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Some Recent History:

Eva Gallardo and I announced on December 13, 2012 that we had proved

the Invariant Subspace Theorem.

On January 26, 2013, we learned that we had not proved the Theorem.

On June 12, 2013, we submitted a paper

including the main ideas of the earlier paper,

And on August 14, 2013 we submitted another paper.

Today, I’ll talk about some of the history of the problem

and some of the results of these papers.
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Some terminology:

A complex vector space that has a norm

that makes it a complete metric space is called a Banach space.

A Banach space whose norm is given by an inner product is a Hilbert space.

Hilbert spaces are Euclidean spaces... the Pythagorean Theorem works!

A continuous linear transformation on a Banach space

is called a bounded operator
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Some terminology:

If A is a bounded linear operator mapping a Banach space X into itself,

a closed subspace M of X is an invariant subspace for A

if for each v in M , the vector Av is also in M .

The subspaces M = (0) and M = X are trivial invariant subspaces and we

are not interested in these.

The Invariant Subspace Question is:

• Does every bounded operator on a Banach space have a non-trivial

invariant subspace?



We will only consider vector spaces over the complex numbers.

If the dimension of the space X is finite and at least 2, then any linear

transformation has eigenvectors and each eigenvector generates a one

dimensional (non-trivial) invariant subspace.

The Jordan Canonical Form Theorem provides the information to construct

all of the invariant subspaces of an operator on a finite dimensional space.



If A is an operator on X and x is a vector in X , then the cyclic subspace

generated by x is the closure of

{ p(A)x : p is a polynomial }

Clearly, the cyclic subspace generated by x is an invariant subspace for A.

If the cyclic subspace generated by the vector x is all of X ,

we say x is a cyclic vector for A.



If A is an operator on X and x is a vector in X , then the cyclic subspace

generated by x is the closure of

{ p(A)x : p is a polynomial }

Clearly, the cyclic subspace generated by x is an invariant subspace for A.

If the cyclic subspace generated by the vector x is all of X ,

we say x is a cyclic vector for A.

Every cyclic subspace is separable, in the sense of topology, so if X is

NOT separable, every operator on X has non-trivial invariant subspaces.

Therefore, in thinking about the Invariant Subspace Question,

we restrict attention to infinite dimensional, separable Banach spaces.



Some history:

• Spectral Theorem for self-adjoint operators on Hilbert spaces gives

invariant subspaces

• Beurling (1949): completely characterized the invariant subspaces of

the operator of multiplication by z on the Hardy Hilbert space, H2

• von Neumann (’30’s, 40’s?), Aronszajn & Smith (’54):

Every compact operator on a Banach space has invariant subspaces.
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Some history:

• Spectral Theorem for self-adjoint operators

• Beurling (1949): invariant subspaces of isometric shift

• von Neumann (’30’s, 40’s?), Aronszajn & Smith (’54): compact operators

• Lomonosov (’73): Yes, for S when S ↔ T ↔ K, if K compact

• Lomonosov did not solve ISP: Hadwin, Nordgren, Radjavi, Rosenthal(’80)

• Enflo (’75/’87), Read (’85): Found operators on Banach spaces with only

the trivial invariant subspaces!

The (revised) Invariant Subspace Question is:

Hilbert
• Does every bounded operator on a Banach×××× space have a non-trivial

invariant subspace?



Rota’s Universal Operators:

Defn: Let X be a Banach space, let U be a bounded operator on X .

We say U is universal for X if for each bounded operator A on X ,

there is an invariant subspace M for U and a non-zero number λ

such that λA is similar to U |M .



Rota’s Universal Operators:

Defn: Let X be a Banach space, let U be a bounded operator on X .

We say U is universal for X if for each bounded operator A on X ,

there is an invariant subspace M for U and a non-zero number λ

such that λA is similar to U |M .

Rota proved in 1960 that if X is a separable, infinite dimensional Hilbert

space, there are universal operators on X !



Theorem (Caradus (1969))

If H is separable Hilbert space and U is bounded operator on H such that:

• The null space of U is infinite dimensional.

• The range of U is H.

then U is universal for H.



The Hardy Hilbert space on the unit disk, D = {z ∈ C : |z| < 1} is:

H2 = {h analytic in D : h(z) =

∞∑
n=0

anz
n with ‖h‖2 =

∑
|an|2 <∞}

Isometry zn ↔ einθ shows H2 ‘is’ subspace {h ∈ L2(∂D) : h ∼
∞∑
n=0

ane
inθ}

H2 is a Hilbert space of analytic functions on D in the sense that

for each α, the linear functional on H2 given by h 7→ h(α) is continuous.

Indeed, the inner product on H2 gives h(α) = 〈h,Kα〉

where Kα(z) = (1− αz)−1 for α in D.



Consider four types of operators on H2:

For f in L∞(∂D), Toeplitz operator Tf is operator given by Tfh = P+fh

where P+ is the orthogonal projection from L2(∂D) onto H2

For ψ a bounded analytic map of D into the complex plane,

the analytic Toeplitz operator Tψ is

(Tψh)(z) = ψ(z)h(z) for h in H2

Note: for ψ in H∞, P+ψh = ψh

For ϕ an analytic map of D into itself, the composition operator Cϕ is

(Cϕh) (z) = h(ϕ(z)) for h in H2

and for ψ in H∞ and ϕ an analytic map of D into itself,

the weighted composition operator Wψ,ϕ = TψCϕ is

(Wψ,ϕh) (z) = ψ(z)h(ϕ(z)) for h in H2



Lemma.

If f is a function in H∞(D) and there is ` > 0 so that |f (eiθ)| ≥ ` almost

everywhere on the unit circle, then 1/f is in L∞(∂D) and the (non-analytic)

Toeplitz operator T1/f is a left inverse for the analytic Toeplitz operator Tf .
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Lemma.

If f is a function in H∞(D) and there is ` > 0 so that |f (eiθ)| ≥ ` almost

everywhere on the unit circle, then 1/f is in L∞(∂D) and the (non-analytic)

Toeplitz operator T1/f is a left inverse for the analytic Toeplitz operator Tf .

Theorem.

If f is a function in H∞(D) for which there is ` > 0 so that |f (eiθ)| ≥ `

almost everywhere on the unit circle and Zf = {α ∈ D : f (α) = 0} is an

infinite set, then the Toeplitz operator T∗f is universal in the sense of Rota.

Proof:

By the Lemma, the analytic Toeplitz operator Tf has a left inverse, so the

Toeplitz operator T∗f has a right inverse and T∗f maps H2(D) onto itself.

Since T∗f (Kα) = f (α)Kα = 0 for α in Zf , the kernel of T∗f is infinite

dimensional. Thus, Caradus’ Theorem implies T∗f is universal.



Some previously known Universal Operators (in sense of Rota):

Best Known: adjoint of a unilateral shift of infinite multiplicity:

If S is analytic Toeplitz operator whose symbol is an inner function that

is not a finite Blaschke product, then S∗ is a universal operator.
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Also well known (Nordgren, Rosenthal, Wintrobe (’84,’87)):

If ϕ is an automorphism of D with fixed points ±1 and Denjoy-Wolff point 1,

that is, ϕ(z) =
z + s
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for 0 < s < 1,

then a translate of the composition operator Cϕ is a universal operator.
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translate of the covering map of the disk onto interior of the annulus σ(Cϕ).



Some previously known Universal Operators (in sense of Rota):

Also well known (Nordgren, Rosenthal, Wintrobe (’84,’87)):

If ϕ is an automorphism of D with fixed points ±1 and Denjoy-Wolff point 1,

that is, ϕ(z) =
z + s

1 + sz
for 0 < s < 1,

then a translate of the composition operator Cϕ is a universal operator.

In 2011, C. and Gallardo Gutiérrez showed that this translate, restricted to a

co-dimension one invariant subspace on which it is universal, is unitarily

equivalent to the adjoint of the analytic Toeplitz operator Tψ where ψ is a

translate of the covering map of the disk onto interior of the annulus σ(Cϕ).

In C.’s thesis (’76): The analytic Toeplitz operators S and Tψ DO NOT

commute with non-trivial compact operators.

Also proved: IF an analytic Toeplitz operator commutes with a non-trivial

compact, then the compact operator is quasi-nilpotent.



A New Universal Operator (in sense of Rota):

Main Theorem of June paper. (C. and Gallardo Gutiérrez, 2013)

There are bounded analytic functions ϕ and ψ on the unit disk

and an analytic map J of the unit disk into itself

so that the Toeplitz operator T∗ϕ is a universal operator in the sense of Rota

and the weighted composition operator W∗ψ,J
is an injective, compact operator with dense range

that commutes with the universal operator T∗ϕ .



Let Ω = {z ∈ C : Im z2 > −1 and Re z < 0},

the region in second quadrant above branch of the hyperbola 2xy = −1.

Let σ be the Riemann map of D onto Ω defined by

σ(z) =
−1 + i√
z + 1

where
√
· is the branch on the halfplane {z : Re z > 0} satisfying

√
1 = 1.

Notice that σ(1) = (−1 + i)/
√

2, σ(0) = −1 + i, and σ(−1) =∞.

We define ϕ on the unit disk by

ϕ(z) = eσ(z) − eσ(0) = eσ(z) − e−1+i



The function eσ maps the curve Γ = {eiθ : −π < θ < π},

the unit circle except −1, onto curve spiraling out from origin to ∂D.

Each circle of radius r intersects curve eσ(Γ) in exactly one point.

Closure eσ(Γ) is the set {0} ∪ eσ(Γ) ∪ ∂D and distance eσ(0) to eσ(Γ) > 0.



Let J be the analytic map of the unit disk into itself given by

J(z) = σ−1(σ(z) + 2πi)

From this definition, an easy calculation shows that ϕ ◦ J = ϕ.



Let J be the analytic map of the unit disk into itself given by

J(z) = σ−1(σ(z) + 2πi)

We can show the image J(D) is a convex set in D.

Figure 1: The set J(∂D) with J(−1) = −1, J(−i), J(1), and J(i).



Because J(D) is convex, the polynomials in J are weak-star dense in H∞,

and CJ has dense range,



Because J(D) is convex, the polynomials in J are weak-star dense in H∞,

and CJ has dense range, so we get:

Main Theorem

If ϕ, ψ, and J are the analytic functions defined above,

the Toeplitz operator T∗ϕ is a universal operator in the sense of Rota

and the weighted composition operator W∗ψ,J
is an injective, compact operator with dense range

that commutes with the universal operator T∗ϕ .



Observations:

• The best known operators that are universal in the sense of Rota are,

or are unitarily equivalent to, adjoints of analytic Toeplitz operators.

• Some universal operators commute with compact operators

and some do not.
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Second paper shows:

• There are VERY MANY analytic Toeplitz operators

whose adjoints are universal operators in the sense of Rota

and VERY MANY of them commute with non-trivial compact operators!

so, in next few minutes:

• Describe some properties of such operators

• Raise two questions about invariant subspaces of ‘the’ Shift Operator

that we haven’t been able to answer.



Let U0 be the set of adjoints of analytic Toeplitz operators that the Lemma

above implies are left invertible, that is
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and let

U = {T∗f ∈ U0 : kernel(T∗f ) is infinite dimensional }
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Let U0 be the set of adjoints of analytic Toeplitz operators that the Lemma

above implies are left invertible, that is

U0 = {T∗f : f ∈ H∞ and 1/f ∈ L∞(∂D)}

and let

U = {T∗f ∈ U0 : kernel(T∗f ) is infinite dimensional }

Theorem.

If f is in H∞ and T∗f is in U , the Toeplitz operator T∗f is universal for H2.

Corollary.

If f and g are in H∞ with T∗f in U and T∗g in U0,

then T∗f T∗g = T∗fg is also in U and is a universal operator for H2.



For F bounded on H2, the commutant of F is the closed algebra of operators

{F}′ = {G operator on H2 : GF = FG }

For f in H∞, clearly {T∗f }′ includes T∗g for all g in H∞.

Definition. For T∗f in U , let Cf be the set of compact operators in {T∗f }′:

Cf = {G compact operator on H2 : T∗f G = GT∗f }



For F bounded on H2, the commutant of F is the closed algebra of operators

{F}′ = {G operator on H2 : GF = FG }

For f in H∞, clearly {T∗f }′ includes T∗g for all g in H∞.

Definition. For T∗f in U , let Cf be the set of compact operators in {T∗f }′:

Cf = {G compact operator on H2 : T∗f G = GT∗f }

Theorem.

Let T∗f be in U . The set Cf is a closed ideal in {T∗f }′ and, in particular,

g and h in H∞ and G in Cf implies T∗g G, GT∗h , and T∗g GT∗h are all in Cf .

Moreover, every operator in Cf is quasi-nilpotent.



For some T∗f in U , including all the classical universal operators noted above,

the algebra Cf is {0}.

On the other hand, for many operators T∗f in U , including the example T∗ϕ
from our earlier paper, the algebra Cf is quite large!!
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that is invariant for every operator in {T∗f }′.
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Theorem. (!!)

If f is a non-constant function in H∞ for which Cf 6= {0},

there is a backward shift invariant subspace,

L = (ηH2)⊥ for some inner function η,

that is invariant for every operator in {T∗f }′.

In the case of the T∗ϕ and the compact operator W∗ψ,J noted above,

the commutant {T∗ϕ }′ is known!

It is the algebra generated by T∗z and C∗J !



To prove the Invariant Subspace Theorem, need to show that every bounded

operator, A, on H2 has an invariant subspace. But the universality of T∗f in

U means that we are interested only in restrictions of T∗f to its infinite

dimensional invariant subspaces, M .

This means the Invariant Subspace Theorem will be proved

if every infinite dimensional invariant subspace, M , for T∗f
contains a smaller subspace that is also invariant for T∗f .



Our strategy for applying universal Toeplitz operators to the Invariant

Subspace Problem is to also consider operators that commute with the

universal operator.

Theorem.

Let T be a universal operator on H2 that is in the class U ,

and let M be an infinite dimensional, proper invariant subspace for T .

If W is an operator on H2 that commutes with T , then

either kernel (W ) ∩M = (0), or M ⊂ kernel (W ),

or kernel (W ) ∩M is a proper subspace of M that is invariant for T .



Theorem.

Let T be a universal operator on H2 that is in the class U ,

and let M be an infinite dimensional, proper invariant subspace for T .

If W is an operator on H2 that commutes with T , then

either kernel (W ) ∩M = (0), or M ⊂ kernel (W ),

or kernel (W ) ∩M is a proper subspace of M that is invariant for T .

Corollary.

Let M be an infinite dimensional, proper invariant subspace for T ,

a universal operator on H2 that is in the class U .

If M contains a vector, v 6= 0, that is non-cyclic vector for the backward shift

and η is smallest inner function for which T∗η v = 0, then M ⊂ kernel (T∗η ),

or else kernel (T∗η ) ∩M is a non-trivial invariant subspace for T .
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Does every closed, infinite dimensional subspace of H2 include a

non-zero, non-cyclic vector for the backward shift?

but Prof. N. Nikolski pointed out that the answer to this question is “No!”.



This suggests the question

Does every closed, infinite dimensional subspace of H2 include a

non-zero, non-cyclic vector for the backward shift?

but Prof. N. Nikolski pointed out that the answer to this question is “No!”.

On the other hand, we are not interested in arbitrary subspaces of H2 so

we specialize our query to address the issue at hand:

Question 1: Is there an operator in the class U for which

each of its closed, infinite dimensional, invariant subspaces

includes a non-zero vector that is not cyclic for the backward shift?



The other alternative in the Corollary above is that M ⊂ kernel (T∗η )

and every vector in M is non-cyclic for the backward shift! Thus, we have

Corollary.

If M is an infinite dimensional, proper invariant subspace for T ,

a universal operator on H2 that is in the class U and M contains

a vector, v 6= 0, that is not cyclic for the backward shift

and also a vector w that is cyclic for the backward shift,

then, for η the smallest inner function for which T∗η v = 0, the subspace

kernel (T∗η ) ∩M is a proper subspace of M that is invariant for T .



On the other hand, another possible reduction for this situation leads to the

following question:

Question 2: Suppose M is an infinite dimensional closed subspace

that is invariant for T , a universal operator in the class U , and suppose

η is an inner function for which M ⊂ kernel (T∗η ).

Is there always an inner function ζ dividing η so that

(0) 6= M ∩ kernel (T∗ζ ) 6= M?



On the other hand, another possible reduction for this situation leads to the

following question:

Question 2: Suppose M is an infinite dimensional closed subspace

that is invariant for T , a universal operator in the class U , and suppose

η is an inner function for which M ⊂ kernel (T∗η ).

Is there always an inner function ζ dividing η so that

(0) 6= M ∩ kernel (T∗ζ ) 6= M?

If the answers to both Question 1 and Question 2 are ‘Yes’,

then every bounded operator on a Hilbert space of dimension at least 2

has a non-trivial invariant subspace!



THANK YOU!

Slides available: http://www.math.iupui.edu/˜cowen


