
GROUP QUASIMORPHISMS

BOGDAN NICA

1. Quasimorphisms: definition and examples

Let Γ be a group. A map φ : Γ→ R is a quasimorphism if it satisfies

sup
g,h∈Γ

|φ(g) + φ(h)− φ(gh)| <∞,

in which case one defines the defect Dφ := supg,h∈Γ |φ(g) + φ(h)− φ(gh)|.
A bounded perturbation of a quasimorphism of Γ is again a quasimorphisms of Γ. In order

to eliminate this “bounded noise”, we consider the following relation of asymptotic equivalence
on the quasimorphisms of Γ:

φ ∼ φ′ iff sup
g∈Γ
|φ(g)− φ′(g)| <∞

We denote by X(Γ) the (real) vector space of quasimorphisms modulo asymptotic equivalence.
It turns out (see the next Lemma) that each asymptotic equivalence class has a natural

representative, namely the unique quasimorphism with the property that it is an actual morphism
on every cyclic subgroup. Let us make a proper definition as follows. A quasicharacter is
a quasimorphism φ : Γ → R satisfying φ(gn) = nφ(g) for all g ∈ Γ, n ∈ Z. Note that a
quasicharacter φ is constant on conjugacy classes:

|φ(x−1gx)− φ(g)| = |φ(x−1gnx)− φ(gn)|
n

≤ 2Dφ
n

and we get φ(x−1gx) = φ(g) by letting n→∞.

Lemma 1.1. Every asymptotic equivalence class in X(Γ) contains a unique quasicharacter.

Proof. We start by showing the uniqueness part. Let φ, φ′ be asymptotically equivalent qua-
sicharacters. For each g ∈ Γ we have |φ(g)− φ′(g)| = 1

n
|φ(gn)− φ′(gn)|. Since |φ(gn)− φ′(gn)|

is bounded as n→∞, it follows that φ(g) = φ′(g).
Next, we show the existence part. Let φ be a quasimorphism and put

φ(g) = lim
n→∞

φ(gn)

n
.

First, we claim that φ(g) is well-defined. Recall that, for a non-negative sequence (an) satisfying
am+n ≤ am + an, the limit limn→∞ an/n is well-defined. From

φ(gm+n) ≤ φ(gm) + φ(gn) +Dφ

we have that the sequence with general term bn = φ(gn) +Dφ is subadditive. We modify bn by
a linear term so as to guarantee non-negative values. An obvious induction yields

|φ(gn)− nφ(g)| ≤ (n− 1)Dφ

making an = bn−n
(
φ(g)−Dφ

)
non-negative and subadditive. Since limn→∞ an/n is well-defined,

it follows that φ(g) is well-defined.
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Second, we show that φ is a quasicharacter. First one gets a bound on the price paid for
interchanging two group elements:

|φ(xghy)− φ(xhgy)| ≤ 6Dφ

It follows that

|φ((gh)n)− φ(gnhn)| ≤ 6(n− 1)Dφ

hence

|φ(gn) + φ(hn)− φ((gh)n)| ≤ Dφ + |φ(gnhn)− φ((gh)n)| ≤ 6nDφ.

Thus |φ(g)+φ(h)−φ(gh)| ≤ 6Dφ. This proves that φ is a quasimorphism. We still have to show

that φ(gk) = kφ(g) for all integers k. For k ≥ 0, this is clear from the definition of φ. Therefore,

it suffices to check φ(g−1) = −φ(g); this follows immediately from |φ(gn)+φ(g−n)| ≤ Dφ+|φ(1)|.
Finally, φ is equivalent to φ: |φ(gn)− nφ(g)| ≤ (n− 1)Dφ yields |φ(g)− φ(g)| ≤ Dφ. �

Let χ(Γ) be the (real) vector space of characters of Γ, i.e., morphisms Γ → R. Identifying
X(Γ) with the space of quasicharacters, we have that χ(Γ) is a subspace of X(Γ). We view the
(real) vector space

Q(Γ) := X(Γ)/χ(Γ)

as a measure for the “non-triviality” of quasimorphisms on Γ.
In the following propositions, we compute Q(Γ) for some groups Γ.

Proposition 1.2. If Γ is amenable then Q(Γ) = 0.

Proof. We show that every quasimorphism φ : Γ → R is asymptotic to a morphism. Since the
real-valued map on Γ given by x 7→ φ(gx)−φ(x) is bounded, we may define φ : Γ→ R as follows:

φ(g) =

∫
Γ

(
φ(gx)− φ(x)

)
dx

Then φ is a morphism. Indeed:

φ(gh) =

∫
Γ

(
φ(ghx)− φ(x)

)
dx

=

∫
Γ

(
φ(ghx)− φ(hx)

)
dx+

∫
Γ

(
φ(hx)− φ(x)

)
dx = φ(g) + φ(h)

Furthermore, we have

|φ(g)− φ(g)| =
∣∣∣ ∫

Γ

(
φ(gx)− φ(x)− φ(g)

)
dx
∣∣∣ ≤ ∫

Γ

∣∣φ(gx)− φ(x)− φ(g)
∣∣dx ≤ Dφ

which shows that φ and φ are asymptotically equivalent. �

Proposition 1.3. If Γ is boundedly generated then Q(Γ) is finite dimensional.

Proof. Let S = {s1, . . . , sn} ⊆ Γ be a set that boundedly generates Γ. We claim that the linear
map from the space of quasicharacters X(Γ) to Rn, given by φ 7→ (φ(s1), . . . , φ(sn)), is injective.
It will follow that X(Γ), hence Q(Γ) as well, is finite dimensional.

Let φ be a quasicharacter with φ(s) = 0 for every s ∈ S. Then φ(sk) = 0 for every s ∈ S and
every k ∈ Z. By the bounded generation hypothesis, there is a positive integer N such that each

element g ∈ Γ can be written as g = sk1i1 . . . s
kN
iN

for some sij ∈ S and integers kij . Then

|φ(g)| = |φ(g)− φ(sk1i1 )− · · · − φ(skNiN )| ≤ (N − 1)Dφ

which shows that φ is bounded, hence φ = 0. �

Proposition 1.4. If Γ = SLn(Z), where n ≥ 3, then Q(Γ) = 0.
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Proof. We show that X(Γ) = 0, i.e., that every quasimorphism on Γ vanishes identically. In
general, a quasicharacter is bounded on commutators: from

φ(ghg−1h−1) = φ(ghg−1h−1)− φ(h)− φ(h−1) = φ(ghg−1h−1)− φ(ghg−1)− φ(h−1)

one sees that |φ(ghg−1h−1)| ≤ Dφ for any group elements g, h. When n ≥ 3, every elementary
matrix in SLn(Z) is a commutator of elementary matrices, so every quasicharacter on SLn(Z) is
bounded on elementary matrices. As SLn(Z) is boundedly generated by elementary matrices, it
follows that every quasicharacter on SLn(Z) is bounded, hence vanishing. �

Proposition 1.5 (Brooks). If Γ = F2 then Q(Γ) is infinite dimensional.

Many more results in this vein are currently known. Let us record here only one such result,
due to Epstein and Fujiwara [1]: if Γ is a non-elementary hyperbolic group then Q(Γ) is infinite
dimensional.

Proof. Let a, b be the generators of F2. In what follows, words are assumed to be reduced.
For a non-trivial word w, let #w(x) denote the number of appearances of w in x. Define

φw(x) = #w(x)−#w−1(x).

Note that φa is the morphism a 7→ 1, b 7→ 0 and φb is the morphism a 7→ 0, b 7→ 1, and that they
form a basis for χ(Γ).

We claim that φw is a quasimorphism. If there is no cancelation in the product xy, then

#w(x) + #w(y) ≤ #w(xy) ≤ #w(x) + #w(y) + |w| − 1

and consequently

#w−1(x) + #w−1(y) ≤ #w−1(xy) ≤ #w−1(x) + #w−1(y) + |w| − 1

which together yield

|φw(xy)− φw(x)− φw(y)| ≤ |w| − 1.

In general, there is a subword z that is canceled in the product xy. Write x = x′z, y = z−1y′,
and bound

|φw(xy)− φw(x)− φw(y)| = |φw(x′y′)− φw(x′z)− φw(z−1y′)|

by

|φw(x′y′)− φw(x′)− φw(y′)|+ |φw(x′) + φw(z)− φw(x′z)|+ |φw(y′) + φw(z−1)− φw(z−1y′)|.

By the first part, the above expression is bounded by 3(|w|−1). We conclude that φw is, indeed,
a quasimorphism.

Next we claim that {φanbn}n≥1 are linearly independent in Q(Γ). Otherwise, we would have

sup
g∈Γ
|φan+1bn+1 + cnφanbn + · · ·+ c1φab + caφa + cbφb| <∞

for some cn, . . . , c1, ca, cb ∈ R. Evaluating on ak and bk, where k ≥ 1, gives ca = 0 and cb = 0.
Evaluating on (ab)k, where k ≥ 1, gives c1 = 0. And so on. Finally, evaluating on (an+1bn+1)k,
where k ≥ 1, gives a contradiction. �

See [2] for a detailed investigation of quasimorphisms on free groups, particularly the con-
struction of the Faiziev quasicharacters which are more natural than the Brooks quasimorphisms
we considered.
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2. Bounded cohomology for groups

Let V be a Banach space. The group cohomology H∗(Γ, V ) arises from the complex

V = C0(Γ, V )→ C1(Γ, V )→ C2(Γ, V )→ . . .

where Cn(Γ, V ) = {φ : Γn → V } and the differential d is given by the following formula:

dφ(g1, . . . , gn+1) = φ(g2, . . . , gn+1)

+

n∑
i=1

(−1)iφ(g1, . . . , gi−1, gigi+1, . . . , gn+1) + (−1)n+1φ(g1, . . . , gn)

To get the bounded cohomology H∗b(Γ, V ), we consider the subcomplex

V = C0
b (Γ, V )→ C1

b (Γ, V )→ C2
b (Γ, V )→ . . .

where Cnb (Γ, V ) = {φ : Γn → V | φ is bounded} and the differential d is the same. There is a
natural comparison map H∗b(Γ, V )→ H∗(Γ, V ).

As H1
b(Γ, V ) consists of the bounded maps φ : Γ→ V which satisfy φ(gh) = φ(g) + φ(h), we

have H1
b(Γ, V ) = 0. We focus on the second bounded cohomology group H2

b(Γ, V ).

Proposition 2.1. There is an isomorphism Q(Γ) ' ker
(
H2
b(Γ,R)→ H2(Γ,R)

)
.

Proof. Start with the well-defined map X(Γ) → H2
b(Γ,R) given by φ 7→ [dφ]; here φ actually

stands for an asymptotic equivalence class. If [dφ] = 0 then dφ = dβ for some bounded β : Γ→ R.
Hence dφ = 0, so φ ∈ χ(Γ). Conversely, χ(Γ) is in the kernel.

We get an injective map X(Γ)/χ(Γ) → ker
(
H2
b(Γ,R) → H2(Γ,R)

)
given by φ + χΓ 7→ [dφ].

For surjectivity, an element in ker
(
H2
b(Γ,R) → H2(Γ,R)

)
is of the form [dφ] where φ is defined

up to χ(Γ) and up to perturbations by bounded maps β : Γ→ R. �

In the case of F2, the vanishing of H2(F2,R) implies that H2
b(F2,R) is described entirely by

the space Q(F2) of non-trivial quasimorphisms. In particular:

Corollary 2.2. H2
b(F2,R) is infinite dimensional.

3. Hochschild cohomology for algebras

Let A be a complex algebra and V an A − A bimodule. Let Ln(A, V ) denote the n-linear
maps from An to V . The Hochschild cohomology H∗(A, V ) is given by the complex

V = L0(A, V )→ L1(A, V )→ L2(A, V )→ . . .

with differential

dφ(a1, . . . , an+1) = a1φ(a2, . . . , an+1)

+

n∑
i=1

(−1)iφ(a1, . . . , ai−1, aiai+1, . . . , an+1) + (−1)n+1φ(a1, . . . , an)an+1.

For instance, H1(A, V ) consists of derivations (linear maps φ : A → V satisfying φ(ab) =
aφ(b) + φ(a)b for all a, b ∈ A) modulo inner derivations (linear maps φ : A → V of the form
φ(a) = av − va for some v ∈ V ).

For topological algebras, Hochschild cohomology is taken with respect to a subcomplex of
L∗(A, V ) obtained by imposing suitable continuity conditions. Let A be a Banach algebra and V
a Banach A−A bimodule, meaning that V is a Banach space and A acts by bounded operators
on both sides. One may take V = A or some Banach super-algebra, e.g. A = C∗r Γ or LΓ and
V = B(`2Γ). Let Bn(A, V ) denote the bounded n-linear maps from An to V . The (continuous)
Hochschild cohomology H∗(A, V ) is given by the complex

V = B0(A, V )→ B1(A, V )→ B2(A, V )→ . . .

with differential as above.
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In the next theorem, it is natural to consider complex-valued bounded group cohomology. The
results we had for the real-valued situation remain unchanged. Recall that the group algebra
`1Γ carries a trace given by the following formula:

tr(
∑

agg) = a1

Theorem 3.1 (Johnson). H∗b(Γ,C) embeds in H∗(`1Γ, `1Γ).

Proof. We construct chain maps M : C∗b (Γ,C)→ B∗(`1Γ, `1Γ) and m : B∗(`1Γ, `1Γ)→ C∗b (Γ,C)
with mM = id. It will follow that H∗b(Γ,C) embeds in H∗(`1Γ, `1Γ).

The map M : Cnb (Γ,C) → Bn(`1Γ, `1Γ) is the multiplication operator φ 7→ Mφ, where Mφ is
determined from

(Mφ)(g1, . . . , gn) = φ(g1, . . . , gn)g1 . . . gn

Then ‖Mφ‖ = ‖φ‖∞, so M itself is linear and continuous of norm 1 if we equip Cnb (Γ,C) with
the sup-norm and Bn(`1Γ, `1Γ) with the operator norm.

The map m : Bn(`1Γ, `1Γ)→ Cnb (Γ,C) is defined as follows:

(mΦ)(g1, . . . , gn) = tr
(
Φ(g1, . . . , gn)(g1 . . . gn)−1)

Then |(mΦ)(g1, . . . , gn)| ≤ ‖Φ(g1, . . . , gn)‖ ≤ ‖Φ‖, so ‖mΦ‖∞ ≤ ‖Φ‖. Thus m is also linear and
continuous.

One checks that M and m are chain maps, i.e., dM = Md and dm = md. Furthermore:

mMφ(g1, . . . , gn) = tr
(
Mφ(g1, . . . , gn)(g1 . . . gn)−1) = tr(φ(g1, . . . , gn)1) = φ(g1, . . . , gn)

This means that mM = id on Cnb (Γ,C), as desired. �

Corollary 3.2. H2(`1F2, `
1F2) is infinite dimensional.

As hinted by the generic vanishing of H1
b(Γ,C), it turns out that H1(`1Γ, `1Γ) = 0 for every

group Γ (due to Johnson and Ringrose). For group von Neumann algebras, there is a similar
vanishing result: H1(LΓ,LΓ) = 0, a particular case of a theorem due to Kadison and Sakai. The
computation of H2(LF2,LF2) is still an open problem, though a vanishing result is expected.

We end with a problem raised in [5]:

[Problem 8.3.4] How is the bounded cohomology of Γ related to the Hochschild
cohomology of C∗r Γ, or to the Hochschild cohomology of LΓ?
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