Math 601 - Vector Bundles Homework II Due March 31

Problem 1 (Dual Bundles)

In this problem, \mathbb{F} will denote either the field \mathbb{R} of real number, or the field \mathbb{C} of complex numbers. Given a vector bundle $E \to B$ with fiber \mathbb{F}^n , the dual bundle $E^* = \operatorname{Hom}_F(E, \mathbb{F})$ is defined using the construction in MS Chapter 3.

a) Say $\phi_i: U_i \times \mathbb{F}^n \to E|_{U_i}$ are trivializations with $U_1 \cap U_2 \neq \emptyset$. Describe the transition function for E^* in terms of the transition function $\phi_2^{-1}\phi_1$.

Remark 0.1. You'll need to express the dual space as a covariant functor from vector spaces over \mathbb{F} (and isomorphisms) to vector spaces over \mathbb{F} (and isomorphisms), so that the construction in MS Chapter 3 applies. Also, it's important to notice that in MS the trivializations of E^* come from $(\mathbb{F}^n)^*$, rather than from F^n , so you'll need to compose with the natural isomorphism between \mathbb{F}^n and $(\mathbb{F}^n)^*$.

b) Consider the natural embedding $\mathbb{F}P^1 \to \mathbb{F}P^2$ given by sending $[x,y] \in \mathbb{F}P^1 = (F^2 - \{0\})/F^{\times}$ to $[x,y,0] \in \mathbb{F}P^2 = (F^3 - \{0\})/F^{\times}$. There is a natural projection $\pi : \mathbb{F}P^2 - \{[0,0,1]\} \longrightarrow \mathbb{F}P^1$

given by $[x,y,z]\mapsto [x,y,0]$ (where we identify $\mathbb{F}P^1$ with its image under the embedding), and each fiber of this projection is just a copy of F. Show that this projection is locally trivial over the open sets $\{[x,y,0]\in \mathbb{F}P^1: x\neq 0\}$ and $\{[x,y,0]\in \mathbb{F}P^1: y\neq 0\}$ (hence π is a vector bundle), and compute the transition function defined by the two trivializations. (This bundle over $\mathbb{F}P^1$ is the normal bundle of $\mathbb{F}P^1$ in $\mathbb{F}P^2$.)

c) Recall that the tautological bundle over $\mathbb{F}P^1$ can be written as

$$\{[x,y], \overrightarrow{\mathbf{v}} \in \mathbb{F}P^1 \times F^2 : \overrightarrow{\mathbf{v}} = (tx,ty) \text{ for some } t \in \mathbb{F}\}$$

By comparing the transition functions you found in b) with transition functions for the tautological bundle over $\mathbb{F}P^1$, show that when $\mathbb{F}=\mathbb{R}$, the normal bundle is isomorphic to the tautological bundle γ_1^1 over $\mathbb{RP}^1\cong S^1$ (the "Mobius" bundle), and that when $\mathbb{F}=\mathbb{C}$, the normal bundle is the *dual* of the tautological bundle over $\mathbb{C}P^1\cong S^2$.

Remark 0.2. In the real case, any metric on a bundle E determines an isomorphism $E \cong E^*$. In the complex case, this is not true, because a Hermitian metric is conjugate linear in the second coordinate. In the complex case, one gets an isomorphism $E^* \cong \overline{E}$, where \overline{E} is the bundle with the same underlying total space as E, but with the opposite complex structure: in the bundle \overline{E} , multiplication by $z \in \mathbb{C}$ acts the way multiplication by \overline{z} acts on E. The bundles E and $E^* \cong \overline{E}$ are not isomorphic in general, and in particular $c_1(\overline{E}) = -c_1(E)$. See MS Chapter 14.

Problem 2 (Homotopy groups of classifying spaces)

a) Recall that given a group G, the universal principal G-bundle is a principal G-bundle

$$EG \longrightarrow BG$$

for which $\pi_*(EG) = 0$ for $* = 0, 1, \dots$ Use the long exact sequence in homotopy associated to the fibration $EG \to BG$ to describe the relationship between π_*BG and π_*G .

- b) Show that $GL_n(\mathbb{C})$ and U(n) are connected. What can you conclude about $\pi_1Gr_n(\mathbb{C}^{\infty})$, and what does this say about complex bundles over 1-dimensional CW complexes? (You may use the fact that the Gram-Schmidt process gives a deformation retraction from $GL_n(\mathbb{C})$ to U(n).)
- c) The action of the unitary group U(n) on \mathbb{C}^n preserves lengths, and hence U(n) acts on $S^{2n-1} \subset \mathbb{C}^n$. Show that this action is transitive, and that the stabilizer of a point under this action is homeomorphic U(n-1). This gives a homeomorphism $U(n)/U(n-1) \cong S^{2n-1}$, and it is a general fact that quotient maps for Lie groups are principal bundles. So we have a principal bundle

$$U(n-1) \longrightarrow U(n)$$

$$\downarrow$$

$$S^{2n-1}.$$

Use this to show that $\pi_1U(n)\cong\mathbb{Z}$, and $\pi_2U(n)\cong 0$, and then use part a) to calculate $\pi_2\mathrm{Gr}_n(\mathbb{C}^\infty)$ and $\pi_3\mathrm{Gr}_n(\mathbb{C}^\infty)$.