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Abstract. Atiyah and Bott showed that Morse theory for the Yang–Mills

functional can be used to study the space of flat, or more generally central,

connections on a bundle over a Riemann surface. These methods have recently
been extended to non-orientable surfaces by Ho and Liu. In this article, we

use Morse theory to determine the exact connectivity of the natural map from

the homotopy orbits of the space of central Yang–Mills connections to the
classifying space of the gauge group. The key ingredient in this computation

is a combinatorial study of the Morse indices of Yang–Mills critical sets.

1. Introduction

Let Mg be a Riemann surface of genus g > 0, and consider a vector bundle E
over Mg. When E is trivial, the space Aflat(E) of flat connections on E forms the
minimum critical set for the Yang–Mills functional L : A(E) → R, where A(E) is
the affine space of all connections, and for A ∈ A(E),

L(A) =
∫
M

||F (A)||2dvolM .

Here F (A) is the curvature form of A and the volume of M is normalized to 1.
In their seminal paper on Yang–Mills theory [1], Atiyah and Bott showed that by
treating L as a gauge-equivariant Morse function, one can learn a great deal about
the topology of the critical set Aflat(E) and its stable manifold Css(E), the space of
semi-stable holomorphic structures on E. In particular, Atiyah and Bott provided
a framework for computing the gauge-equivariant cohomology of these spaces.

For a general bundle E, the minimum critical set Cmin(E) of L consists of cen-
tral Yang–Mills connections, and again, the stable manifold of this critical set is
Css(E). By work of Daskalopoulos [5] and R̊ade [13] (relying heavily on Uhlenbeck’s
compactness theorem [16]), the Yang–Mills flow provides a deformation retraction
Css(E) '→ Cmin(E), and hence we refer to Css(E) as the stable manifold of Cmin(E).
The methods of Atiyah and Bott apply directly to Css(E), and then extend to
Cmin(E) via this homotopy equivalence.

Recently, Ho and Liu [7] have constructed an analogous Morse Theory for connec-
tions on a bundle E over a non-orientable surface Σ. In this setting, the minimum
critical set is always the space of flat connections on E. Their methods have led to
computations of the U(n)–equivariant Poincare series of Hom(π1Σ, U(n)) for small
n (see Ho–Liu [9] and Baird [2]).

We now describe our main result, Theorem 3.15. Consider the map

(1) EG(E)×G(E) Cmin(E) = Cmin(E)hG(E)
q→ MapE(M,BU(n)) = BG(E)
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from the homotopy orbits of Cmin(E) under the gauge group G(E), to the classifying
space of G(E). Say M is a Riemann surface of genus g and E has rank n > 1 and
Chern number k. Given r ∈ Z, let [r]n denote the unique integer between 1 and
n equivalent to r modulo n. Using Yang–Mills theory, we show that if g > 1, the
connectivity of the map (1) is precisely

2 min([k]n, [−k]n) + 2(g − 1)(n− 1)− 1.

When g = 1, we obtain the simpler formula 2 gcd(n, k)−1 for this connectivity. On
the other hand, say M is non-orientable and the genus g̃ of its orientable double
cover is at least 2. Then if E has rank n > 9, we show that q is precisely (2ng̃−3g̃)–
connected. We also obtain formulas when g̃ = 1, but they are not as clean.

In (1), one may replace G(E) by the based gauge group G0(E) without affecting
the connectivity of q. If M is orientable and E is trivial, Cmin(E) = Aflat(E) and
we obtain the connecvity of the map

Hom(π1M,U(n)) ∼= Aflat(E)/G0(E) ' Aflat(E)hG0(E) → BG0(E).

Similarly, if Σ is a non-orientable surface, our results yield the connectivity of the
map

Hom(π1Σ, U(n))E = Aflat(E)/G0(E) ' Aflat(E)hG0(E) → BG0(E),

where the left-hand side denotes the homomorphisms whose associated bundle is
isomorphic to E.

These results rely on an interesting combinatorial study of the Yang–Mills strat-
ification. In particular, our connectivity formulas arise from a determination of
the minimum non-zero Morse index of a Yang–Mills critical set, which is closely
related to the connectivity of the space Cmin(E) (see Propositions 3.13 and 3.14).
In the orientable case, weaker bounds on this quantity have been used in the lit-
erature before (see Daskalopoulos [5, Section 7], Daskalopoulos and Uhlenbeck [6],
Ramras [14], and Cohen–Galatius–Kitchloo [4]), but our precise formulas are new.

In Section 2 we discuss the necessary properties of the Yang–Mills stratification.
The results in this section are essentially due to Atiyah and Bott, and play a key
role in the equivariant cohomology computations in [1]. We feel there is some value
in filling in the details. In Section 3 we compute the minimum codimension, i.e.
Morse index, of a non-central stratum, and obtain the connectivity calculations
described above.

Acknowledgements: I thank G. Carlsson, C. Groft, G. Helleloid, and C.-C. Liu
for helpful conversations, and N.-K. Ho for pointing out some misstatements in an
earlier draft.

2. The Harder–Narasimhan stratification

In this section we discuss the Harder–Narasimhan stratification on the space of
holomorphic structures on a smooth, Hermitian vector bundle over a Riemann sur-
face M = Mg, as in Atiyah–Bott [1, Section 7]. Recall that on a Hermitian bundle
over a surface, the spaces of holomorphic structures and Hermitian connections
are isomorphic. Under this isomorphism, the Harder-Narasimhan stratification
agrees with the Morse stratification for the Yang–Mills functional, in the sense that
the Yang–Mills flow defines deformation retractions from each Harder–Narasimhan
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stratum to its subset of Yang–Mills critical points [5, 13]. We will use the phrases
Harder–Narasimhan strata, Yang–Mills strata, and Morse strata more or less in-
terchangeably in the orientable context, and we use the latter two terms in the
non-orientable context.

Let C(E) = C(n, k) denote the space of holomorphic structures on a rank n
Hermitian bundle E → M with Chern number k. As shown in [1, Sections 5, 7],
this is an affine space, isomorphic to the affine space A(E) of Hermitian connections
on E. As such, we may equip these spaces with Sobolev norms and complete them to
Banach spaces. Throughout this paper, C(n, k) and A(E) will denote such Banach
space completions (we will not need to specify the Sobolev regularity). Recall that
the unitary gauge group G(E) = G(n, k) of unitary automorphisms of E, and the
larger complex gauge group GC(E) = GC(n, k) of all complex automorphisms of E,
(or rather their Sobolev completions) act on C(n, k) [1, Section 14].

Given E ∈ C(n, k) there is a unique filtration (the Harder–Narasimhan filtration)

0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E

of E by holomorphic subbundles with the property that each quotient Di = Ei/Ei−1

is semi-stable (i = 1, . . . , r) and µ(D1) > µ(D2) > · · · > µ(Dr), where the “slope”
µ(Di) is defined by µ(Di) = deg(Di)

rank(Di)
. (A bundle F is semi-stable if for all holomor-

phic subbundles F ′ < F , µ(F ′) 6 µ(F ).) Letting ni = rank(Di) and ki = deg(Di),
we have

∑
ki = k,

∑
ni = n. We call the sequence

µ = ((n1, k1), . . . , (nr, kr))

the type of E . The semi-stable stratum has type ((n, k)). Let Cµ = Cµ(n, k) ⊂
C(n, k) denote the subset of all holomorphic structures complex gauge-equivalent
to a smooth structure of type µ (by Atiyah–Bott [1, Section 14], every GC(n, k)–
orbit contains a unique isomorphism class of smooth structures). We now have the
following result from [1, Section 7] (see also [5, Theorem B]).

Theorem 2.1. Let µ = ((n1, k1), . . . , (nr, kr)) ∈ C(n, k). Then the stratum Cµ is
a locally closed submanifold of C(n, k) with complex codimension given by

c(µ) =
∑
i>j

nikj − njki + ninj(g − 1).

Next, we recall the partial ordering on the strata Cµ.

Definition 2.2. A sequence ((n1, k1), . . . , (nr, kr)) is admissible of rank n and
degree k if ni > 0 for each i,

∑
ni = n,

∑
ki = k, and k1

n1
> · · · > kr

nr
. We denote

the set of all admissible sequences of rank n and degree k by I(n, k).

The correspondence µ↔ Cµ defines a bijection between I(n, k) and the Harder–
Narasimhan strata. Following Shatz [15], we associate to each µ ∈ I(n, k) a convex,
piecewise-linear path P (µ) in R2, starting at (0, 0) and ending at (n, k), with vertices
(
∑i
j=1 nj ,

∑i
j=1 kj) (i = 1, 2, · · ·n). Convexity corresponds to the condition that

the slopes decrease. This yields a bijection between I(n, k) and the set of convex,
piecewise-linear paths from (0, 0) to (n, k) which change slope only at points in Z2.
For any λ, µ ∈ I(n, k), we set λ > µ if P (λ) lies above P (µ), in the sense that if we
consider these paths as the graphs of functions [0, n]→ R, then P (λ)(x) > P (µ)(x)
for all x. This makes I(n, k) a partially ordered set.
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Remark 2.3. When g = 0, Grothendieck’s theorem states that every holomorphic
bundle is a sum of line bundles. Hence in genus zero, the stratum corresponding to
µ ∈ I(n, k) may empty. For this reason, we assume g > 0 throughout this paper
(and in the non-orientable case we do not consider RP 2).

A key fact about the Harder–Narasimhan stratification is the following result.
For completeness, we will fill in some details of the proof.

Proposition 2.4 (Atiyah–Bott). The partial ordering 6 on I(n, k) can be refined
to a linear ordering µ1 ≺ µ2 ≺ · · · such that for any j,

⋃j
i=1 Cµi is open in C(n, k).

Let E →M be a rank n Hermitian bundle over a non-orientable surface, and let
Ẽ → M̃ denote the pullback of E to the orientable double cover of M . Then Ẽ is
trivial and connections on E pull back to connections on Ẽ, yielding an embedding
i : A(E) ↪→ A(Ẽ). Ho and Liu [7] define the Yang–Mills strata of A(E) to be the
subsets A(E) ∩ Cµ, for µ ∈ I(n, 0). Proposition 2.4 implies:

Corollary 2.5. For any Hermitian bundle E on a non-orientable surface, the
linear ordering ≺ on A(Ẽ) induces a linear ordering on the Yang–Mills strata of
A(E) such that the union of any initial segment {S|S ≺ S0} is open in A(E).

Remark 2.6. The intersections A(E) ∩ Cµ are sometimes empty. See [7, Section
7.1] for a precise determination of the non-empty strata.

We need a finiteness property of I(n, k), noted by Atiyah–Bott [1, p. 567].

Lemma 2.7. If I ⊂ I(n, k) is a finite collection of admissible sequences, then
there are finitely many 6–minimal elements in the complement Ic = I(n, k)− I.

Proof. If P is a minimal path in Ic, then either P is the minimum path (the line
from (0, 0) to (n, k)), or P is a minimal cover of some Q ∈ I. Hence it suffices to
show that each path in I(n, k) has only finitely many minimal covers.

Fix µ = ((n1, k1), . . . , (nr, kr)) ∈ I(n, k) and let P = P (µ). Define

s1(P ) = max{k1/n1, 0}; sr(P ) = min{kr/nr, 0}.
Let Q = P (ν) for some ν ∈ I(n, k), ν 6= ((n, k)). Let h(Q) = (h1(Q), h2(Q))
denote the right endpoint of the rightmost line segment in Q with slope at least
k
n . If h2(Q) > n(s1(P )− sr(P )) + max{k, 0}+ 1, one checks that the path Q′ with
vertices (0, 0), (h1(Q), h2(Q)− 1) and (n, k) lies in I(n, k), and we claim that

(2) P 6 Q′ < Q, and if r > 2 then P < Q′ < Q.

Assuming (2), we finish the proof. If Q is a minimal cover of P then either r > 2
and h2(Q) 6 n(s1(P ) − sr(P )) + max{k, 0}, or r = 2 and Q lies in the finite set
of convex paths with Q′ = P . In the former case, Q lies below the line of slope k

n
passing though h(Q). Since h1(Q) 6 n, this restricts Q to a finite region.

To prove (2), note that Q′ < ((0, 0), (h1(Q), h2(Q)), (n, k)) 6 Q, so we need only
check that P < Q′ when r > 2. If not, then at some time x = x0, the path P lies
above the path Q′ (since r > 2, P 6= Q′). If x0 6 h1(Q), then the initial slope of P
must be more than the initial slope of Q′. Our assumption on h2(Q) and the fact
that sr(P ) 6 0 give
(3)

s1(P ) >
k1

n1
>
h2(Q)− 1
h1(Q)

>
(n(s1(P )− sr(P )) + max{k, 0}+ 1)− 1

n
> s1(P ),
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a contradiction. If x0 > h1(Q) then a similar argument (using the facts that
s1(P ) > 0 and sr(P ) 6 0) yields the contradiction sr(P ) > sr(P ). 2

The final ingredient in the proof of Proposition 2.4 is the following result regard-
ing the closures on the Harder–Narasimhan strata.

Proposition 2.8. Let S ⊂ I(n, k) be a collection of admissible sequences that is
upwardly closed, in the sense that if µ > µ′ and µ′ ∈ S, then µ ∈ S as well. Then
the set

⋃
µ∈S Cµ is closed.

Atiyah–Bott [1, (7.8)] and Daskalopoulos [5, Proposition 2.12] only claim

(4) Cµ ⊂
⋃
µ′>µ

Cµ′ .

To prove the (strictly stronger) statement in Proposition 2.8, we apply another
result of Atiyah–Bott [1, Section 8].

Proposition 2.9. If µ = ((n1, k1), . . . , (nr, kr)) ∈ I(n, k), then for any A ∈ Cµ,

inf
g∈GC(n,k)

L(g ·A) =
r∑
i=1

k2
i

ni
=: l(µ)

where L denotes the Yang–Mills functional.

Proof of Proposition 2.8. By (4), we have
⋃
µ∈S Cµ =

⋃
µ∈S Cµ. The union of a

locally finite collection of closed sets is closed, so it suffices to show that {Cµ}µ is
locally finite. We will check that for each N > 0, only finitely many of the closures
Cµ meet the open set L−1[0, N).

If L(A) < N for some A ∈ Cµ, then continuity of L and Proposition 2.9 imply
that l(µ) < N . There are finitely many µ ∈ I(n, k) with l(µ) 6 N , because
l(µ) 6 N implies that P (µ) lies under the line y =

√
Nx. 2

Remark 2.10. Although we will not need this fact, we point out that the number
l(µ) appearing in Proposition 2.9 is actually the (unique) critical value of the Yang–
Mills functional on the stratum Cµ. This follows from convergence of the Yang–
Mills flow (R̊ade [13]) and the fact that the Morse strata agree with the Harder-
Narasimhan strata (Daskalopoulos [5]), together with discreteness of the critical
values of L. As mentioned in R̊ade [13, Section 2], this follows from Uhlenbeck
Compactness and [13, Proposition 7.2].

Proof of Proposition 2.4. We construct a linear ordering ≺ on I(n, k) by setting
T0 = {((n, k))}, and inductively defining

Tl = Tl−1 ∪ {µ ∈ I(n, k) | µ is minimal in I(n, k) \ Tl−1},
where we choose any linear ordering ≺ on Tl extending the ordering ≺ on Tl−1 and
satisfying µ ≺ η if µ ∈ Tl−1 and η ∈ Tl \Tl−1. The set T =

⋃
l Tl is linearly ordered

by ≺ (by Lemma 2.7, each Tl is finite), and if µ 6 η, then µ ≺ η. For each j, the
set
⋃j
i=1 Cµi

is open because by Lemma 2.7 and Proposition 2.8, its complement is
a finite union of closed sets.

We now check that T = I(n, k). If I(n, k)\T is non-empty, then we may choose
a 6–minimal element µ from this poset. There are finitely many η with η < µ, so
we may choose a 6–maximal element η0 from the finite set Tµ = T ∩ {η|η < µ}
(note that Tµ 6= ∅ since it contains the minimum sequence ((n, k))). Now, η0 ∈ TN
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for some N . If µ were a minimal cover of η0 in (I(n, k),6), then by definition we
would have µ ∈ TN+1, a contradiction. So we may choose a minimal cover η1 of η0

with η0 < η1 < µ. Then η1 ∈ TN+1, so η1 ∈ Tµ, contradicting maximality of η0.
Hence I(n, k) \ T must be empty. 2

3. Connectivity of the space of central Yang–Mills connections

On a Hermitian bundle E over a Riemann surface M , the central Yang–Mills
connections form the minimum critical set Cmin(E) of the Yang–Mills functional. In
this section, we give a precise formula for the connectivity of these spaces depending
only on the genus of M and the rank and Chern number of E (Proposition 3.13). We
obtain a similar result (Proposition 3.14) for the space Aflat(E) of flat connections
on a bundle E over a non-orientable surface. Considering the actions of the gauge
groups on these spaces leads to our main result, Theorem 3.15. Note that if E has
rank 1, then Cmin(E) ' Css(E) = C(E) ' ∗, so we assume the rank of E is more
than 1 in this section.

The starting point for our calculations is a homological argument, which reduces
the problem to a combinatorial question about the codimensions of the Yang–Mills
strata. The following example shows that the partial ordering 6 on these strata
does not respect codimensions; this complicates the arguments.

Example 3.1. The stratum ((1, 1), (5, 1)) ∈ I(6, 2) has complex codimension 4 +
5(g − 1), but lies above ((2, 1), (4, 1)), whose complex codimension is 2 + 8(g − 1).

For the remainder of the section, E will denote a Hermitian bundle over Mg

(g > 0) of rank n and Chern number k. Let ≺ denote a linear ordering on the
set of Yang–Mills strata of A(E), as in Proposition 2.4; we will denote the strata
by Css = Cµ0 ≺ Cµ1 ≺ · · · . Recall that a space X is (precisely) d–connected if its
homotopy groups πi(X) vanish for i 6 d (and πd+1X 6= 0).

Lemma 3.2. Let d = d(E) denote the minimum positive (real) codimension of
a Harder–Narasimhan stratum in the space C(E) of holomorphic structures on E.
Then the space Cmin(E) of central Yang–Mills connections on E, and its stable
manifold Css(E), are precisely (d− 2)–connected.

Similarly, let Σ be a non-orientable surface and let E be a complex bundle over
Σ. Let d = d(E) denote the minimum positive (real) codimension of a stratum in
the space of connections A(E). If A(E) contains no strata of codimension d + 1,
then Aflat(E) is precisely (d− 2)–connected.

To prove Lemma 3.2 we need a finiteness property of I(n, k), observed by Atiyah
and Bott [1, p. 569]. For completeness, we give a proof.

Lemma 3.3. For any D ∈ N, the set {µ ∈ I(n, k) | c(µ) < D} is finite, where
c(µ) denotes the complex codimension of the stratum Cµ.

Proof. Recall from Theorem 2.1 that c(µ) =
∑
i>j nikj − njki + ninj(g − 1). Say

µ = ((n1, k1), . . . , (nr, kr)) ∈ I(n, k) and c(µ) < D. Since
∑
ni = n, there are

finitely many choices for the positive integers ni. Each term in the sum defining
c(µ) is positive (see Theorem 2.1), so k1ni − kin1 < D and ki >

k1ni−D
n1

for each
i > 1. If k > 0, then k1 > 0, so k1ni−D

n1
> −D, while if k < 0 then k1

n1
> k

n so
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k1ni−D
n1

> k
nni−D > k/n−D. Since

∑
ki = k, this leaves finitely many possibilities

for the integers ki. 2

We will need to apply the Thom isomorphism theorem a number of times. This
depends on the existence of tubular neighborhoods for the Yang–Mills strata Cµi

inside the open sets Ci :=
⋃j
i=1 Cµi

. Although the construction is by now more
or less standard, some subtleties arise due to the fact that the sets Cµi

are not
closed. Hence we outline the argument. Our basic reference for Banach manifolds
is Lang [11].

Lemma 3.4. Let Y be a smooth, metrizable Banach manifold, and let X ⊂ Y be a
locally closed submanifold of finite codimension. Then there is an open neighborhood
τ(X) of X inside Y which is diffeomorphic to the normal bundle N(X).

Proof. We follow Lang [11, Section IV.5] and Bredon [3, VI.2]. As shown in [11,
Chapter III], there is a smooth direct sum decomposition T (Y )|X = T (X)⊕N(X).
Using sprays, Lang constructs an exponential map exp : D → Y , where D ⊂ T (Y )
is an open neighborhood of the zero section, and shows that exp restricts to a local
diffeomorphism D∩N(X)→ Y (this means each x ∈ X has an open neighborhood
Ux ⊂ N(X) on which exp is a diffeomorphism onto an open set in Y ).

We claim that there exists an open set W ⊂ D ∩ N(X) with the property
that {w ∈ W | exp(w) ∈ X} = W ∩ X. Since Ux ∩ X is open in X, we have
Ux ∩X = Wx ∩X for some open set Wx ⊂ Y . Now W =

⋃
x

(
Ux ∩ exp−1(Wx)

)
is

the desired open set in N(X). Bredon [3, Chapter VI, Lemma 2.3] now shows that
there exists a smaller neighborhood W ′ ⊂ W on which exp is injective (Bredon
assumes both W and Y are metric spaces, but only uses the fact that Y is metric).

Now exp : W ′ → exp(W ′) is a diffeomorphism onto an open neighborhood of X
inside Y . Finally, Lang [11, Section VII.4] shows that the finite-dimensional vector
bundle N(X) can be “compressed” into the neighborhood W ′. 2

Remark 3.5. Lang [11, Section IV.5] assumes that X is closed in Y . This is used
in the construction of the neighborhood W ′ above. One must replace a family {Uα}α
of open sets in Y which covers X by a subordinate family {Vβ}β which still covers
X and for which {Vβ}β is locally finite. This can always be done if X is closed and
Y admits partitions of unity (Lang’s hypotheses) but also works if Y is metrizable,
because then the union of the Uα is also metrizable.

Proposition 3.6. There are Thom isomorphisms in homology

(5) H∗(Ci, Ci−1; Z/2) ∼= H∗−2c(µi) (Cµi
; Z/2) ,

and similarly in the case of a non-orientable surface.

Proof. In the orientable case, A(E) is an (affine) Banach manifold, as are the open
subsets Ci. Daskalopoulos [5] showed that Cµi

is a locally closed submanifold of finite
codimension, so by Lemma 3.4, Cµi has a tubular neighborhood τi in Ci. When Σ
is a non-orientable surface, pulling back to the orientable double cover Σ̃ yields an
embedding A(E) ↪→ A(Ẽ). The image is the fixed point set of an involution τ

induced by the deck transformation on Σ̃ (see Ho–Liu [7]). Morse strata in A(Ẽ)
are intersections of Morse strata in Ak−1(Ẽ) with A(E), hence are locally closed
submanifolds of finite codimension, and we apply Lemma 3.4 to obtain a tubular
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neighborhood τi. The isomorphisms (5) come from excising the complement of τi
in Ci and applying the Thom Isomorphism Theorem to the bundle τi → Cµi . 2

Proof of Lemma 3.2. The proofs in the orientable and non-orientable cases are
essentially identical, so we work in the orientable case (the extra hypothesis in the
non-orientable case is automatically satisfied in the orientable case because there
the codimensions are always even).

Using transversality, it was shown in [14, Section 4] that πiCss(E) = 0 for i 6 d−2
(that argument was stated for the case k = 0, but works in general). We must show
that πd−1Css(E) is non-zero. Since Css = Css(E) is (at least) (d− 2)–connected, it
suffices, by the Hurewicz Theorem, to prove thatHd−1(Css; Z) 6= 0. In fact, we claim
that it is enough to show that Hd−1(Css; Z/2Z) 6= 0. The Hurewicz Theorem implies
that Hi(Css; Z) = 0 for i < d− 1, and hence Tor(Hd−2(Css; Z),Z/2Z) = 0. By the
Universal Coefficient Theorem, we now have Hd−1(Css; Z/2Z) ∼= Hd−1(Css; Z) ⊗
Z/2Z (note that this holds even if d − 1 = 0), so if Hd−1(Css; Z/2Z) is non-zero,
then Hd−1(Css; Z) 6= 0 as well. From now on, all homology groups will (implicitly)
be taken with Z/2Z–coefficients.1

Let Cµm denote the first stratum in our ordering with c(µ) = d. We claim
that Hd−1(Css) ∼= Hd−1(Cm−1). Since Cµj

has codimension greater than d for
j = 1, . . . ,m − 1, the long exact sequences of the pairs (Cj , Cj−1), together with
Proposition 3.6, provide isomorphisms

Hd−1(Css) = Hd−1(C0) ∼= Hd−1(C1) ∼= · · · ∼= Hd−1(Cm−1).

It now suffices to show that Hd−1(Cm−1) 6= 0. We argue by contradiction. If
Hd−1(Cm−1) = 0, then applying Proposition 3.6 to each of the pairs (Cj , Cj−1),
j = m − 1, . . ., one finds that Hd−1(Cj) = 0 for all j. Now, let Cµl

be the largest
stratum in our ordering with codimension d. The long-exact sequence for the pair
(Cl, Cl−1) has the form

· · · −→ Hd(Cl) −→ Hd(Cl, Cl−1) −→ Hd−1(Cl−1) = 0.

Since Cµl
has codimension d, Proposition 3.6 implies that the relative term is non-

zero. Hence the left-hand term Hd(Cl) must be non-zero as well.
The remaining strata have codimension at least d+ 2, so by Proposition 3.6 the

inclusions Cl ⊂ Cl+1 ⊂ · · · give isomorphisms

(6) Hd(Cl)
∼=−→ Hd(Cl+1)

∼=−→ . . .
∼=−→ Hd(Cj)

for every j > l. By Proposition 2.4, Hd(C(E)) ∼= colimj Hd(Cj), but by (6) the
colimit is non-zero, contradicting the fact that C(E) is contractible. 2

The additional hypothesis in the non-orientable case is satisfied in almost all
cases, as we will see. We now turn to the question of computing the minimum codi-
mension of a non-central stratum. We need some definitions and lemmas regarding
the codimension of the Harder–Narasimhan strata.

1We work mod 2 because in the non-orientable case, the normal bundles to the Yang–Mills
strata are real vector bundles. For g > 1, these bundles are orientable by Ho–Liu–Ramras [10],

but when g = 1 this is not known.
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Lemma 3.7. For any µ = ((n1, k1), . . . , (nr, kr)) ∈ I(n, k) with r > 2,

c((n1, k1), . . . , (nr, kr)) > c

((
r−1∑
i=1

ni,

r−1∑
i=1

ki

)
, (nr, kr)

)
.

Hence any admissible sequence minimizing the function c must have length 2.

For a ∈ R, we let dae will denote the smallest integer strictly greater than a (so
for a ∈ Z, we set dae = a+ 1). This convention will simplify our notation.

Definition 3.8. Let µm = µm(n, k) = ((m, dkmn e), (n −m, k − d
km
n e)). The line

from (0, 0) to (n, k) passes through (m, kmn ), so µm ∈ I(n, k) and we define

I ′(n, k) = {µm : 0 < m < n} ⊂ I(n, k).

Lemma 3.9. If µ = ((m, l), (n − m, k − l)) ∈ I(n, k), then c(µ) > c(µm), with
equality only if µ = µm. Hence if µ ∈ I(n, k) minimizes c, then µ ∈ I ′(n, k).

Definition 3.10. For µ = ((n1, k1), . . . , (nr, kr)) ∈ I(n, k), we define

c1(µ) =
∑
i>j

nikj − njki and c2(µ) = (g − 1)
∑
i>j

ninj ,

so that c(µ) = c1(µ) + c2(µ).

We now consider the values that the function c1 may take on the set I ′(n, k).

Definition 3.11. Given an integer r and a natural number n, we let [r]n denote
the unique integer between 1 and n satisfying r ≡ [r]n (mod n).

Lemma 3.12. For any m ∈ {1, . . . , n− 1}, we have c1(µm) = [km]n, and

c1(I ′(n, k)) = {gcd(n, k), 2gcd(n, k), . . . , n}
(unless gcd(n, k) = 1, in which case n is not included in this set).

Proof. Let dkmn e = km
n + εm

n . Then εm = ndkmn e − km ∈ Z, and εm ≡ −km (mod
n). Since 1 6 εm 6 n, we have εm = [−km]n. A short calculation shows that
c1(µm) = εm. Now, consider the set {1, . . . , n} as a cyclic group under addition
modulo n. Then c1(I ′(n, k)) = {[−km]n : m = 1, 2, . . . , n − 1}. Since [−km]n ≡
m[−k]n (mod n), c1(I ′(n, k)) is the subgroup of {1, . . . , n} generated by [−k]n
(possibly excluding the zero-element n). But gcd(n, k) is the minimal element of
this subgroup, so the lemma follows. 2

Proposition 3.13. If E → Mg is a Hermitian bundle over a Riemann surface
(g > 0), then the connectivity of Cmin(E) and Css(E) is precisely

d(E)− 2 =
{

2 gcd(n, k)− 2 if g = 1
2 min([k]n, [−k]n) + 2(g − 1)(n− 1)− 2 if g > 1

Proof. By Lemma 3.9, c is minimized by c(µm) for some m. For g = 1, we have
c2 ≡ 0, so the result follows from Lemma 3.12. For g > 1, we find that

(7) c(µm)− c(µ1) = [−mk]n − [−k]n + (g − 1)(mn−m2 − n+ 1).

When n > 6, we will show that if m 6 n/2 then c(µm) > c(µ1), and if m > n/2
then c(µm) > c(µn−1). This proves the theorem for n > 6, and the cases n < 6 can
be checked by hand.
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We may assume n > 2. First, say 2 6 m 6 n/2. The function fn(m) =
mn−m2−n+1 is increasing on (−∞, n2 ), and fn(2) > 0. So fn(m) > 0 for m 6 n

2 ,
and hence (g − 1)fn(m) > fn(m). Equation (7) now gives

(8) c(µm)− c(µ1) > [−mk]n − [−k]n +mn−m2 − n+ 1.

We now work with a generic integer r in place of −k. Since 0 < [r]n 6 n, we
have l

mn < [r]n 6 l+1
m n for some l ∈ {0, 1, . . . ,m− 1}. Now 0 < m[r]n − ln 6 n, so

(9) [mr]n = m[r]n − ln.

Furthermore, since [r]n > ln
m , l 6 m− 1, and m 6 n/2, (9) implies that

[mr]n − [r]n = (m[r]n − ln)− [r]n = (m− 1)[r]n − ln

> (m− 1)
ln

m
− ln = − ln

m
> − (m− 1)n

m
= −n+ n/m

> −n+
n

n/2
= −n+ 2.

(10)

Combining (10) and (8) yields

(11) c(µm)− c(µ1) > −n+ 2 +mn−m2 − n+ 1 = n(m− 2)−m2 + 3.

Since hn(m) = n(m− 2)−m2 + 3 is increasing for m < n/2, if m > 3 then

c(µm)− c(µ1) > hn(3) = n− 9 + 3 > 0

(since n > 6). Note that hn(2) = −1, so for m = 2 a different bound is needed.
When m = 2, l ∈ {0, 1}. Following (10), we find that [2r]n − [r]n > − ln2 > −n2 .

Combined with (8) this yields

c(µ2)− c(µ1) > −n/2 + 2n− 4− n+ 1 = n/2− 3 > 0

(for n > 6). Thus we have shown that c(µm) > c(µ1) for 2 6 m 6 n/2.
The proof that c(µn−m) > c(µn−1) for 2 6 m 6 n/2 is similar. 2

When g = 1 and k 6= 0, this result shows that the connectivity of the space of
central Yang–Mills connections does not tend to infinity with n.

We now turn to the case of a complex vector bundle E over a non-orientable
surface Σ. Here the minimum critical set of the Yang–Mills functional is the space
Aflat(E) of flat connections. A combinatorial argument (simpler than the previous
one) allows us to calculate the connectivity of Aflat(E) in most cases.

Proposition 3.14. Let E be a complex bundle of rank n > 1 over a non-orientable
surface Σ, and let g̃ denote the genus of the orientable double cover Σ̃. If g̃ > 2
and n > 9, then Aflat(E) is precisely (2ng̃ − 3g̃ − 1)–connected.

Proof. We show that the minimum codimension of a non-flat stratum in A(E)
is precisely 2ng̃ − 3g̃ + 1, and that any other non-flat stratum has codimension at
least 2ng̃ − 3g̃ + 3. The result then follows from Lemma 3.2.

Recall that A(E) embeds as the set of fixed points of an involution on A(Ẽ),
and the Yang–Mills strata in A(E) are the intersections of the Yang–Mills stratum
of A(Ẽ) with these fixed points. Strata in A(Ẽ) containing fixed points have type

(12) µ = ((n1, k1), . . . , (nr, kr), (n0, 0), (nr,−kr), . . . , (n1,−k1)),
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for some ki, ni (not all such strata contain fixed points [7, Section 7.1]). We call
such sequences symmetric. The set of fixed points lying inside a symmetric stratum
Cµ, if non-empty, has real codimension c(µ) inside A(E).

In analogy with Lemma 3.7, one sees that with µ as in (12) and r > 1,

c(µ) > c
((∑

ni,
∑

ki

)
, (n0, 0),

(∑
ni,−

∑
ki

))
+ 2

and therefore if µ is a symmetric stratum minimizing c, it must have the form
µ = ((n1, k1), (n0, 0), (n1,−k1)). Next, one checks that if k1 > 1,

c((n1, k1), (n0, 0), (n1,−k1)) > c((n1, 1), (n0, 0), (n1,−1)) + 2,

so the minimum codimension is achieved by µi = ((i, 1), (n−2i, 0), (i,−1)) for some
i 6 n

2 . Now c(i) := c(µi) = 2n − 2i + (2ni − 3i2)(g̃ − 1) is quadratic in i with a
maximum at n−1/(eg−1)

3 , and one checks that for g̃ > 1,

c(2) > c(1) + 2 for n > 9 and c(bn/2c) > c(n/2) > c(1) + 2 for n > 12.

Hence when g̃ > 1 and n > 12, the c(i) is minimized when i = 1 (and c(1) =
2ng̃ − 3g̃ + 1). The stratum µ1 = ((1, 1), (n − 1, 1), (1,−1) is in fact non-empty
because the degree zero factor has dimension n− 1 > 0 [7, Section 7.1]. Hence c(1)
gives the minimum minimum positive codimension of a non-empty stratum. The
cases n = 9, 10, 11 can be checked by hand. 2

Our reduction to the strata µi works for n < 9, so these cases may be computed
by hand. In most cases, one still obtains the connectivity of Aflat(E) precisely. But
when n = 5 and g̃ = 2 or 4, there is a (non-empty) stratum of codimension one
more than the minimum, so Lemma 3.2 does not apply.

The case g̃ = 1, where Σ = K is the Klein bottle, is different. Let E+ and E−

denote the (unique) trivial and non-trivial bundles over K of rank n, respectively.
When n is even, strata of the form ((n/2, k), (n/2,−k)) inA(E) may be empty: each
such stratum for the trivial bundle on the double cover S1×S1 contains connections
from either E+ or E−, but not both. When 2(n/2) +k+ 2 = n+k+ 2 is even, this
stratum contains connections from E+, and when n+k+2 is odd, it contains connec-
tions from E− [7, Proposition 7.1]. The reductions in the proof of Proposition 3.14
show that for odd n, the minimum codimension of a non-empty stratum is n + 1
and the connectivity of Aflat(E) is precisely n− 1. If n is even and E = E− is the
non-trivial bundle, one finds that the stratum ((n/2, 1), (n/2,−1)) is non-empty
and again gives the minimum codimension, namely n. So Aflat(E−) is precisely
(n − 2)–connected. Finally, if E = E+, then these reductions show that any non-
empty stratum has codimension at least two more than either ((n/2, 2), (n/2,−2))
or µn/2−1 = ((n/2− 1, 1), (2, 0), (n/2− 1,−1)), both of which are non-empty. The
minimum codimension of a non-empty stratum is thus n + 2, and Aflat(E+) is
precisely n-connected.

We now prove our main result. A map X → Y is n–connected if it induces an
isomorphism on πk for k < n and a surjection on πn; it is precisely n–connected if
it is n–connected but not (n+ 1)–connected. We have fibration sequences

Cmin(E) −→ Cmin(E)hG(E)
q−→ MapE(M,BU(n)) = BG(E),

and Cmin(E) −→ Cmin(E)hG0(E)
q0−→ MapE∗ (M,BU(n)) = BG0(E),

(13)
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where G0 denotes the based gauge group. Since the quotient map Cmin(E) →
Cmin(E)/G0(E) is a principal bundle [12], we have weak equivalences (see, for ex-
ample, Atiyah–Bott [1, Section 13])

Cmin(E)hG0(E) ' Cmin(E)/G0(E) and Cmin(E)hG ' (Cmin(E)/G0(E))hU(n).

When Cmin(E) consists of flat connections (which is the case for any bundle over
a non-orientable surface, and for the trivial bundle over an orientable surface), the
quotient Cmin(E)/G0(E) is simply the space Hom(π1, U(n))E , consisting of unitary
representations of the fundamental group with associated bundle E. (Note that
in the orientable case, the bundle associated to a representation is always trivial.)
See, for example, [14, Sections 3 and 5] for further discussion. The long exact
sequences in homotopy associated to (13), together with Propositions 3.13 and
3.14, immediately yield the following result.

Theorem 3.15. Let E be a complex vector bundle of rank n over a surface M ,
and consider the maps

Cmin(E)hG(n)
q→ MapE(M,BU(n)) and Cmin(E)hG0(n)

q0→ MapE∗ (M,BU(n)).

Say M is a genus g Riemann surface and E has degree k. Then the connectivity
of q and q0 are precisely 2 gcd(n, k)− 1 if g = 1, and precisely 2 min([k]n, [−k]n) +
2(g − 1)(n− 1)− 1 if g > 1.

Simlarly, say M is non-orientable and the genus g̃ of its orientable double cover
is at least 2. Then if n > 9, the maps q and q0 are precisely (2ng̃ − 3g̃)–connected.

From the discussion after Proposition 3.14, one can obtain similar calculations
in some further cases, including when g̃ = 1.

In the orientable case, H∗(BG(E); Z) and H∗(BG0(E); Z) were computed in
Atiyah–Bott [1, Section 2]. For non-orientable surfaces, rational cohomology may
be computed similarly (see Ho–Liu [8, Section 2]), so Theorem 3.15 yields com-
putations of H∗G(E)(Cmin(E)) and H∗G0(E)(Cmin(E)) = H∗(Cmin(E)/G0(E)) in low
dimensions.
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