GROUP QUASIMORPHISMS

BOGDAN NICA

1. Quasimorphisms: definition and examples

Let Γ be a group. A map $\phi : \Gamma \to \mathbb{R}$ is a *quasimorphism* if it satisfies

$$
\sup_{g,h\in\Gamma}|\phi(g)+\phi(h)-\phi(gh)|<\infty,
$$

in which case one defines the defect $D_{\phi} := \sup_{q,h \in \Gamma} |\phi(g) + \phi(h) - \phi(gh)|$.

A bounded perturbation of a quasimorphism of Γ is again a quasimorphisms of Γ. In order to eliminate this "bounded noise", we consider the following relation of asymptotic equivalence on the quasimorphisms of Γ:

$$
\phi \sim \phi' \text{ iff } \sup_{g \in \Gamma} |\phi(g) - \phi'(g)| < \infty
$$

We denote by $X(\Gamma)$ the (real) vector space of quasimorphisms modulo asymptotic equivalence.

It turns out (see the next Lemma) that each asymptotic equivalence class has a natural representative, namely the unique quasimorphism with the property that it is an actual morphism on every cyclic subgroup. Let us make a proper definition as follows. A quasicharacter is a quasimorphism $\phi : \Gamma \to \mathbb{R}$ satisfying $\phi(g^n) = n\phi(g)$ for all $g \in \Gamma$, $n \in \mathbb{Z}$. Note that a quasicharacter ϕ is constant on conjugacy classes:

$$
|\phi(x^{-1}gx) - \phi(g)| = \frac{|\phi(x^{-1}g^nx) - \phi(g^n)|}{n} \le \frac{2D_\phi}{n}
$$

and we get $\phi(x^{-1}gx) = \phi(g)$ by letting $n \to \infty$.

Lemma 1.1. Every asymptotic equivalence class in $X(\Gamma)$ contains a unique quasicharacter.

Proof. We start by showing the uniqueness part. Let ϕ, ϕ' be asymptotically equivalent quasicharacters. For each $g \in \Gamma$ we have $|\phi(g) - \phi'(g)| = \frac{1}{n} |\phi(g^n) - \phi'(g^n)|$. Since $|\phi(g^n) - \phi'(g^n)|$ is bounded as $n \to \infty$, it follows that $\phi(g) = \phi'(g)$.

Next, we show the existence part. Let ϕ be a quasimorphism and put

$$
\overline{\phi}(g) = \lim_{n \to \infty} \frac{\phi(g^n)}{n}.
$$

First, we claim that $\phi(g)$ is well-defined. Recall that, for a non-negative sequence (a_n) satisfying $a_{m+n} \le a_m + a_n$, the limit $\lim_{n \to \infty} a_n/n$ is well-defined. From

$$
\phi(g^{m+n}) \le \phi(g^m) + \phi(g^n) + D_{\phi}
$$

we have that the sequence with general term $b_n = \phi(g^n) + D_{\phi}$ is subadditive. We modify b_n by a linear term so as to guarantee non-negative values. An obvious induction yields

$$
|\phi(g^n) - n\phi(g)| \le (n-1)D_{\phi}
$$

making $a_n = b_n - n(\phi(g) - D_\phi)$ non-negative and subadditive. Since $\lim_{n \to \infty} a_n/n$ is well-defined, it follows that $\overline{\phi}(g)$ is well-defined.

Date: October 2006; revised November 2008.

Second, we show that ϕ is a quasicharacter. First one gets a bound on the price paid for interchanging two group elements:

$$
|\phi(xghy) - \phi(xhgy)| \leq 6D_{\phi}
$$

It follows that

$$
|\phi((gh)^n) - \phi(g^n h^n)| \le 6(n-1)D_\phi
$$

hence

$$
|\phi(g^n) + \phi(h^n) - \phi((gh)^n)| \le D_{\phi} + |\phi(g^n h^n) - \phi((gh)^n)| \le 6nD_{\phi}.
$$

Thus $|\overline{\phi}(g)+\overline{\phi}(h)-\overline{\phi}(gh)| \leq 6D_{\phi}$. This proves that $\overline{\phi}$ is a quasimorphism. We still have to show that $\phi(g^k) = k\phi(g)$ for all integers k. For $k \geq 0$, this is clear from the definition of ϕ . Therefore, it suffices to check $\overline{\phi}(g^{-1}) = -\overline{\phi}(g)$; this follows immediately from $|\phi(g^n) + \phi(g^{-n})| \le D_\phi + |\phi(1)|$. Finally, $\overline{\phi}$ is equivalent to ϕ : $|\phi(g^n) - n\phi(g)| \leq (n-1)D_{\phi}$ yields $|\overline{\phi}(g) - \phi(g)| \leq D_{\phi}$.

Let $\chi(\Gamma)$ be the (real) vector space of characters of Γ, i.e., morphisms $\Gamma \to \mathbb{R}$. Identifying $X(\Gamma)$ with the space of quasicharacters, we have that $\chi(\Gamma)$ is a subspace of $X(\Gamma)$. We view the (real) vector space

$$
Q(\Gamma) := X(\Gamma)/\chi(\Gamma)
$$

as a measure for the "non-triviality" of quasimorphisms on Γ.

In the following propositions, we compute $Q(\Gamma)$ for some groups Γ .

Proposition 1.2. If Γ is amenable then $Q(\Gamma) = 0$.

Proof. We show that every quasimorphism $\phi : \Gamma \to \mathbb{R}$ is asymptotic to a morphism. Since the real-valued map on Γ given by $x \mapsto \phi(qx) - \phi(x)$ is bounded, we may define $\phi : \Gamma \to \mathbb{R}$ as follows:

$$
\overline{\phi}(g) = \int_{\Gamma} (\phi(gx) - \phi(x)) \mathrm{d}x
$$

Then ϕ is a morphism. Indeed:

$$
\overline{\phi}(gh) = \int_{\Gamma} (\phi(ghx) - \phi(x)) dx
$$

=
$$
\int_{\Gamma} (\phi(ghx) - \phi(hx)) dx + \int_{\Gamma} (\phi(hx) - \phi(x)) dx = \overline{\phi}(g) + \overline{\phi}(h)
$$

Furthermore, we have

$$
|\overline{\phi}(g) - \phi(g)| = \Big| \int_{\Gamma} (\phi(gx) - \phi(x) - \phi(g)) \mathrm{d}x \Big| \leq \int_{\Gamma} |\phi(gx) - \phi(x) - \phi(g)| \mathrm{d}x \leq D_{\phi}
$$

which shows that ϕ and $\overline{\phi}$ are asymptotically equivalent.

Proposition 1.3. If Γ is boundedly generated then $Q(\Gamma)$ is finite dimensional.

Proof. Let $S = \{s_1, \ldots, s_n\} \subseteq \Gamma$ be a set that boundedly generates Γ. We claim that the linear map from the space of quasicharacters $X(\Gamma)$ to \mathbb{R}^n , given by $\phi \mapsto (\phi(s_1), \dots, \phi(s_n))$, is injective. It will follow that $X(\Gamma)$, hence $Q(\Gamma)$ as well, is finite dimensional.

Let ϕ be a quasicharacter with $\phi(s) = 0$ for every $s \in S$. Then $\phi(s^k) = 0$ for every $s \in S$ and every $k \in \mathbb{Z}$. By the bounded generation hypothesis, there is a positive integer N such that each element $g \in \Gamma$ can be written as $g = s_{i_1}^{k_1} \dots s_{i_N}^{k_N}$ for some $s_{i_j} \in S$ and integers k_{i_j} . Then

$$
|\phi(g)| = |\phi(g) - \phi(s_{i_1}^{k_1}) - \dots - \phi(s_{i_N}^{k_N})| \le (N-1)D_{\phi}
$$

which shows that ϕ is bounded, hence $\phi = 0$.

Proposition 1.4. If $\Gamma = SL_n(\mathbb{Z})$, where $n \geq 3$, then $Q(\Gamma) = 0$.

Proof. We show that $X(\Gamma) = 0$, i.e., that every quasimorphism on Γ vanishes identically. In general, a quasicharacter is bounded on commutators: from

$$
\phi(ghg^{-1}h^{-1}) = \phi(ghg^{-1}h^{-1}) - \phi(h) - \phi(h^{-1}) = \phi(ghg^{-1}h^{-1}) - \phi(ghg^{-1}) - \phi(h^{-1})
$$

one sees that $|\phi(ghg^{-1}h^{-1})| \le D_\phi$ for any group elements g, h. When $n \ge 3$, every elementary matrix in $SL_n(\mathbb{Z})$ is a commutator of elementary matrices, so every quasicharacter on $SL_n(\mathbb{Z})$ is bounded on elementary matrices. As $SL_n(\mathbb{Z})$ is boundedly generated by elementary matrices, it follows that every quasicharacter on $SL_n(\mathbb{Z})$ is bounded, hence vanishing.

Proposition 1.5 (Brooks). If $\Gamma = F_2$ then $Q(\Gamma)$ is infinite dimensional.

Many more results in this vein are currently known. Let us record here only one such result, due to Epstein and Fujiwara [1]: if Γ is a non-elementary hyperbolic group then $Q(\Gamma)$ is infinite dimensional.

Proof. Let a, b be the generators of F_2 . In what follows, words are assumed to be reduced. For a non-trivial word w, let $\#w(x)$ denote the number of appearances of w in x. Define

$$
\phi_w(x) = \#w(x) - \#w^{-1}(x).
$$

Note that ϕ_a is the morphism $a \mapsto 1, b \mapsto 0$ and ϕ_b is the morphism $a \mapsto 0, b \mapsto 1$, and that they form a basis for $\chi(\Gamma)$.

We claim that ϕ_w is a quasimorphism. If there is no cancelation in the product xy, then

$$
\#w(x) + \#w(y) \le \#w(xy) \le \#w(x) + \#w(y) + |w| - 1
$$

and consequently

$$
\#w^{-1}(x) + \#w^{-1}(y) \le \#w^{-1}(xy) \le \#w^{-1}(x) + \#w^{-1}(y) + |w| - 1
$$

which together yield

$$
|\phi_w(xy) - \phi_w(x) - \phi_w(y)| \le |w| - 1.
$$

In general, there is a subword z that is canceled in the product xy. Write $x = x'z$, $y = z^{-1}y'$, and bound

$$
|\phi_w(xy) - \phi_w(x) - \phi_w(y)| = |\phi_w(x'y') - \phi_w(x'z) - \phi_w(z^{-1}y')|
$$

by

$$
|\phi_w(x'y') - \phi_w(x') - \phi_w(y')| + |\phi_w(x') + \phi_w(z) - \phi_w(x'z)| + |\phi_w(y') + \phi_w(z^{-1}) - \phi_w(z^{-1}y')|.
$$

By the first part, the above expression is bounded by $3(|w|-1)$. We conclude that ϕ_w is, indeed, a quasimorphism.

Next we claim that $\{\phi_{a^nb^n}\}_{n\geq 1}$ are linearly independent in $Q(\Gamma)$. Otherwise, we would have

$$
\sup_{g \in \Gamma} |\phi_{a^{n+1}b^{n+1}} + c_n \phi_{a^n b^n} + \dots + c_1 \phi_{ab} + c_a \phi_a + c_b \phi_b| < \infty
$$

for some $c_n, \ldots, c_1, c_a, c_b \in \mathbb{R}$. Evaluating on a^k and b^k , where $k \ge 1$, gives $c_a = 0$ and $c_b = 0$. Evaluating on $(ab)^k$, where $k \ge 1$, gives $c_1 = 0$. And so on. Finally, evaluating on $(a^{n+1}b^{n+1})^k$, where $k \geq 1$, gives a contradiction.

See [2] for a detailed investigation of quasimorphisms on free groups, particularly the construction of the Faiziev quasicharacters which are more natural than the Brooks quasimorphisms we considered.

4 BOGDAN NICA

2. Bounded cohomology for groups

Let V be a Banach space. The group cohomology $H^*(\Gamma, V)$ arises from the complex

$$
V = C^{0}(\Gamma, V) \to C^{1}(\Gamma, V) \to C^{2}(\Gamma, V) \to \dots
$$

where $C^n(\Gamma, V) = \{\phi : \Gamma^n \to V\}$ and the differential d is given by the following formula:

$$
d\phi(g_1,\ldots,g_{n+1}) = \phi(g_2,\ldots,g_{n+1})
$$

+
$$
\sum_{i=1}^n (-1)^i \phi(g_1,\ldots,g_{i-1},g_ig_{i+1},\ldots,g_{n+1}) + (-1)^{n+1} \phi(g_1,\ldots,g_n)
$$

To get the bounded cohomology $H_b^*(\Gamma, V)$, we consider the subcomplex

$$
V = C_b^0(\Gamma, V) \to C_b^1(\Gamma, V) \to C_b^2(\Gamma, V) \to \dots
$$

where $C_b^n(\Gamma, V) = \{ \phi : \Gamma^n \to V | \phi \text{ is bounded} \}$ and the differential d is the same. There is a natural comparison map $H_b^*(\Gamma, V) \to H^*(\Gamma, V)$.

As $H_b^1(\Gamma, V)$ consists of the bounded maps $\phi : \Gamma \to V$ which satisfy $\phi(gh) = \phi(g) + \phi(h)$, we have $H_b^1(\Gamma, V) = 0$. We focus on the second bounded cohomology group $H_b^2(\Gamma, V)$.

Proposition 2.1. There is an isomorphism $Q(\Gamma) \simeq \text{ker} \left(H_b^2(\Gamma, \mathbb{R}) \to H^2(\Gamma, \mathbb{R}) \right)$.

Proof. Start with the well-defined map $X(\Gamma) \to H_b^2(\Gamma, \mathbb{R})$ given by $\phi \mapsto [d\phi]$; here ϕ actually stands for an asymptotic equivalence class. If $\left|\frac{d\phi}{dt}\right| = 0$ then $d\phi = d\beta$ for some bounded $\beta : \Gamma \to \mathbb{R}$. Hence $d\phi = 0$, so $\phi \in \chi(\Gamma)$. Conversely, $\chi(\Gamma)$ is in the kernel.

We get an injective map $X(\Gamma)/\chi(\Gamma) \to \ker \left(H_b^2(\Gamma, \mathbb{R}) \to H^2(\Gamma, \mathbb{R}) \right)$ given by $\phi + \chi_{\Gamma} \mapsto [d\phi]$. For surjectivity, an element in ker $(H_b^2(\Gamma, \mathbb{R}) \to H^2(\Gamma, \mathbb{R}))$ is of the form $[d\phi]$ where ϕ is defined up to $\chi(\Gamma)$ and up to perturbations by bounded maps $\beta : \Gamma \to \mathbb{R}$.

In the case of F_2 , the vanishing of $\mathrm{H}^2(F_2,\mathbb{R})$ implies that $\mathrm{H}^2_b(F_2,\mathbb{R})$ is described entirely by the space $Q(F_2)$ of non-trivial quasimorphisms. In particular:

Corollary 2.2. $H_b^2(F_2, \mathbb{R})$ is infinite dimensional.

3. Hochschild cohomology for algebras

Let A be a complex algebra and V an $A - A$ bimodule. Let $Lⁿ(A, V)$ denote the *n*-linear maps from A^n to V. The Hochschild cohomology $H^*(A, V)$ is given by the complex

$$
V = L^{0}(A, V) \to L^{1}(A, V) \to L^{2}(A, V) \to \dots
$$

with differential

$$
d\phi(a_1,\ldots,a_{n+1}) = a_1\phi(a_2,\ldots,a_{n+1})
$$

+
$$
\sum_{i=1}^n (-1)^i \phi(a_1,\ldots,a_{i-1},a_i a_{i+1},\ldots,a_{n+1}) + (-1)^{n+1} \phi(a_1,\ldots,a_n) a_{n+1}.
$$

For instance, $H^1(A, V)$ consists of *derivations* (linear maps $\phi : A \to V$ satisfying $\phi(ab) =$ $a\phi(b) + \phi(a)b$ for all $a, b \in A$) modulo *inner derivations* (linear maps $\phi : A \to V$ of the form $\phi(a) = av - va$ for some $v \in V$).

For topological algebras, Hochschild cohomology is taken with respect to a subcomplex of $L^*(A, V)$ obtained by imposing suitable continuity conditions. Let A be a Banach algebra and V a Banach $A - A$ bimodule, meaning that V is a Banach space and A acts by bounded operators on both sides. One may take $V = A$ or some Banach super-algebra, e.g. $A = C_r[*]$ or LF and $V = \mathcal{B}(\ell^2 \Gamma)$. Let $\mathcal{B}^n(A, V)$ denote the bounded *n*-linear maps from A^n to V. The (continuous) Hochschild cohomology $H^*(A, V)$ is given by the complex

$$
V = \mathcal{B}^0(A, V) \to \mathcal{B}^1(A, V) \to \mathcal{B}^2(A, V) \to \dots
$$

with differential as above.

In the next theorem, it is natural to consider complex-valued bounded group cohomology. The results we had for the real-valued situation remain unchanged. Recall that the group algebra $\ell^1\Gamma$ carries a trace given by the following formula:

$$
\operatorname{tr}(\sum a_g g) = a_1
$$

Theorem 3.1 (Johnson). $H_b^*(\Gamma, \mathbb{C})$ embeds in $H^*(\ell^1 \Gamma, \ell^1 \Gamma)$.

Proof. We construct chain maps $M: C_b^*(\Gamma, \mathbb{C}) \to \mathcal{B}^*(\ell^1\Gamma, \ell^1\Gamma)$ and $m: \mathcal{B}^*(\ell^1\Gamma, \ell^1\Gamma) \to C_b^*(\Gamma, \mathbb{C})$ with $mM = id$. It will follow that $H_b^*(\Gamma, \mathbb{C})$ embeds in $H^*(\ell^1\Gamma, \ell^1\Gamma)$.

The map $M: C_b^n(\Gamma, \mathbb{C}) \to \mathcal{B}^n(\ell^1\Gamma, \ell^1\Gamma)$ is the multiplication operator $\phi \mapsto M_\phi$, where M_ϕ is determined from

$$
(M_{\phi})(g_1,\ldots,g_n)=\phi(g_1,\ldots,g_n)g_1\ldots g_n
$$

Then $||M_{\phi}|| = ||\phi||_{\infty}$, so M itself is linear and continuous of norm 1 if we equip $C_b^n(\Gamma, \mathbb{C})$ with the sup-norm and $\mathcal{B}^n(\ell^1\Gamma,\ell^1\Gamma)$ with the operator norm.

The map $m: \mathcal{B}^n(\ell^1\Gamma, \ell^1\Gamma) \to C_b^n(\Gamma, \mathbb{C})$ is defined as follows:

$$
(m\Phi)(g_1,\ldots,g_n)=\mathrm{tr}\bigl(\Phi(g_1,\ldots,g_n)(g_1\ldots g_n)^{-1}\bigr)
$$

Then $|(m\Phi)(g_1,\ldots,g_n)| \leq ||\Phi(g_1,\ldots,g_n)|| \leq ||\Phi||$, so $||m\Phi||_{\infty} \leq ||\Phi||$. Thus m is also linear and continuous.

One checks that M and m are chain maps, i.e., $dM = Md$ and $dm = md$. Furthermore:

$$
mM_\phi(g_1,\ldots,g_n)=\text{tr}\big(M_\phi(g_1,\ldots,g_n)(g_1\ldots g_n)^{-1}\big)=\text{tr}(\phi(g_1,\ldots,g_n)1)=\phi(g_1,\ldots,g_n)
$$

This means that $mM = id$ on $C_b^n(\Gamma, \mathbb{C})$, as desired.

Corollary 3.2. $H^2(\ell^1F_2, \ell^1F_2)$ is infinite dimensional.

As hinted by the generic vanishing of $H_b^1(\Gamma, \mathbb{C})$, it turns out that $H^1(\ell^1\Gamma, \ell^1\Gamma) = 0$ for every group Γ (due to Johnson and Ringrose). For group von Neumann algebras, there is a similar vanishing result: $H^1(L\Gamma, L\Gamma) = 0$, a particular case of a theorem due to Kadison and Sakai. The computation of $H^2(LF_2, LF_2)$ is still an open problem, though a vanishing result is expected.

We end with a problem raised in [5]:

[Problem 8.3.4] How is the bounded cohomology of Γ related to the Hochschild cohomology of $C^*_r\Gamma$, or to the Hochschild cohomology of L Γ ?

REFERENCES

- [1] D.B.A. Epstein, K. Fujiwara: The second bounded cohomology of word hyperbolic groups, Topology 36 (1997), 1275 – 1289
- [2] R.I. Grigorchuk: Some results on bounded cohomology, Combinatorial and geometric group theory (Edinburgh, 1993), 111–163, London Math. Soc. Lecture Note Ser. 204, 1995
- [3] B.E. Johnson: Cohomology in Banach algebras, Memoirs of the A.M.S 127 (1972)
- N. Monod: An invitation to bounded cohomology, Proc. ICM 2006, Vol. II, 1183-1211
- [5] A. Sinclair, R. Smith: Hochschild cohomology of von Neumann algebras, London Math. Soc. Lecture Note Ser. 203, 1995