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Commutative Law for addition: a + b = b + a

More generally,

sum{a1, a2, · · · , an} = a1 + a2 + · · · + an

= an + a1 + a2 + · · · + an−1

= a2 + a1 + an + an−1 + · · · + a3

= etc.

That is, the Commutative Law says rearranging the summands in a finite

sum does not change the total.

Perhaps surprisingly, rearranging the summands in an infinite sum CAN

change the total!!
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Goal: Think more carefully about rearrangements and find the sums of

simple rearrangements of the AHS.



We think of an infinite series as

“adding up an infinite number of numbers”

– actually it is more subtle than that.

Definition.

We say

∞∑
n=1

an = S if lim
N→∞

SN = S where

SN =

N∑
n=1

an = a1 + a2 + a3 + · · · + aN

Rearranging terms of a series changes the partial sums.

Conceivably, this could change the limit of the partial sums.

In the earlier example, the partial sums of the rearranged series were

approximately half the partial sums of the original series.



A series is called conditionally convergent

if the series converges but
∑
|an| diverges.

It can be shown that if
∑
|an| converges, then every rearrangement of the

series
∑

an has the same sum.

Riemann’s Theorem.

A conditionally convergent series (of real numbers) can be rearranged to

sum to any real number.



Definition.

We say the series
∑

bm is a rearrangement of the series
∑

an if each

term of the series
∑

bm occurs as a term of the series
∑

an (and the same

number of times) and vice versa.



Outline of proof of Riemann’s Theorem.

Since the given series converges, the terms of the series are small.

Since the given series is conditionally convergent, the series of positive terms

diverges and the series of negative terms diverges.

Given S, we want to form a rearrangement of the series that sums to S.

To begin, select enough of the positive terms (choosing largest first) until

the partial sum is larger than S.

(This is possible!)

For the next terms of the series, choose enough of the negative terms

(choosing the most negative terms first) to make the partial sum less than

S. (This is possible!)



Continue, choosing the positive and negatives terms in order of decreasing

size so that the partial sums swing to more than S, then less, then more, etc.

Since the terms of the series are small, the oscillations get smaller and

smaller so that the sequence of partial sums of the rearranged series

converges to S.



Definition.

A simple rearrangement of a series is a rearrangement of the series in

which the positive terms of the rearranged series occur in the same order as

the original series and the negative terms occur in the same order.

Thus,
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is a simple rearrangement of the AHS
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Goal.

Describe the sum of every simple rearrangement of the Alternating

Harmonic Series.



Goal.

Describe the sum of every simple rearrangement of the Alternating

Harmonic Series.

To do this, we’ll use power series.

A power series (centered at 0) is a function of the form

f (x) =

∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + · · ·

If the series converges for any non-zero x, there is an R > 0 so that the

series converges in the open interval −R < x < R. In this interval, the

series can be differentiated and integrated term by term and the resulting

series also converge in this open interval.



Abel’s Theorem.

If
∑

an converges, and if f (x) =
∑

anx
n, then∑

an = lim
x→1−

f (x)

Abel’s Theorem and the results on integration and differentiation of series

allow us to find sums of series like the AHS.

To sum
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This power series converges in the open interval −1 < x < 1.



Let F (x) = f ′(x) so that

F (x) = f ′(x) = 1− 1
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=
1

1 + x

Since f ′(x) =
1

1 + x
, we can see f (x) = ln(1 + x).

Now Abel’s Theorem says

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ · · · = lim

x→1−
ln(1 + x) = ln 2



We used a trick to get from
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It is not so clear what trick might work for this.
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It is not so clear what trick might work for this.

To use Abel’s Theorem to sum the AHS, it was nice to have
xk

k
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differentiating gave an easy result.

This might suggest the series
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But this series is not really a power series · · ·



The series
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is not really a power series because the terms are in the wrong order!

Thinking about the given series as
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converges on −1 < x < 1



Since the series converges absolutely on the interval −1 < x < 1, we can

rearrange the series to get
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As before, we get
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Similarly
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= 2x3
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To recapitulate, to get the sum of the rearrangement
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f (x) = x +
1

3
x3 − 1

2
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1

5
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1

7
x7 − 1

4
x8 + · · · = g(x)− h(x)

This means

f (x) =
1

2
ln(1 + x)− 1

2
ln(1− x) +

1

2
ln(1− x4)

=
1

2

[
ln(1 + x)− ln(1− x) + ln(1− x4)

]
=

1

2
ln

(
(1 + x)(1− x4)

1− x

)
=

1

2
ln
(
(1 + x)(1 + x + x2 + x3)

)
Using Abel’s Theorem
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This idea works more generally:

For simple rearrangements in which blocks of n positive terms

alternate with blocks of m negative terms, use

f (x) =
1

2

[
ln(1 + xm)− ln(1− xm) + ln(1− x2n)

]
=

1

2
ln

(
(1 + xm)(1 + xn)(1 + x + x2 + · · · + xn−1)

1 + x + x2 + · · · + xm−1

)

So the series has the sum

lim
x→1−

f (x) =
1

2
ln

(
4n

m

)
= ln 2 +

1

2
ln
( n
m

)

This calculation suggests that the sum of a simple rearrangement of the

AHS depends on the relative frequency of the positive terms of the series.



Definition.

If
∑

an is a simple rearrangement of the Alternating Harmonic Series, let

pk be the number of positive terms in the first k terms, {a1, a2, a3, · · · , ak}.

The asymptotic density, α, of the positive terms in the rearrangement is

α = lim
k→∞

pk
k

if the limit exists.



In the rearrangement 1− 1
2 −

1
4 + 1

3 −
1
6 −

1
8 + 1

5 − · · ·

k {a1, · · · , ak} pk

1 {1} 1

2 {1,−1
2} 1

3 {1,−1
2,−

1
4} 1

4 {1,−1
2,−

1
4,

1
3} 2

5 {1,−1
2,−

1
4,

1
3,−

1
6} 2

Etc.

so the asymptotic density is
1

3
.



Theorem.

A simple rearrangement of the Alternating Harmonic Series converges

to an extended real number if and only if α, the asymptotic density of

the positive terms in the rearrangement, exists.

Moreover, the sum of a rearrangement with asymptotic density α is

ln 2 +
1

2
ln

(
α

1− α

)



Theorem.

A simple rearrangement of the Alternating Harmonic Series converges

to an extended real number if and only if α, the asymptotic density of

the positive terms in the rearrangement, exists.

Moreover, the sum of a rearrangement with asymptotic density α is
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2
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For example, in the usual arrangement
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p1 = 1, p2 = 1, p3 = 2, p4 = 2, p5 = 3, p6 = 3, · · ·

so the asymptotic density is α = lim
k→∞
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=
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2
and the sum of the series is

ln 2 +
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2
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(
1
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)
= ln 2 + ln 1 = ln 2



Theorem.

A simple rearrangement of the Alternating Harmonic Series converges

to an extended real number if and only if α, the asymptotic density of

the positive terms in the rearrangement, exists.

Moreover, the sum of a rearrangement with asymptotic density α is
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Similarly, in the rearrangement
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p1 = 1, p2 = 2, p3 = 2, p4 = 3, p5 = 4, p6 = 4, · · ·

so the asymptotic density is α = lim
k→∞

pk
k

=
2

3
and the sum of the series is

ln 2 +
1

2
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(
2
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1− 2
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1

2
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Outline of the proof.

Suppose

∞∑
n=1

an is a simple rearrangement of the AHS.

Let pk be the number of positive terms in {a1, a2, a3, · · · , ak}. Then

the number of negative terms in the first k terms is qk = k − pk.

Thus, because the given series is a simple rearrangement of the AHS,

k∑
n=1

an =

pk∑
j=1

1

2j − 1
−

qk∑
j=1

1

2j

For each positive integer m, let

Em =

m∑
n=1

1

n
− lnm

The sequence E1, E2, E3, · · · is a decreasing sequence of positive numbers

whose limit, γ ≈ .5772, is called Euler’s constant.



Since
m∑
n=1

1

n
= lnm + Em

we see that
qk∑
j=1

1

2j
=

1

2

qk∑
j=1

1

j
=

1

2
ln qk +

1

2
Eqk

and
pk∑
j=1

1

2j − 1
=

2pk∑
`=1

1

`
−

pk∑
`=1

1

2`

=
(
ln(2pk) + E2pk

)
−
(

1

2
ln pk +

1

2
Epk

)



Therefore,

k∑
n=1

an =

pk∑
j=1

1

2j − 1
−

qk∑
j=1

1

2j

= ln(2pk) + E2pk −
1

2
ln pk −

1

2
Epk −

1

2
ln qk −

1

2
Eqk

= ln 2 + ln pk −
1

2
ln pk −

1

2
ln qk

+E2pk −
1

2
Epk −

1

2
Eqk



We have
k∑

n=1

an = ln 2 + ln pk −
1

2
ln pk −

1

2
ln qk

+E2pk −
1

2
Epk −

1

2
Eqk

= ln 2 +
1

2
ln pk −

1

2
ln qk + E2pk −

1

2
Epk −

1

2
Eqk

= ln 2 +
1

2
ln

(
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qk

)
+ E2pk −

1

2
Epk −

1

2
Eqk

This is the exact (!!) formula for the kth partial sum of the rearranged series.

To find the sum of the rearranged series, we need to take the limit of the

partial sums.



Note that

pk
qk

=
pk

k − pk
=

pk
k

1− pk
k

so if α exists

lim
k→∞

pk
qk

=
α

1− α
and pk/qk does not have a limit if α does not exist.



Note also that

lim
k→∞

E2pk = lim
k→∞

Epk = lim
k→∞

Eqk = γ

Putting all of this together, we get

∞∑
n=1

an = lim
k→∞

k∑
n=1

an

= lim
k→∞

(
ln 2 +

1

2
ln

(
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)
+ E2pk −

1

2
Epk −

1

2
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)

= ln 2 +
1

2
ln

(
α

1− α

)
+ γ − 1

2
γ − 1

2
γ

= ln 2 +
1

2
ln

(
α

1− α

)



Riemann’s Theorem on rearranging conditionally convergent series is

non-constructive. In contrast, we have seen that simple rearrangements of

the AHS converge if and only if the asymptotic density of the positive terms

exists and we have a formula for the sum of the series when the asymptotic

density exists.

In particular, the sum of a simple rearrangement of the AHS depends only

on the asymptotic density of the positive terms.



This is a special property: the only series like this whose sums depend only

on the asymptotic density of the positive terms are approximately multiples

of the AHS.

More precisely, suppose {an}∞n=1 is a sequence of real numbers so that

a2k−1 > 0 > a2k for k = 1, 2, · · · and

|a1| ≥ |a2| ≥ |a3| ≥ |a4| ≥ · · ·

• If limn→∞ n|an| =∞ (that is, an is big compared to 1
n) and S is any

real number, there is a simple rearrangement of the series with

asymptotic density 1
2 with sum S.

• If limn→∞ n|an| = 0 (that is, an is small compared to 1
n) and

∑
bm is a

simple rearrangement of
∑

an with asymptotic density 0 < α < 1, then∑
bm =

∑
an



THANK YOU!

GO BULLDOGS!


