Dupe Sequences:
Given a space Z and a subspace $A \subseteq Z$, we con form a sequence of inclusions

$$
A \hookrightarrow Z \hookrightarrow Z \cup C A \hookrightarrow(Z \cup C A) \cup C Z \hookrightarrow
$$

At each stage, we attach a cone on the subspace two steps back.

Let $\bar{z}=Z \cup C A$. Then we can define this sequence inductively as follows:

$$
A_{0}=A, \quad Z_{0}=z, \quad \bar{z}_{0}=Z \cup C A
$$

We now set

$$
\begin{aligned}
& A_{i}=\bar{Z}_{i-1} \cup C\left(z_{i-1}\right) \\
& Z_{i}=A_{i} \cup C\left(\bar{z}_{i-1}\right) \\
& \bar{Z}_{i}=Z_{i} \cup C\left(A_{i}\right)
\end{aligned}
$$

Inductively, we have inclusions

$$
\bar{z}_{i-1} \hookrightarrow A_{i} \hookrightarrow z_{i} \hookrightarrow \bar{z}_{i}
$$

so the above expressions make sense.
Claim: If $A \subset Z$ is a $C W$ pain then $A_{i} \cong S^{i}(A)$, $\underset{\text { are natural for mars of pars. }}{Z_{i}} \xlongequal{\leftrightharpoons} S_{i}(Z)$ and $\bar{S}_{i}(Z / A)$. These homstopy equivalences

Proof: When $i=0$, we have $Z \cup C A \xrightarrow{q} Z / A$, where q collapses $C A$ to a point. Since $C A \simeq \theta$, q is a homotopy equivdence.

Assuming the result for $i-1$, we have

$$
A_{i}=\bar{z}_{i-1} \cup C\left(z_{i-1}\right)=\left(z_{i-1} \cup C\left(A_{i-1}\right)\right) \cup C\left(z_{i-1}\right)
$$

Collapsing. $C\left(z_{i-1}\right)$ to a point yields a hippy equivalence

$$
A_{i} \cong \longrightarrow S\left(A_{i-1}\right) \underset{r_{\text {by induction }}}{\left.S^{i-1} A\right)=S^{i} A ~}
$$

The picture is:

$$
\left\{\begin{array}{l}
A_{i-1} \\
A_{i-1}
\end{array}\right\} S\left(A_{i-1}\right) \text {. }
$$

Similarly, $\quad z_{i}=A_{i} \cup C\left(\bar{z}_{i-1}\right)=\left(\bar{z}_{i-1} \cup C\left(z_{i-1}\right)\right) \cup C\left(\bar{z}_{i-1}\right)$

$$
\xrightarrow{\xrightarrow{\simeq} S\left(z_{i-1}\right) \simeq S\left(S^{i-1} z\right)=S^{i} z} \begin{gathered}
\text { corpse } C\left(\bar{z}_{i-1}\right)
\end{gathered}
$$

and $\bar{Z}_{i}=z_{i} \cup C\left(A_{i}\right)=\left(A_{i} \cup C\left(\bar{Z}_{i-1}\right)\right) \cup C\left(A_{i}\right)$

$$
\underset{\substack{\text { coheres } \\ C\left(A_{i}\right)}}{\simeq} S\left(\bar{z}_{i-1}\right) \simeq S\left(S^{i-1} z_{/ A}\right)=S^{i}\left(z_{/ A}\right)
$$

Note: the basic point here is just that for any spaced $u \subseteq w,[(w \cup \subset u) \cup c w] / C w \cong S U$.

