The Wronskian as a Method for Introducing Vector Spaces

Daniel A. Ramras
Department of Mathematical Sciences, New Mexico State University

http://math.nmsu.edu/~ramras/wronskian.html

January 10, 2013

Introduction

Goal

Lead students through a process of discovery, in which they apply linear algebra to the space of differentiable functions.

The (abbreviated) worksheet you will see was designed for students in a beginning linear algebra class.

Student Background:

- Differential calculus
- Basic linear algebra in Euclidean space:
- Systems of equations; Vectors and matrices;
- Linear dependence and linear independence;
- Invertible matrices, determinants;
- Linear transformations $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Responses shown are (mostly) from students' homework.

The Vector Space of Differentiable Functions
Let $C^{\infty}(\mathbb{R})$ denote the set of all infinitely differentable functions $f: \mathbb{R} \rightarrow \mathbb{R}$.
Then $C^{\infty}(\mathbb{R})$ is a vector space, using the usual addition and scalar multiplication for functions.
Problem 1: Differentiation
Differentiation defines a function

$$
D: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})
$$

This function D is defined by $D(f)=f^{\prime}$.
(a) Calculate $D\left(e^{x}\right), D\left(x^{3}+x\right), D(\cos (x))$.

$$
D\left(e^{x}\right)=e^{x}, \quad D\left(x^{3}+x\right)=3 x^{2}+1, \quad D(\cos x)=-\sin x
$$

(b) Show, by calculating both sides, that

$$
\begin{aligned}
D\left(2 e^{x}+3 \cos (x)\right) & =2 D\left(e^{x}\right)+3 D(\cos (x)) . \\
D\left(2 e^{x}+3 \cos (x)\right) & =2 D\left(e^{x}\right)+3 D(\cos (x)) \\
2 e^{x}-3 \sin (x) & =2\left(e^{x}\right)+3(-\sin (x)) \\
2 e^{x}-3 \sin (x) & =2 e^{x}-3 \sin (x)
\end{aligned}
$$

(c) We've shown that D preserves the linear combination $2 e^{x}+3 \cos (x)$. We'll now show that D is a linear transformation of vector spaces, meaning D preserves all linear combinations.
What formulas express this idea, and which rules for derivatives do these formulas correspond to?

$$
\begin{aligned}
& D(f+g)=D(f)+D(g)-\text { Sum Rule } \\
& D(c f)=C D(f)-\text { Constant Rule }
\end{aligned}
$$

(d) If we compose two linear transformations, we get another linear transformation.
Example: $D^{2}=D \circ D: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ is a linear transformation that sends each function f to its second derivative.
Calculate $D^{2}\left(2 e^{x}+3 \cos (x)\right), D^{2}\left(e^{x}\right)$ and $D^{2}(\cos (x))$. $D^{2}\left(2 e^{x}+3 \cos x\right)=D\left(2 e^{x}-3 \sin x\right)=2 e^{x}-3 \cos x$ $D^{2}\left(e^{x}\right)=D\left(e^{x}\right)=e^{x}$

$$
D^{2}(\cos (x))=D(-\sin x)=-\cos x
$$

Compare your answers to see that

$$
D^{2}\left(2 e^{x}+3 \cos (x)\right)=2 D^{2}\left(e^{x}\right)+3 D^{2}(\cos x)
$$

Problem 2: Linear Independence in $C^{\infty}(\mathbb{R})$:
In this problem, well examine whether or not certain collections of functions are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.
Question: Are $e^{x}, \cos (x)$, and $x^{3}+x$ linearly independent?
(a) What would it mean if these functions were linearly dependent? Write an equation expressing your answer.

$$
c_{1} e^{x}=c_{2} \cos (x)=c_{3}\left(x^{3}+x\right)
$$

That would make them linearly dependent because they would be multrafics of each the

If $e^{x}, \cos (x) t^{3}+x$ were linear dependent, we could say that

$$
c_{1} e^{x}=c_{2} \cos (x)+c_{3}\left(x^{3}+x\right)
$$

$a\left(e^{x}\right)+b(\cos (x))+c\left(x^{3}+x\right)=0$ where a, b, and c ane not $a l l=0$.
(b) Now, apply the linear transformation D (differentiation) to the equation from part (a) to obtain an equation relating the derivatives of our funclions.
$a D(e x)+b D(\cos (x))+C D(x=+x)=0$
where a, b, c not all $=0$
Apply D again to the equation you just obtained to get an equation relating the second derivatives.
$D\left(a D(e x)+b D(\cos (x))+c D\left(x^{3}+x\right)\right)=0 \Rightarrow$
$\Rightarrow a D^{2}\left(e^{x}\right)+b D^{2}(\cos (x))+c D^{2}\left(x^{3}+x\right)=0 \quad$ where a, b, c not of l $=0$
If $e^{x}, \cos (x)$, and $x^{3}+x$ were linearly dependent, what would the previous equations tell you about the columns of the Wronskian matrix $W(x)$ below?

$$
W(x)=\left[\begin{array}{rrr}
e^{x} & \cos (x) & x^{3}+x \\
D\left(e^{x}\right) & D \cos (x) & D\left(x^{3}+x\right) \\
D^{2}\left(e^{x}\right) & D^{2} \cos (x) & D^{2}\left(x^{3}+x\right)
\end{array}\right]
$$

If $e^{x}, \cos (x)$, and $x^{3}+x$ were linearly dependent then would iss He $\vec{c}=\left(\begin{array}{c}c_{1} \\ t_{2} \\ 3\end{array}\right)$ ow $\vec{c} \vec{c} \neq \vec{b}$ equations from 2a.) and 2 b.) showing that $w(x) \vec{c}=0$, where $\vec{c}=\binom{c_{2}}{\overrightarrow{3}}$ and $\vec{c} \neq \vec{d}$
(c) Compute

$$
W(x)=\left[\begin{array}{rrr}
e^{x} & \cos (x) & x^{3}+x \\
D\left(e^{x}\right) & D \cos (x) & D\left(x^{3}+x\right) \\
D^{2}\left(e^{x}\right) & D^{2} \cos (x) & D^{2}\left(x^{3}+x\right)
\end{array}\right]
$$

and plug in $x=0$ to get a matrix $W(0)$.

$$
\left.\begin{array}{l}
\omega(x)=\left[\begin{array}{ccc}
e^{x} & \cos (x) & x^{3}+x \\
e^{x} & -\sin (x) & 3 x^{2}+1 \\
e^{x} & -\cos (x) & 6 x
\end{array}\right] \\
\omega(0)=\left[\begin{array}{ccc}
e^{0} & \cos (0) & 0^{3}+0 \\
e^{0} & -\sin (0) & 3(0)^{2}+1 \\
e^{0} & -\cos (0) & b(0)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right] \\
\overrightarrow{a_{1}}, \overrightarrow{a_{2}}, \overrightarrow{a_{3}}
\end{array}\right]
$$

(d) Explain the following statement: If e^{x}, $\cos (x)$, and $x^{3}+x$ were linearly dependent, then the columns of $W(0)$ would also be linearly dependent (in other words, $W(0)$ would fail to be invertible).

$$
\begin{gathered}
c_{1}\left(\begin{array}{c}
e^{x} \\
e^{x} \\
e^{x}
\end{array}\right)+c_{2}\left(\begin{array}{c}
\cos (x) \\
-\sin (x) \\
-\cos (x)
\end{array}\right)+c_{3}\left(\begin{array}{c}
x^{3}+x \\
3 x^{2}+1 \\
6 x
\end{array}\right)=0 \Rightarrow c_{1}\left(\begin{array}{c}
e^{0} \\
e^{0} \\
e^{0}
\end{array}\right)+c_{2}\left(\begin{array}{c}
\cos (0) \\
-\sin (0) \\
-\cos (0)
\end{array}\right)+c_{3}\left(\begin{array}{c}
0^{3}+0 \\
3 \cdot 0^{2}+1 \\
6 \cdot 0
\end{array}\right)=0 \\
\Rightarrow c_{1} \vec{a}_{1}+c_{2} \vec{a}_{2}+c_{3} \vec{a}_{3}=0 \Rightarrow \vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3} \text { dep. bic } \\
c_{1}, c_{2}, c_{3} \text { not all zero }
\end{gathered}
$$

(e) Is $W(0)$ invertible? Why or why not? What does this tell you about $e^{x}, \cos (x)$, and $x^{3}+x$?

$$
\left|\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 0 \\
1 & -1 & 0
\end{array}\right|=1(0.0-(1-1))-1(1.0-1.1)=2
$$

$2 \neq 0$ so $\omega(0)$ is invertible
and $e^{x} \cos (x)$ and $x^{3}+x$ are linearly independent

Yes, $W(0)$ is invertible. It is because I was able to Find the inverse, which is $\left[\begin{array}{ccc}1 / 2 & 0 & 1 / 2 \\ 1 / 2 & 0 & -1 / 2 \\ -1 / 2 & 1 & -1 / 2\end{array}\right]$. This means that $e^{x}, \cos (x) \not+x^{3}+x$ and linearly independent.
$W(0)$ is invertible through simply row reducing and cheating if it has $n=3$ pivots.

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right] \rightarrow-R 1\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 1 \\
0 & -2 & 0
\end{array}\right] \rightarrow-R 2\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & -2
\end{array}\right]
$$

This tells us that $e^{x}, \cos (x)$, and $x^{3}+x$ are linearly idependent from each other.

Problem 3: We've seen that if $W(0)$ is invertible, our functions are independent. If $W(0)$ is singular, must our functions be dependent?
(a) Compute $W(0)$ for the functions $\sin (x), \sin (2 x)$, $\cos (x)$. Is $W(0)$ invertible?

$$
\begin{aligned}
& W(x)=\left[\begin{array}{ccc}
\sin (x) & \sin (2 x) & \cos (x) \\
\cos (x) & 2 \cos (2 x) & -\sin (x) \\
-\sin (x) & -4 \sin (2 x) & -\cos (x)
\end{array}\right] \\
& W(0)=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 2 & 0
\end{array}\right] \quad|W(0)|=0 \\
& 0
\end{aligned} 0 \quad-1 \quad W(x) \text { not invert } \quad . \quad .
$$

$W(x)$ not invertible $@ x=0$
(b) Is $W(\pi / 4)$ invertible? What can you say about independence or dependence of these functions?

$$
\begin{aligned}
& W(\pi / 4)=\left[\begin{array}{ccc}
\sqrt{2} / 2 & 1 & \sqrt{2} / 2 \\
\sqrt{2} / 2 & 0 & -\sqrt{2} / 2 \\
-\sqrt{2} / 2 & -4 & -\sqrt{2} / 2
\end{array}\right] \\
& |W(\pi / 4)|=-3
\end{aligned} \quad W(x) \text { is invertible at } x=\pi / 4 .
$$

Wronskia can be used to show linear independence, but not necessarily to prove linear dependence.

Concluding Remarks

For proving linear independence, the matrix

$$
\left[\begin{array}{lll}
f\left(x_{1}\right) & g\left(x_{1}\right) & h\left(x_{1}\right) \\
f\left(x_{2}\right) & g\left(x_{2}\right) & h\left(x_{2}\right) \\
f\left(x_{3}\right) & g\left(x_{3}\right) & h\left(x_{3}\right)
\end{array}\right]
$$

($x_{1}, x_{2}, x_{3} \in \mathbb{R}$ distinct) is often just as useful as the Wronskian.

Pros and Cons

- The above matrix does not involve derivatives, and does not require/reinforce the notion of linear transformation.
- Often det $W(0) \neq 0$ can be checked without a calculator.
- The Wronskian has deeper connections to differential equations (Variation of Parameters).
http://math.nmsu.edu/~ramras/wronskian.html

