Define </> on D by 0(z) = r H ^ M C W H l ) ) . Since
h([,(z)) = oo if and only if z = a and since h(((z)) = — oo if and only if z is in K, the
fixed point set of 0 is K u {a}.

3. Analytic functions: two fixed points

In this section we examine the case in which only two fixed points are considered.
This motivates the more general theorems later and also presents a geometric aspect
of the problem which we have been unable to generalize. The choice of fixed points
at + 1 in the theorem is a convenient normalization: conjugation by an appropriate
Mobius transformation changes fixed points at a, b on the unit circle to + 1 and does
not change the left side of the inequality. We are grateful to Don Marshall, David
Minda and Ken Stephenson for their suggestions in refining the statement and proof
of this result.

THEOREM 3.1. Let (j> be analytic in D with (j)(D) c D. If 1 and —1 are fixed
points of 0 then

Proof. From the lemma of Julia, Caratheodory and Wolff [7, p. 306] or [6,
p. 57] we have

a n d

Multiplication of these equalities and restriction to the real axis yield the inequality.

This is really a distortion theorem. The expression 4(Im z)2[l — |z|2] " 2 is constant
on arcs of circles through + 1 and — 1. Thus, the expression on the right measures
how far the image of (— 1,1) deviates from (— 1,1). It will follow from Theorem 4.1
that </>'(!)</>'( — 1) > 1 unless 0 is a Mobius transformation.
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4. Analytic functions: the general case

In order to prove the inequalities in the general case, we need the following
extension of the Julia-Caratheodory-Wolff lemma.

LEMMA 4.0. Let g be analytic in D and let Reg(z) > 0. Let z l 5 z 2 , . . . , zn be points
1 - r

of the unit circle for which g(Zj) = oo, and let bj = lim d(rzj)- Then
r-»i~ 1 i r

satisfies Reh{z) ^ 0.

Proof. Changing variables in the usual version of the Julia-Caratheodory-
Wolff lemma so that it applies to functions analytic in D with positive real part, we

get that hx(z) = g(z) — b1 — satisfies ReJz^z) ^ 0. (The proof given in [6, pp. 57-
zi ~ z

60] is a good starting point.)
I —~ f* 7 I Y7

Since lim = 0 for j; =£ k, the conclusion follows by induction.

In the following theorem, we assume that the function has been normalized so
that the Denjoy-Wolff point is 0 or 1.

THEOREM 4 .1 . Let $ be analytic in D, with <$>{D) cz D and let zo,z1,...,zn be
distinct fixed points of (f> in D.

(i) If z0 = 0 then

(ii) Ifzo = l and 0 < 0'(1) < 1 then

(iii) Ifzo = \ and 0'(1) = 1 then

» | 1 — z | 2

Moreover, equality holds if and only if (j> is a Blaschke product of order n +1 in case (i)
or order n in cases (ii) and (iii).

Proof, (i) Let
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Since z0 = 0, the function z~l(f)(z) is analytic in D and maps D into itself, hence

Reg(z) > 0 for z in D. Now

l i m g{rzj) = lim

Thus the lemma shows that

has positive real part. Setting z = 0, we have

^ r w S fo'W-i)"1 = Re MO) ^ o,
i — (p {\J) j = l

which is (i). If equality holds in (i) then the maximum principle implies that

Re/i(z) = 0 so that h(z) = iB, fi real. It follows that all boundary values of —,—
1—Z (j)

on 3D are purely imaginary so that the boundary values of z~x <\> have modulus 1.
Since z " 1 ^ is rational of order n it follows that 0 is a Blaschke product of order
n +1. Conversely, if z~l(p is a Blaschke product of order n, then there are n distinct
points zt,z2, ...,zn on 3D at which z~x(j) takes the value 1, that is, at which cp has
fixed points. Moreover, if h(z) is as above then Re/i = 0 on dD, so that Refr(0) = 0.

(ii) By the lemma, since lim — - = ^ ' ( l ) " 1 > 1, the function
1 + r l(p(r)

f{z) = —— - has positive real part. Let g{z) = /(z)"1 so that Re#(z) > 0
l-(p{z) 1-z

also. Since zl 5. . . , zn are fixed points of (p different from 1, we see that g(zj) = oo for
j = 1,..., n. Moreover

r i + r 1 r
1 ()

p
r- i- 1 - r ^(rzj) r _ i- 1 - r \_\ - cp{rz}) 1 - rzj

2(1+r)(cp(rzj)-rzj)
=

n ii _|2 I

for _/ = 1, 2,. . . , n. The lemma implies that h(z) = 6f(z)— V —p ^— T -^ has
4(0'(Z)-1) Z 2- 1 ) Zj—2

positive real part. By Harnack's inequality Re h(z) ^ — Re h(0), so that for

0 < r < 1, taking real parts and dividing by 1 — r, we obtain

| l - z / 1+r 1
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Now lim —— = lim ( l - r ) | / *) [ - ^ — | = 20'(1)"1-2. Taking the limit

as r -* 1~ in (*) gives

which is (ii). The statement about equality follows as before.

(iii) We obtain (*) as in the proof of (ii).
Setting r = 0, we get

1 6(1)
We note that in (ii) if n = 1 and z, = — 1 we get —-—— ^ -———• which is

0 ( l ) l 1 0 ( 1 )
equivalent to 4>'(i)4>'( — 1) > 1. This is the inequality of Theorem 3.1 without the
geometric content.

5. Some Grunsky-type inequalities

In this section we derive some inequalities needed in later sections. We first give
an improvement of Corollary 4.3 of [7, p. 99].

THEOREM 5.1. Let f(z) = bz + ... be univalent in D and have f{D) c D. If
zy,z2... zn are in D and y,, y2,..., yn are real, then

j=l k=1

REMARK. We choose the branch of log(/(z)/bz) on D that vanishes for z = 0.
As in [7, p. 98], we define Grunsky-type coefficients a^ and a*v by

(1) \ogmlf{Q= £ £ a,
2 b ( i = 0 v = 0

and

(2) l o g ( l - / ( z ) / ( 0 ) = -

for z and ( in D.

oo oo

2^ 2- a^v
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Proof. Theorem 4.2 of [7, p. 99] asserts that if Als X2 •••
 a r e complex numbers

then
00 00 00 1

1 • - - 2(3) R e L L a^nK \+ L L a%sh < L "
Lji = 0 v = 0 J /J = 1 v = 1 v = l V

when the right-hand series converges. r, ^ «,
From (1) above we see that Rea0 0 = log|fe|, that log—— = Z fl»ozV a n c l l ^ a t

logK(/(z)-/(O) £ ^ . _„„

For v = 1, 2, 3 , . . . let Av = i £ y^z] (which gives the convergence of the series in (3)),

and let Ao = I log— I Re £ flv0^v- These choices mean that
1̂1

n oo

, I v ; = iJ , . , o gM

that
oo oo n n / oo oo

Z Z «/-v^^v = - Z Z yjyk Z Z apv^
/i = l v = l j = l 1 = 1 Vi = 1 v = 1

and that
oo oo n n / oo oo

E V * 1 7 V V / V V * u - v

> a,.vA..Av — > / 'y.Vfc I 7 7 a.,vZ:Zi,
H = \ v = \ j = 1 fc = 1 \J I = 1 v = 1

= - Z E w
j = l f c = l

Inserting these in (3) yields

= 1 j / j - i f c - i f(Zj)f(zk){Zj-Zk)

< Z - w 2 = Z Z yAlogn-z^r1

V = 1 V j = 1 k = 1

which is equivalent to our assertion.

In the following corollary we replace the hypothesis /(O) = 0 by the hypothesis
Zy, = o.

COROLLARY 5.2. Suppose that g(z) is analytic and univalent in D with g(D) a D.
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If z0, z l 5 . . . , zn are in D and y 0 , y 1 , . . . , yn are real numbers such that ]T Jj = 0 then

Z Z y
j = 0 k = 0

w/iere a = g(0).

Zj ~ Zk

l
0 8 lflf'

l-|a|2Vir "

Proof. Let /(z) = (^(zJ-aXl-a^z))"1 so that /(0) = 0 and
/'(O) = (1 — lal2)"1 ̂ '(0). We insert this into the inequality of Theorem 5.1. Since
Z 7j = 0, the terms containing b cancel and we obtain

Z Z
j=0fc=0

xlog
-ag{zj))(l -«g(zk))(zj-zk)(l -Zjzk)(l - -ag(zk))

A
Since Z 7* = 0, we have

fc = 0

n n / n

Z Z w*iog|/(z,)|= lyj
j=O k=O \j=0

and similarly for all other terms in the product on the left that involve only one
index. The resulting simplification gives the desired inequality.

COROLLARY 5.3. Suppose that g is analytic and univalent in H = {s: Res > 0}

and satisfies g(H) c: H and lim
y\,y2,--.,yn are real then x~'00 x

Z Z ^
j = l k= 1

{g{Sj)-g{sk)){g{Sj

{Sj-Sk){Sj

= c > 0 . / / s1,s2,---,sn are in H and

i 2y2 logc.

where y =

Proof. Since the conclusion is not affected by adding an imaginary constant to

g, we assume that g(\) = a > 0. In order to use Theorem 5.1, let s{z) =
1—2

and
( I \\—

fiz) = — { for z in D. In addition, let zo,z,,...,zn be defined by s.- = s(z;),
g{s(z)) + (x
g{s(z)) + (x

where s0 > 0 and let y0 = — y = — function / is univalent in D,
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f(D) c D and /(0) = 0, so that Theorem 5.1 applies. Making the substitutions we
obtain

Z Z 7;7fclog
7 = 0 fc = 0 {sj - sk){sj + sk){g{Sj) - cc)(g(sk) - cc){g{sk) + cc)(g{Sj) + a)

n

Since Z 7k = 05
 w e simplify as in the previous corollary to get

Z Z VjVkiog
7 = 0 k = 0

Expanding this to isolate s0, we have

72log
2s, - 2y X 7; log

n n

+ I I y,
7 = 1 k= 1

Taking the limit as s0 -> oo yields

n n n

y2 log c2 — 2y Z 7j 1°§ c 2 + Z Z 7j

(g{sj)-g(sk))(g(sj

(Sj-Sk)(Sj

which I since y = £ y;-J is equivalent to our conclusion.

6. Univalent functions: the case when \a\ = 1

In this section we prove inequalities for univalent functions whose Denjoy-Wolff
point a lies on the unit circle. The first inequality deals with the case when \(j)'(a)\ < 1
and is complete in the sense that necessary and sufficient conditions are given for
equality.

THEOREM 6.1. Let (f) be analytic and univalent in D with (j)(D) a D and suppose
that the Denjoy-Wolff point a of (j) satisfies \a\ = 1 and (f)'(a) < 1. If z1,z2, ...,zn are
distinct fixed points of (j) on dD, different from a, then

-(logwo

Moreover, equality holds if and only if

i

where

s(z) = and a(s) = '(^))"1 log(s-s(z,))
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Proof. We shall use the Grunsky-type inequality, Corollary 5.3 of the last
section. To do this we define g on the halfplane H = {5: Re s > 0} by

g(s) =
- 1

where s = (a + z)(a — z) 1. Then g is analytic and univalent in H and satisfies
g{H) a H and lim (g(x)/x) = c = (j)'(a)~x. Moreover, g has fixed points ( l 5 . . . , £„

x - » 0 0

on the imaginary axis where £,- = s(2j) and #'((,) = $'(Zj). Now let s0 be an arbitrary
point of H, let s,- = x + Cj for x > 0 and let y0, yl5..., yn be arbitrary real numbers
with y = yl +.. . + }>„. Then the inequality of Corollary 5.3 becomes

9'(s0) Resr
+ 2y0

+ £ E
j = 1 k = 1

g(Sj)+g{s0)

Taking the limit as x tends to zero we obtain

To log g'(s0)

+ 2

Taking y7- = (\ogg'(£j)) l and collecting the terms with y0 we get

~ y l l o g
c2 Re s0

+ 2y0 X y l̂og + y-y2logc ^ 0.

Since y0 is an arbitrary real number this means that

y-y2logc

The inequality y —y2 logc ^ 0 is just y < (logc) l, which is our conclusion.

Now if equality holds we see that Re £ y, log -=j is zero on H and since

lim ii—€i£f = 1 We get

V/=i J

1

2

og
Cj-g(so)
c{tj-s0)

g'{so)Reg(so)
c2 Re s0

)

^O o n / / .
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n n D p „

If we define a on H by a{s) = £ y^logfa-y then Re<r'(s) = £ y,-- —j > 0 on
7=1 j=l lS~Cjl

H (a convex domain) and so a is univalent. In fact, <J{H) is the horizontal strip
{w: |Imw| < yn/2] with n—1 rays removed. The equation (*) says that g satisfies
Abel's functional equation o{g{s)) = c(s) + ylogc = o-(s) + l , which is what we were
to prove. „

Conversely, suppose that •y1, y2> •••> Tn a r e positive numbers, that y = £ V/> a n d

that a,z1,...,zH are distinct points of dD. If (j>(z) = s~l{a~l(o(s{z)) + l)) where
n

s{z) = (a + z)(a-z)~l and cr(s) = £ y;log (s-s(Zj)), then it is not difficult to check

that 0 is univalent in D with (p(D) <= D, the points a, z l 3 . . . , zn are fixed points of 0,
and <£'(a) = e"1/v and 0'(zj) = el/yK

REMARK. The equality condition above has a qualitative statement: Equality
holds in the inequality of Theorem 6.1 if and only if (f){D) is the disk with n — 1
analytic arcs removed and cj) can be embedded in a continuous semigroup of iterates
{</>,} mapping D conformally into itself. Indeed, when equality holds,
0,(z) = s~1(o~1(o(s(z)) + t)) is the required semigroup of iterates. The n— 1 arcs
comprising D\(j)(D) are the images under s"1 o a'1 of the line segments that make
up <j(H)\(a(H)+\). Conversely, if </> satisfies the semigroup conditions, then
Theorems 3.4 and 5.2 of [3, pp. 81, 92] show that ^ has the form above.

Before proving an inequality covering the case when \a\ = 1, |^'(a)| = 1, we need
to define some parameters that arise in the theorem. If </> is univalent on D and

1 |< (O) | 6(z)-(b(0)
61D) c D the function l o g — , ^ = log(l + ...) is single valued on

0(O)z 1 4 ( 0 ) / ( )
D. Let l(z) be the determination of this function that has 1(0) — 0. If the Denjoy-
Wolff point of 0 is 1 and zl,z2,...,zn are the fixed points of (f> on 3D, let

b. = lim Im ( / ( rz . ) - / ( r ) ) . Thus b, is a value of arg (
/ , . , - J (1

THEOREM 6.2. Let 0 be analytic and univalent in D with (j){D) a D and suppose
that 1 is the Denjoy-Wolff point of 0 and that (j)'(l) = 1. If zliz2,...,zn are distinct
fixed points of' (j) on dD different from 1 and ifbl,b2,--.,bn are as defined above, then

Proof. Apply Corollary 5.2 with the points rz0 = r,rz{, ...,rzn for 0 < r < 1
and take the limit as r tends to 1 to obtain

n

But since y0 = — £ y} and since 0'(zo) = $'(1) = 1, this is equivalent to
j = i
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where the }>i, y2, ••-,)>„ a r e arbitrary real numbers. Choosing y} = ^
yields the given inequality.

It is quite unlikely that this is the best possible inequality: we have made a
convenient but suboptimal choice for the y,. In addition, if (f> is real valued on
(—1,1) and ± 1 are fixed points with $'(1) = 1, the given inequality says nothing
about (/)'{ —1) since lim Im(/( —r)) = 0. In this case, $'( — l) undoubtedly depends

r - 1 -

on 0(0) and perhaps on other factors, but we cannot quantify the relationship.

7. Univalent functions: the case when a = 0

In this section we consider univalent functions (j>{z) = bz + ... and obtain an
inequality analogous to that of Theorem 6.1. We begin by finding an appropriate
value of logb"1 for use in our inequality.

LEMMA 7.0. Suppose that cf)(z) = bz + ... is analytic and univalent in D with

(j){D) <= D. IfZi ,z2,...,zn are fixed points on 3D then lim log I — I is the same for
/(h(z)\ ' - ' " ^ r z ' '

j = 1 ,2 , . . . , n, where log = log(b + ...) has the value Logb at z = 0.

V * /
Proof. Since lim (b(rz:) = zh we see that lim ( - I = 2nik;. Now k-. is the

number of times the curve (frirZj), 0 < r < 1, winds around the origin in going from 0
to Zj. Since (f> is univalent, these curves only intersect at 0, thus kj is the same for
each j .

THEOREM 7.1. Let cf)(z) = bz + ... be analytic and univalent in D with (f)(D) cz D.

Ifzt,z2, •••,%„ are distinct fixed points of (j) on 3D, then

where B= lim log I——^-). Moreover, equality holds if and only if
r _ i- \ brzy J

(f){z) = a'^baiz)) where

a(z) = z f[ (l-z;z)-2^(1-'a-l/il

n

with )>j = (log(l>'(Zj))~l and £ jj = y = 2ReB~l, where B = a + i/?.

In the above, we choose the branch of log I —— I that is zero at z = 0. Note that
\bz J

B is a particular value of log ($'(0) 1).
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Proof. Let z0 = z be a point of D and let k = y0, ylt..., yn be real numbers with
n

y = Y, 7j- For 0 < r < 1 we have, from Theorem 5.1,

Z Z yj

Now by the lemma, for j = 1,..., n, we have

Writing B = a + i/J, and taking the limit as r tends to 1, we obtain

(*) A2log yjlog

< fc«n

When k = 0, we obtain 2 £ y2 log^'Czj) — y2a ^ <x~l(}2y2. Choosing

yj = (log(f)'(Zj))~l, this becomes

2y-y2ot ^ a-'^y2 or y ^ 2(a + a"1i52)-1 = 2 1

which is the desired inequality.
If equality holds in this inequality, (•) becomes

k2 log
cKz)2(l-\z\2)

-a 1 I arg mi]
+ 2k Z i^

Li=i

Since this holds for all k, it follows that

Z ^
for all z in D.

Since the analytic function of which this is the real part must be constant, we
obtain

(1) 2
J ? / j l o g ( ^ = const.
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Now let

a(z) = z f l (l-zjz)-^(1-fa"l/?).
j = l

Using (1) and the definition of a, we see that

\oga((l>(z)) = \ogcf>(z)-2(y(l-ioi-lp))-1 £ y , l og ( l -2^ (2 ) )

n

= const + log z -2 (y ( l - i a " 1 j5 ) ) " 1 £ y; log (1 - z,z).

This means that o{(j){z)) = ba(z) (where the constant is obtained from the expansion
at 0). Conversely, if yx, y2)..., yn are positive real numbers, B = a + i/? is a complex

number such that y = £ yj = 2RQB'1 and zl5 z2,..., zn are distinct points of 3D,
j = 1

then we must show that the (f) defined in the conclusion is a univalent map of D into
itself with fixed points 0, z{,z2,..., zn and 0'(O) = e'B = b and ^'(z;) = e1/y'.

We examine the function a. A computation gives

f
which means that

Theorem 6.6 of [7, p. 172] implies that a is univalent in D and is spiral-like of type
0 = Arg(l-ia~1j5), that is, that w in a{D) implies that e~B'w is in <J(D) for t ^ 0
[7, p. 171]. Thus, setting t = 1, we see that ba(z) is in <r(D) for each z in D so that 0 is
a univalent map of £> into itself with fixed points 0, z1}z2, ...,zn. A computation
shows that </>'(0) = b and (f>'(zj) = el/yK

REMARK. The equality condition has a qualitative statement: Equality holds in
the inequality of Theorem 7.1 if and only if (\){D) is the disk with n analytic arcs
removed and cj) can be embedded in a continuous semigroup of iterates {</>,} mapping
the disk conformally into itself with (^)'(O) = e~Bt. Indeed, when equality holds
</>f(z) = a~i(e~B'a(z)) is the required semigroup of iterates (this is well defined since
a is spiral-like).

Since the imaginary part of (1 —ia~1jS)log(r(z) is constant on each of the n
components of dD\{zj}n

j= i , the image of a is the plane with n spirals removed. This
means that (\>{D) is the disk with n analytic arcs removed, namely, the images under
a~l of the parts of the n spirals \a{D)\e~Ba(D).
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In order to prove the sufficiency of the condition we suppose that (j) maps the
disk onto the disk with n analytic arcs removed and (j> can be embedded in a
continuous semigroup {</>,} with (</>r)'(0) = eBl. We shall show that

and that

We shall use the model for (f) developed in [3]. Theorems 3.2 and 3.3 of
[3, pp. 78, 81] produce a conformal map a : D -> C (cr is univalent because 0 is) such
that 0(z) = a~l(e-Ba(z)\ Theorem 5.2 [3, p.92] shows that 0,(z) = a-l(e~Bta{z))
for each t ^ 0. The condition that cf)(D) is the disk with n analytic arcs removed

means a(D) is C \ [j 1} where the curves 1} are spirals I}(t) = {/?,•«*: t ^ 0} (here

/?,• is the image under <r of the point where the j-th removed arc in D meets 3D). Let
F = {0} u {px e

Bl: t e R} so that T is a spiral from 0 to oo. Without loss of
generality, we suppose that 1 is in C \ F and we write Log w for the branch of the
logarithm in C \ F such that Log 1 = 0 .

By the construction, e~Bt is in C \ r for all t > 0 and Loge"B' = -Bt. Thus,
Log ( C \ F ) is a strip parallel to the line — Bt with vertical dimension 2n. Elementary
trigonometry gives the width of this strip to be 27tReJ3|J5|~1. The function
i//(w) = — B^Logvv maps C \ F onto a strip of width 27rReJB|B|"2. Now
il/(a(D)\T) is a slit strip and we have $(z) = a~1(il/~1(il/(a(z)) + l)) for z in
D\a~1(T). If Wj is the distance between the rays that correspond to the fixed point
Zj, we see, as in the computation in the proof of Theorem 3.4 of [3, p. 81], that

Pizj) = exp(w/WJ). Thus t ( log^z,-))-1 = - £ Wj = 2ReB|B|-2 = 2R6B" 1 .

To complete the justification of the sufficiency of the condition, we must show

that lim log I — ^ — ) = B. We note that (z, t) H-» 6 (z) is a continuous function on
r _ , - \e Brzj

D x [0,1] which is a connected and simply connected set. Now define L(z, t) on

D x [ 0 , 1 ] by L(z,t) = log* f , ; where we take L(0,0) = 0. We see that
<blz) e~ ^{z)

L{z, 0) = log -Tg-, and so we want to compute L{zx, 0). We have L(0, t) = 0 for all
t, so that L(0,1) = 0 and L(z, 1) = 0 for all z in D. In particular, L(zt, 1) = 0. Since
faizj = Zy for all t, this means that L(zl91) = logeB(I~° = B ( l - t ) so that
L(zl f0) = B.

8. Inequalities for ((>

One interpretation of the inequalities on fixed points is that specifying values of $
places restrictions on the angular derivative. In this section we consider a variation
in the way in which the values are specified: we examine what restrictions are placed
on the derivative at points where (f) has the value X in dD. The first result treats
general analytic functions.
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THEOREM 8.1. Let 0 be analytic in D with (f)(D) <= D and suppose, for

j = 1, 2 , . . . , n, that (f)(Zj) = X where \z}\ = 1 = |A|. Then

and equality holds if and only if <() is a Blaschke product of order n.

Proof Let g(z) = X~Yz(\){z), so that 0,zi,...,zn are fixed points of g. Since
gf'(O) = /l"1(/)(0) and g'iz,) = l + X-'z^'izj) = l + \(f)'{Zj)\, and g is a Blaschke
product of order n + 1 if and only if (f) is a Blaschke product of order n, the result
follows from Theorem 4.1(i).

The situation is somewhat easier for univalent functions. As is clear
geometrically, we only need consider one point of ^

LEMMA 8.2. Suppose that $ is analytic and univalent in D and that (j)(D) c D. If
(f){Zj) = Xfor j = 1, 2 , . . . , n where \Zj\ = 1 = \X\, then <j)'{Zj) is finite for at most one
point Zj.

Proof Let <D(z) = (<£(z)-<£(0))/( 1 - 0 ( 0 ) </>(z)), so that O(0) = 0. Then
O^j) = ... = <&{zn) and O'(z;) is finite if and only if <p'{Zj) is. Choose integers j and k,
1 ^ j < k ^ n and let y,- = yfc = 1 and ym = 0 for m ^ j , /c. Theorem 5.1 shows
that, for 0 < r < 1,

log O'(0)2

<D(rz/<D(rzk)2(l-r2 |z/)(l-r2 |zk |2)

+ 21og ™<™' -J-^~^"J' ~K'-™'\~ . (rzP (rzV'
z J . - rzk)(l - r 2 z ;

Now since lim O(rZj) = lim Q>(rzk), the second term tends to — oo. The first term
r - . 1 - r-» 1 -

tends to 21og|O'(0)<I>'(zj)<I>'(zk)| which must be +oo in order to maintain the
inequality. Since j and k are arbitrary, at most one of ^(zj) , . . . , <I)'(zn) is finite.

The size of the angular derivative at this one A-point is also restricted as we see in
the following.

THEOREM 8.3. Suppose that cf)(z) = bz + ... is analytic and univalent in D and
suppose that <j>(z*) = X for \z*\ = 1 = \X\. Then

^ 2ReC- 1

*)| "
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where C = lim log ———, which is a value of log —-. Moreover, equality holds if
r _ i - brz* bz*

and only if

z*_\-2ReC/CX _. fz*b \
(b(z) = —-a —— a(z) where cr(z) = z(l — z*z)

z* \X J

Proof. Let 0(z) = z*A"10(z). Now O(z) = z*A"1fez + ... is univalent,
<D(rz*)

O(z*) = z*, and C = lim log 1 —-. Applying Theorem 7.1 gives the
r _»i - (z A bjrz

inequality, and the equality condition is obtained from the proof of 7.1.

In 8.3, 4> is assumed to have a fixed point at zero as well as taking the value X at
z*. If 0(z*) = X then we can use Theorem 4.1 to obtain

Viz*)
a-X

— z*
k - i

with equality if and only if 0 is a Mobius transformation. (Univalence of (p is not
necessary here.) It seems clear that many results combining assumptions about the
fixed point set and (^"^{A}) are possible with these methods, but we do not pursue
the subject further.
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