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Abstract

The goal of this thesis is to study representations of infinite discrete groups from a

homotopical viewpoint. Our main tool and object of study is Carlsson’s deformation

K-theory, which provides a homotopy theoretical analogue of the classical represen-

tation ring. Deformation K-theory is a contravariant functor from discrete groups

to connective Ω-spectra, and we begin by discussing a simple model for the zeroth

space of this spectrum. We then investigate two related phenomena regarding defor-

mationK-theory: Atiyah-Segal theorems, which relate the deformationK-theory of

a group to the complex K-theory of its classifying space, and excision, which relates

the deformation K-theory of an amalgamation to the deformation K-theory of its

factors. In particular, we use Morse theory for the Yang-Mills functional to prove

an Atiyah-Segal theorem for fundamental groups of compact, aspherical surfaces,

and we prove that deformation K-theory is excisive on all free products. Combined

with work of Tyler Lawson, the former result yields homotopical information about

the stable coarse moduli space of surface-group representations.
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Chapter 1

Introduction

Associated to any discrete group Γ, one has the (unitary) representation ring R(Γ),

which consists of “virtual isomorphism classes” of representations. To form R(Γ),

one starts with the sets Hom(Γ, U(n)), and kills the conjugation action of U(n).

Block sum of unitary matrices makes the collection of these sets, as n varies, into an

abelian monoid, and R(Γ) is the Grothendieck group of this monoid. Hence R(Γ)

consists of formal differences between (isomorphism classes of) representations.

This process completely ignores the fact that the sets Hom(Γ, U(n)) have a nat-

ural topology, coming from the topology on the groups of unitary matrices. To be

precise, one may take the compact-open topology, or (equivalently) the topology

coming from the embedding Hom(Γ, U(n)) →֒ U(n)S, where S ⊂ Γ is any gener-

ating set. For finite groups Γ, the space Hom(Γ, U(n)) is, topologically speaking,

easily understood. The trace of a representation gives a continuous, complete in-

variant of the isomorphism type, and the trace can take on only countably many

values. Hence two non-isomorphic representations are never connected by a path,

and since U(n) is connected any two isomorphic representations ρ and AρA−1 are

connected by a path. Hence the component of the representation space containing

a given representation ρ is simply the orbit U(n)/Stab(ρ), and basic representation

theory shows that Stab(ρ) is a product of smaller unitary groups (whose dimensions

record the degree with which each irreducible appears in ρ). In particular, when

Γ is finite the space Hom(Γ, U(n)) depends, topologically speaking, only on the

number and dimension of the irreducible representations of Γ.

1



CHAPTER 1. INTRODUCTION 2

In contrast, it is well-known that for any Riemann surface Mg, the represen-

tation spaces Hom(π1(M
g), U(n)) are connected (see Corollary 4.3.8) and carry a

great deal of information. Thus one is inclined to look for an analogue of the rep-

resentation ring which captures the topology of the representation spaces. As we

will discuss, one specific motivation is the desire to prove Atiyah-Segal theorems

relating representations of an infinite discrete group Γ to the complex K-theory of

the classifying space BΓ.

Carlsson’s deformation K-theory spectrum, first introduced in [10], is precisely

the sort of object we want. Its construction may be viewed as the homotopy

theoretical analogue of the construction of the representation ring. To form the

deformation K-theory spectrum of a discrete group Γ, we replace each step in the

construction of R(Γ) by its homotopy theoretical analogue. We begin by taking

the spaces Hom(Γ, U(n)), and rather than modding out conjugation, we form the

homotopy quotients, or homotopy orbit spaces,

Hom(Γ, U(n))hU(n) := EU(n)×U(n) Hom(Γ, U(n))

(Here EU(n) denotes the total space of a universal, principal U(n)-bundle. We

will frequently use the notation XhG for EG×G X, where G is a topological group

acting on a space X.) These homotopy orbit spaces form a topological monoid

Rep(Γ)hU under block sum, and the deformation K-theory of Γ is the homotopy

group completion of this monoid. More precisely, as we explain below, Rep(Γ)hU

is the classifying space of a topological permutative category, and deformation K-

theory is the associated K-theory spectrum. (This version of deformation K-theory

was first described in Lawson’s thesis [29].)

The first two homotopy groups of Kdef(Γ) have rather direct meanings. In

dimension zero, the group K0
def(Γ) is the group of “virtual path components” of

representations, i.e. formal differences [ρ1]−[ρ2], where ρi ∈ Hom(Γ, U(ni)) for some

ni and square brackets denote path components. This elementary fact is proven in

Lemma 2.0.5. The groupK1
def(Γ) is essentially a version of π1 (Hom(Γ, U(n))/U(n)),

stabilized with respect to rank. A precise result along these lines is proven in

Proposition 4.6.1, using a theorem of Lawson regarding the Bott map in deformation
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K-theory [30].

Thus far, there have been relatively few computations of the groupsK∗
def(Γ) for Γ

an infinite discrete group. Lawson [30] has provided computations for free groups,

as well as a product formula [31] computing Kdef(Γ1 × Γ2) in terms of Kdef(Γ1)

and Kdef(Γ2), as modules over the connective K-theory spectrum ku. Specifically,

Lawson has shown that there is a weak equivalence of ku-modules

Kdef(Γ1 × Γ2) ≃ Kdef(Γ1) ∧
ku
Kdef(Γ2). (1.1)

The results of this thesis add to the list of computations: Theorem 4.4.1 provides

a complete calculation of K∗
def(π1(Σ)), for any compact, aspherical surface Σ, and

Theorem 4.7.5 computes the deformation K-theory of a free product Γ1 ∗ Γ2 in

terms of the deformation K-theory of Γ1 and Γ2.

The results of this thesis focus on three topics in deformation K-theory: group

completion (Chapter 3), which provides, under suitable conditions, convenient mod-

els for the zeroth space of the deformation K-theory spectrum; Atiyah-Segal theo-

rems (Chapter 4), which relate Kdef(Γ) to complex K-theory of the classifying space

BΓ; and excision (Chapter 5), which studies the behavior of deformation K-theory

on amalgamated products of groups. We proceed to explain these topics in greater

detail.

The Group Completion Theorem [8, 16, 33] provides a homological model for

the group completion ΩBM of a topological monoid M . In Chapter 3, we provide

conditions (Theorem 3.0.11) under which this homological model actually has the

same (weak) homotopy type as the group completion, rather than just the same

homology. Furthermore, these conditions are satisfied quite generally for deforma-

tion K-theory, and this provides us with a model for the homotopy type of the

zeroth space of the spectrum Kdef(Γ) (Corollary 3.0.16). This model is crucial for

the excision results in Chapter 5. We also use this result (or rather special cases of

it) in Chapter 4, both as the starting point for our Atiyah-Segal theorem, and in

our results on the stable coarse moduli space of representations.

The classical theorem of Atiyah and Segal [7] states that for a compact Lie
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group Γ, the complex K-theory of the classifying space BΓ is isomorphic to the

completion of the representation ring R(Γ) (at the augmentation ideal). A central

goal of this thesis is to provide an analogue of this result, relating the deformation

K-theory of π1Σ, where Σ is a compact, aspherical surface, to the complex K-

theory of Σ itself. Since Σ is aspherical, we have Σ = B (π1Σ), so this is indeed an

analogue of the Atiyah-Segal theorem. More precisely, we prove in Theorem 4.4.1

that there is an isomorphism

K∗
def(π1(Σ)) ∼= K∗(Σ);

in the orientable case, we require ∗ > 0. (We note that Lawson’s product formula

(1.1) provides an alternate proof in the genus 1 case, since in this case π1Σ =

Z×Z.) Using similar methods, we also study the representation spaces themselves

(Section 4.5), obtaining in particular the homotopy type of the stable representation

space Hom(π1Σ, U) and the connectivity of the inclusions

Hom(π1Σ, U(n)) →֒ Hom(π1Σ, U(n + 1)).

Furthermore, combining our results with Lawson’s work on the Bott map in defor-

mation K-theory [30], we obtain results regarding the “stable coarse moduli space”

Hom(π1Σ, U)/U (Section 4.6).

The proofs of these results rely on Morse theory for the Yang-Mills functional,

as developed by Atiyah and Bott [6], Daskalopoulos [12], and R̊ade [40]. (The

key analytical input comes from Uhlenbeck’s compactness theorem [47, 48].) The

link between deformation K-theory and Yang-Mills theory is provided by the well-

known fact that representations of the fundamental group induce flat connections,

which form a critical set for the Yang-Mills functional.

In Chapter 5, we discuss the question of excision in deformation K-theory.

Given an amalgamated product of groups, one may apply deformation K-theory

to obtain a square of spectra, and we say that deformation K-theory is excisive on

the amalgamated product if this diagram of spectra is homotopy cartesian. Our

main result, Theorem 5.1.1, shows that deformation K-theory satisfies excision for

all free products. The proof depends crucially on the group completion results from
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Chapter 3.

For more general amalgamated products, excision may fail in low dimensions. In

Section 5.1, we show that the fundamental group of a Riemann surface, described

as an amalgamated product via a connected sum decomposition of the surface,

fails to satisfy excision on π0 (we expect that the natural map φ induces an iso-

morphism in positive degrees, though; see Conjecture 5.0.7). In Section 5.2, we

offer several results regarding more general amalgamated products: we show how

to deduce excision results in deformation K-theory from stable information about

the representation spaces themselves (Proposition 5.2.4), and we study excision

in low dimensions for some specific examples of amalgamated products (Proposi-

tion 5.2.5). We conclude Section 5.2 by describing a technique, involving stratified

fibrations, which we hope will be useful in further work on excision.

It is interesting to note that excision and Atiyah-Segal theorems are closely

related phenomena. This is due to the fact that complex K-theory is a cohomology

theory, and in particular satisfies excision. More precisely, consider an amalgamated

product G ∗K H in which the maps K → G and K → H are injective. Then the

classifying space B(G ∗K H) is the homotopy pushout of the diagram

BG←− BK −→ BH,

and hence one has a long-exact Mayer-Vietoris sequence in complex K-theory.

Given Atiyah-Segal theorems relating deformation K-theory of the factors G,

K, and H to the K-theory of their classifying spaces, one then expects that an

Atiyah-Segal theorem for G ∗K H will be equivalent to excision (in deformation K-

theory) for this amalgamated product. More precisely, if the square of deformation

K-theory spectra associated to G ∗K H is homotopy cartesian, then one has a

Mayer-Vietoris sequence in deformationK-theory as well as in topologicalK-theory,

and an isomorphism between K∗
def(G ∗K H) and K∗ (B(G ∗K H)) should follow

from the 5-lemma; on the other hand, if one has an Atiyah-Segal theorem relating

K∗
def(G∗KH) to K∗ (B(G ∗K H)), then the Mayer-Vietoris sequence in complex K-

theory should correspond to a Mayer-Vietrois sequence in deformation K-theory,

allowing one to prove excision. The difficulty here, as the reader may have guessed,
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is naturality. In order to transfer information between deformation K-theory and

topological K-theory, one needs a natural transformation connecting the functor

Kdef(−) to the function spectrum F (B(−),ku). Although we describe one such

natural transformation in Chapter 2, it is not known to be an equivalence in any

interesting cases. In particular, the known Atiyah-Segal theorems involve very

different maps, and in interesting cases such as connected sum decompositions of

Riemann surfaces, these maps are not natural with respect to the amalgamated

product structures.

The final chapter of this thesis focuses on examples. In particular, we consider

several families of groups in which the group completion results from Chapter 3

apply, yielding explicit models for the zeroth space of deformation K-theory. In

addition, we compute the group K0
def in most of these cases. These results rely

heavily on work of Ho and Liu [24, 25], who designed a simple obstruction theory for

studying path components of representation spaces and paired it with the theory of

quasi-Hamiltonian moment maps [4] in order to compute π0Hom(π1Σ, G) for (most)

surfaces Σ and any compact, connected Lie group G. We specialize their work to the

case of the unitary groups, where some simplifications are possible, and then extend

their arguments to “surface-type groups,” that is, groups with presentations similar

to surface groups (Theorem 6.1.9). Proposition 6.1.11 discusses a family of groups

related to the Klein bottle, and finitely generated abelian groups are discussed in

Proposition 6.2.2.

In an appendix, we discuss the results regarding holonomy of flat connections

that are needed in Chapter 4. These results are probably well-known, but no written

account seems to be available.



Chapter 2

Deformation K-theory: basic

properties

In this chapter, we introduce Carlsson’s notion of deformation K-theory and

discuss its basic properties. Deformation K-theory is a contravariant functor from

discrete groups to spectra, and is meant to capture homotopy-theoretical informa-

tion about the representation spaces of the group in question. We will construct a

connective Ω-spectrum Kdef(G) by considering the K-theory of an appropriate per-

mutative topological category of representations (this category was first introduced

by Lawson [29]). Although we phrase everything in terms of the unitary groups

U(n), all of the constructions, definitions and results in this section are valid for

the general linear groups GLn(C), and only notational changes are needed in the

proofs.

For the rest of this section, we fix a discrete group G.

Definition 2.0.1 Associated to G we have a topological category R(G) with object

space

Ob(R(G)) =

∞∐

n=0

Hom(G,U(n))

7



CHAPTER 2. DEFORMATION K-THEORY: BASIC PROPERTIES 8

and morphism space

Mor(R(G)) =

∞∐

n=0

U(n)×Hom(G,U(n)).

The domain and codomain maps are dom(A, ρ) = ρ and codom(A, ρ) = AρA−1,

and composition is given by (B,AρA−1) ◦ (A, ρ) = (BA, ρ). The representation

spaces are topologized using the compact-open topology, or equivalently as sub-

spaces of
∏

g∈S U(n), where S ⊂ G is any generating set. We define U(0) to be the

trivial group, and the single point ∗ ∈ Hom(G,U(0)) will serve as the basepoint.

The functor ⊕ : R(G) × R(G) → R(G) defined via block sums of unitary

matrices is continuous and strictly associative, with the trivial representation ∗ ∈

Hom(G,U(0)) as unit, and this functor makes R(G) into a permutative category

in the sense of [32]. The natural commutativity isomorphism

c : ρ⊕ ψ
∼=
−→ ψ ⊕ ρ

is defined via the (unique) permutation matrices τn,m satisfying

τn,m(A⊕B)τ−1
n,m = B ⊕ A

for all A ∈ U(n) and B ∈ U(m). (A general discussion of the functor associated to

a collection of matrices like this one can be found in the proof of Corollary 3.0.16.)

Any homomorphism f : G → H induces a functor f ∗ : R(H) → R(G) in the

obvious manner, and it is easy to check that this functor is permutative.

May’s machine [32] constructs a (special) Γ-category (in the sense of [42]) as-

sociated to any permutative (topological) category C. Taking geometric realiza-

tions yields a special Γ-space, and Segal’s machine then produces a connective

Ω-spectrum K(C), the K-theory of the permutative category C. This entire process

is functorial in the permutative category C.

Definition 2.0.2 Given a discrete group G, the deformation K-theory spectrum
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of G is defined to be the K-theory spectrum of the permutative category R(G), i.e.

Kdef(G) = K(R(G)).

This spectrum is contravariantly functorial in G.

We now describe the zeroth space of the spectrum Kdef(G).

Lemma 2.0.3 For any discrete group G, the zeroth space of Kdef(G) is naturally

weakly equivalent to ΩB(|R(G)|), where B denotes the bar construction on the

topological monoid |R(G)|.

The proof of this result is just an elaboration of the proof in [32] that the Γ-

category associated to a permutative category C is special. May constructs levelwise

maps [32, Construction 10, Step 2] from B(|C|) to the first space of the K-theory

spectrum of C. One checks that these fit together into a simplicial map, which

is a levelwise weak-equivalence. (May also constructs a sequence of maps in the

other direction, but they do not form a simplicial map. Nevertheless, levelwise they

provide homotopy inverses, showing that our map is a levelwise weak-equivalence.)

Since the identity element of R(G) is disjoint, these simplicial spaces are good and

this levelwise equivalence is a weak-equivalence on classifying spaces.

Next, we discuss an observation due to Lawson [29] regarding the classifying

space of the category R(G). For convenience of the reader, and to set notation, we

include a discussion of the simplicial constructions of the classifying space BU(n)

and the universal bundle EU(n).

Associated to G we have the homotopy orbit spaces

Hom(G,U(n))hU(n) = EU(n)×U(n) Hom(G,U(n)),

where EU(n) denotes the total space of a universal principal U(n)-bundle. In

fact, we take EU(n) to be the classifying space of the translation category U(n)

of U(n), that is, the topological category whose object space is U(n) and whose

morphism space is U(n) × U(n). (The morphism (A,B) is the unique morphism

from B to A in U(n).) This category admits a right action by U(n) via right
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multiplication; the induced action on kth level of the nerve of U(n) may be written

(A1, . . . , Ak) · g = (A1g, . . . Akg). We define BU(n) to be the classifying space of

the topological category CU(n) with one object and with morphism space U(n). The

natural functor U(n)→ CU(n) sending the morphism (A,B) to AB−1 ∈ U(n) gives a

map EU(n)→ BU(n) making EU(n) a universal principal U(n) bundle (see [41]).

The continuous block sum maps ⊕ : U(n) × U(m) → U(n + m) extend to maps

EU(n)×EU(m)→ EU(n+m), and allow us to define a monoid structure on the

disjoint union

∞∐

n=0

Hom(G,U(n))hU(n) =
∞∐

n=0

EU(n)×U(n) Hom(G,U(n)),

which we (abusively) denote by Rep(G)hU . Lawson’s observation, then, is:

Proposition 2.0.4 (Lawson) The topological monoids |R(G)| and Rep(G)hU are

isomorphic.

Proof. We begin by considering Hom(G,U(n)) as a constant simplicial space, so

that

EU(n)× Hom(G,U(n)) ∼=
∣∣k 7→ U(n)k+1 × Hom(G,U(n)

∣∣ .

Now, combining the level-wise action of U(n) on EU(n) with the conjugation action

of U(n) on Hom(G,U(n)) gives the simplicial space on the right a simplicial action

of U(n), and we have a homeomorphism

EU(n)×U(n) Hom(G,U(n)) ∼=
∣∣k 7→

(
U(n)k+1 ×Hom(G,U(n)

)
/U(n)

∣∣ .

We will now describe a simplicial map from the right hand side to NR(G). We will

write NkR(G), the space of k-tuples of composable morphisms, as

∞∐

n=0

U(n)k ×Hom(G,U(n))

where (Ak, . . . , A1, ρ) is considered as the string of morphisms

ρ
A1−→ A1ρA

−1
1

A2−→ . . .
Ak−→ Ak · · ·A1ρA

−1
1 · · ·A

−1
k .
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Then we have a map

U(n)k+1 ×Hom(G,U(n)) −→ U(n)k × Hom(G,U(n)),

given by

(Ak+1, . . . , A1, ρ) 7→ (Ak+1A
−1
k , AkA

−1
k−1, . . . , A2A

−1
1 , A1ρA

−1
1 ).

It is easy to check that this map is simplicial and factors through the U(n)-action on

the left, inducing a level-wise homeomorphism from the quotient. Hence we have

the desired homeomorphism Hom(G,U(n))hU ∼= |R(G)| , and since both monoid

structures arise from block sum, it is immediate from the definitions that this map

is a homomorphism of monoids. 2

We end this section with a simple observation regarding the zeroth homotopy

group of deformation K-theory. The topological monoid Rep(G) is defined by

Rep(G) =
∞∐

n=0

Hom(G,U(n)).

The monoid structure on Rep(G) is given by block sum of representations (again,

U(0) is the trivial group and the single element in Hom(G,U(0)) will act as the

identity). The same construction may be applied with the general linear groups in

place of the unitary groups, and we keep the notation intentionally vague.

Lemma 2.0.5 Let G be a discrete group. Then K0
def(G) ∼= Gr(π0(Rep(G))), where

Gr denotes the group-completion of a monoid, i.e. its Grothendieck group.

Proof. By Lemma 2.0.3 and Proposition 2.0.4, we know that K0
def(G) is the group

completion of the monoid π0(Rep(G))hU , so we just need to show that there is an

isomorphism of monoids π0(Rep(G))hU ∼= π0(Rep(G)). But the monoid

∞∐

n=0

EU(n)× Hom(G,U(n))

fibers over both sides, with connected fibers. 2
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We conclude this section by considering the general relationship between defor-

mation K-theory of a group G and complex K-theory of the classifying space BG.

Given a natural transformation Kdef(−)
η
→ Map(B(−),ku) and an amalgamated

product G ∗K H , we may use η, to compare the square of deformation K-theory

spectra associated to G ∗K H with the square of mapping spectra associated to the

classifying spaces of the factors. When the maps from K to G and H are injective,

the square of classifying spaces is homotopy co-cartesian [20, p. 92], and hence

the square of mapping spectra is homotopy cartesian (i.e. complex K-theory is

excisive). Thus if η is an isomorphism on homotopy (in a range) for G, H , and K,

then it is an isomorphism (in a range) for G ∗K H as well. In the other direction,

if η is an isomorphism for G ∗K H as well, then excision for complex K-theory

implies excision for deformation K-theory. This is relationship, alluded to in the

introduction, between Atiyah-Segal theorems and excision.

We briefly describe one such natural transformation η; unfortunately it is not

currently known to be an isomorphism on homotopy in any interesting cases (for free

groups and surface groups, the isomorphisms arise in completely different manners).

The category R(G) sits inside a larger permutative category R̃(G), whose objects

are representations and whose morphisms are all (possibly non-equivariant) linear

isomorphisms of the underlying vector spaces. This category has a permutative

G-action, which is trivial on objects and sends a morphism A : ρ → ψ to the

morphism ρ(g)Aψ(g)−1 : ρ→ ψ.

The fixed point category of this action is precisely R(G); thus K(R̃(G))G ∼=

Kdef(G). Now R̃(G) is equivalent (as a permutative category) to the full subcate-

gory of trivial representations, on which G acts trivially. Hence the homotopy fixed

point spectrum K(R̃(G))hG maps by a weak equivalence to kuhG ≃ Map(BG,ku).



Chapter 3

Group completion in deformation

K-theory

The goal of this section is to provide a convenient homotopy theoretical model

for the group completion of a topological monoid satisfying certain simple proper-

ties. The results of this section will be applicable to deformation K-theory, and

form the basis of our excision results. In addition, special cases of our main results

(Theorem 3.0.11 and Corollary 3.0.16) appear in the computation in Chapter 4 of

K∗
def(π1(Σ)) for compact, aspherical surfaces Σ, and in the related results regarding

Hom(π1Σ, U)/U .

The models for group completion that we will study arise as mapping telescopes,

as in [33]. Throughout this section M will denote a homotopy commutative topo-

logical monoid and e ∈M will denote the identity element. We write the operation

in M as ⊕, and for any m ∈ M we denote the n-fold product of m with itself by

mn.

Definition 3.0.6 For any m ∈M , we denote the mapping telescope

hocolim(M
⊕m
−→M

⊕m
−→ · · ·

⊕m
−→M︸ ︷︷ ︸

N

)

13



CHAPTER 3. GROUP COMPLETION IN DEFORMATION K-THEORY 14

by MN (m), and we denote the infinite mapping telescope

colim
N→∞

MN (m) = hocolim(M
⊕m
−→M

⊕m
−→ · · · )

by M∞(m).

We denote points in these telescopes by triples (x, n, t), where x ∈ M , n ∈ N

and t ∈ [0, 1). Note that each of these spaces is functorial in the pair (M,m) and

naturally based by the point (e, 0, 0), which we will denote simply by e.

Definition 3.0.7 We say that M is stably group-like with respect to an element

m ∈M if the cyclic submonoid of π0(M) generated by m is cofinal. In other words,

M is stably group-like with respect to m if for every x ∈M there exists y ∈M and

n ∈ N such that x ⊕ y and mn lie in the same path component of M . We refer to

such y as stable homotopy inverses for x (with respect to m).

The reason for our terminology is the following result.

Proposition 3.0.8 Assume M is homotopy commutative and let m ∈ M be any

element. Then there is a natural (abelian) monoid structure on π0(M∞(m)), and

M is stably group-like with respect to m if and only if π0(M∞(m)) is a group under

this multiplication. In fact, if M is stably group-like with respect to m, then π0(M∞)

is the group completion (i.e. the Grothendieck group) of π0(M).

Proof. First we describe the monoid structure on π0(M∞(m)). Given components

C1 and C2 in π0(M∞(m)) we may choose representatives (x1, n1, 0) and (x2, n2, 0)

for C1 and C2 respectively. Then we define C1⊕C2 to be the component containing

(x1⊕ x2, n1 + n2, 0). To see that this operation is well-defined, note that if (x, n, 0)

and (x′, n′, 0) are connected by a path, then this path lies in some finite telescope

MN (m) (with N > n, n′) and one can collapse the first N mapping cylinders co-

ordinates to obtain a path in M from x ⊕mN−n to x′ ⊕mN−n′

. Hence given any

other component, represented by a point (y, k, 0), there is a sequence of paths

(x⊕ y, n+ k, 0) ∼ (x⊕ y ⊕mN−n, N + k, 0) ∼ (x⊕mN−n ⊕ y,N + k, 0)
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∼ (x′ ⊕mN−n′

⊕ y,N + k, 0) ∼ (x′ ⊕ y, n′ + k, 0)

as desired. This operation is clearly associative and commutative, with the compo-

nent of (e, 0, 0) as a unit.

Now, say M is stably group-like with respect to m ∈ M . Then given any

component C of M∞(m), we choose a representative (x, n, 0) for C and a stable

homotopy inverse y for x. Then if x⊕y ∼ mN , one easily checks that the component

of (y,N − n, 0) is an inverse for C (we may assume, of course, that N > n).

Conversely, if π0(M∞(m)) is a group, then for any x ∈ M choose a representative

(y, n, 0) for the inverse to the component containing (x, 0, 0). Then (x⊕ y, n, 0) lies

in the same component as (mn, n, 0) and hence (by collapsing cylinders) we may

construct a path in M from x⊕y⊕mk to mn+k for some k. Thus y⊕mk is a stable

homotopy inverse for x.

Next we discuss group completions. There is a natural map φ : π0(M) →

π0(M∞(m)), given by φ([x]) = [x, 0, 0] (where square brackets denote the path

components containing these points). We must show that a diagram of monoids

π0(M)
f //

φ

&&NNNNNNNNNN
G

π0(M∞(m))

f̃

OO

can be completed uniquely whenever G is a group.

Consider any component [x, n, t] = [x, n, 0] ∈ π0(M∞(m)). We may write

[x, n, 0]⊕ [m, 0, 0]n = [x⊕mn, n, 0] = [x, 0, 0]

and hence we are forced to define

f̃([x, n, 0]) = f̃([x, 0, 0]) · f̃([m, 0, 0])−n = f([x]) · f([m])−n. (3.1)

It is easy to check that formula (3.1) gives a well-defined function f̃ , and it follows

from homotopy commutativity that f̃ is a morphism of monoids. 2

Example 3.0.9 If M is homotopy commutative and π0(M) is finitely generated,
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with generators m1, . . . , mk ∈ M , then M is stably group-like with respect to m =

m1 ⊕ . . . ⊕ mk: any component is represented by a word in the mi, and we may

add another word to even out the powers. (This example appears, in spirit at least,

in [33], and will be central to our results on excision.)

Before stating the main result of this section, we need the following definition.

Definition 3.0.10 Let (M,⊕) be a homotopy commutative monoid. We call an

element m ∈ M anchored if there exists a homotopy H : M ×M × I → M such

that for every m1, m2 ∈ M , H0(m1, m2) = m1 ⊕m2, H1(m1, m2) = m2 ⊕m1, and

Ht(m
n, mn) = m2n for all t ∈ I and all n ∈ N.

Theorem 3.0.11 Let M be a homotopy commutative monoid which is stably

group-like with respect to a anchored element m ∈ M . Then there is a natural

isomorphism

η : π∗M∞(m)
∼=
−→ π∗ΩBM,

and the induced map on π0 is an isomorphism of groups. The map η is induced by

a zig-zag of natural weak equivalences.

A number of comments are in order regarding zig-zags, basepoints, and finally,

the precise meaning of naturality. First, though, we note that even in the case

where M is strictly commutative, this result seems non-obvious (although our proof

is hardly difficult in this case). This case will be used later, in our calculation of

π1Hom(π1Σ, U)/U for compact, aspherical surfaces Σ (Section 4.6).

By a zig-zag we simply mean a sequence of spaces X1, X2, . . . , Xk, together

with maps fi between Xi and Xi+1 (in either direction). The sequence of spaces

appearing in our natural zig-zag will be made explicit in the proof. A map f : X →

Y between possibly disconnected spaces will be called a weak equivalence if and

only if it induces isomorphisms f∗ : π∗(X, x)→ π∗(Y, f(x)) for all x ∈ X.

To prove Theorem 3.0.11, we will exhibit a natural zig-zag of weak equivalences

between M∞(m) and ΩBM . The isomorphism on homotopy groups will then be

valid for all compatible choices of basepoint, in the following sense. The zig-zag of

isomorphisms on π0 gives an isomorphism η0 : π0M∞(m) → π0ΩBM , and we call
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basepoints x ∈ M∞(m) and y ∈ ΩBM compatible if η0([x]) = [y]. Now, for any

compatible basepoints x and y there is in fact a canonical isomorphism

ηx,y : π∗ (M∞(m), x)
∼=
−→ π∗ (ΩBM, y) .

This isomorphism is constructed using the fact that if X is a simple space, meaning

that the action of π1(X, x) on πn(X, x) is trivial for every n > 1, then any two paths

between points x1, x2 ∈ X induce the same isomorphism π∗(X, x1) → π∗(X, x2)).

Since we are dealing with a zig-zag of weak equivalences ending with a simple space,

all spaces involved are simple, and hence ηx,y is well-defined.

Naturality means that given a map f : M → N of monoids with are stably

group-like with respect to anchored elements m ∈ M and f(m) ∈ N , then for any

compatible basepoints x ∈M∞(m) and y ∈ ΩBM , we have

ΩBf ◦ ηx,y = f∞ ◦ ηf∞(x),(ΩBf)(y) : π∗ (M∞(m), x) −→ π∗ (ΩBN, (ΩBf)(y)) ,

where f∞ = f∞(m) denotes the map on telescopes induced by f . This equation

follows easily from naturality of the weak equivalences involved in the zig-zag.

Remark 3.0.12 It is possible to relax the definition of “anchored” with out affect-

ing Theorem 3.0.11 (and only minor changes are needed in the proof). For example,

the homotopies anchoring mn need not be the same for all n, and in fact we only

need to assume their existence for “enough” n. (In particular, it is not necessary

to assume that there is a homotopy anchoring m0 = e.) For all our applications,

though, the current definition suffices.

Before beginning the proof, we discuss the application to deformation K-theory.

We work mainly in the unitary case, but all of the results are valid in the general

linear case as well (and we have noted the places in which the arguments differ).

For applications to deformation K-theory, our real interests lie in the monoid

of homotopy orbit spaces

Rep(G)hU =

∞∐

n=0

Hom(G,U(n))hU(n),
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but we can often work with the simpler monoid Rep(G) instead. Note that the

spaces EU(n) are naturally based: recall from Section 2 that EU(n) is the classify-

ing space of a topological category whose object space is U(n); the object In ∈ U(n)

provides the desired basepoint ∗n ∈ EU(n). These basepoints behave correctly with

respect to block sums, i.e. ∗n ⊕ ∗m = ∗n+m.

Lemma 3.0.13 Let G be a discrete group. Then Rep(G) is stably group-like with

respect to ψ ∈ Hom(G,U(m)) if and only if Rep(G)hU is stably group-like with

respect to [∗m, ψ] ∈ Hom(G,U(m))hU(m).

Proof. Say Rep(G) is stably group-like with respect to ψ ∈ Hom(G,U(m)). Then

given any [e, ρ] ∈ Rep(G)hU (with e ∈ EU(n) and ρ : G → U(n) for some n)

we know that there is a representation ρ−1 : G → U(k) such that ρ ⊕ ρ−1 lies in

the component of the ψl (the l-fold block sum of ψ with itself), where l = n+k
m

.

Now, for any e′ ∈ EU(k), the point [e′, ρ−1] is a stable homotopy inverse for [e, ρ]

(with respect to ψ), since there is a path in EU(n + k)× Hom(G,U(n + k)) from

[e⊕ e′, ρ⊕ ρ−1] to [∗n+k, ψ
l].

Conversely, if Rep(G)hU is stably group-like with respect to [∗m, ψ], then any

element [e, ρ] ∈ Hom(G,U(n))hU(n) has a stable homotopy inverse

[e′, ρ−1] ∈ Hom(G,U(k))hU(k)

(for some k), i.e. there is a path in Hom(G,U(n+ k))hU(n+k) from [e⊕ e′, ρ⊕ ρ−1]

to [∗n+k, ψ
l] (where again l = n+k

m
). Path-lifting for the fibration EU(n + k) ×

Hom(G,U(n + k)) → Hom(G,U(n + k))hU(n+k) produces a path in EU(n + k) ×

Hom(G,U(n + k)) from (e ⊕ e′, ρ ⊕ ρ−1) to some point (∗n+k · A,A−1ψlA), with

A ∈ U(n + k). The second coordinate of this path, together with connectivity of

U(n), shows that ρ ⊕ ρ−1 lies in the component of ψl, i.e. ρ−1 is in fact a stable

homotopy inverse for ρ (with respect to ψ). 2

We will now show that in deformation Rep(G)hU , elements are always anchored.

First we need some lemmas regarding the unitary and general linear groups, which

are probably well-known.
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Lemma 3.0.14 Consider an element D = λ1In1 ⊕ · · · ⊕ λkInk
∈ GLn(C), where

n =
∑
ni and the λi are distinct. Then the centralizer of D in GLn(C) is the

subgroup GL(n1)×· · ·×GL(nk), embedded in the natural manner. As a consequence,

the analogous statement holds for the unitary groups.

Proof. Say K = [kij ] commutes with X = [xij ], where xij = 0 unless i = j. Letting

ei denote the ith standard basis vector, the formula KXei = XKei expands to give
∑n

j=1 kijxiiej =
∑n

j=1 kijxjjej , which precisely states that kij = 0 unless xii = xjj.

2

Lemma 3.0.15 Let K ⊂ GLn(C) be any subgroup. Then the set of diagonalizable

matrices in the centralizer C(K) is connected. Similarly, for any K ⊂ U(n), the

centralizer of K in U(n) is connected.

Proof. We prove the general linear case; the argument for U(n) is nearly identical

(since by the Spectral Theorem every element of U(n) is diagonalizable).

Let A ∈ C(K) be diagonalizable. We will produce a path (of diagonalizable

matrices) in C(K) fromA to the identity. ChooseX ∈ GLn(C) such thatXAX−1 =

λ1In1 ⊕ · · · ⊕ λkInk
(for some ni with

∑
ni = n). Then by Lemma 3.0.14 we have

XKX−1 ⊂ GL(n1) × · · · × GL(nk). Now, choose paths λi(t) from λi to 1, lying

in C − {0} (or in the unitary case, lying in S1). This gives a path of matrices Yt

connecting XAX−1 to I, and clearly for each t ∈ I we have Yt ∈ C(XKX−1). Now

X−1YtX is a path from A to I lying in C(K). 2

Corollary 3.0.16 Let G be a finitely generated discrete group such that Rep(G)

is stably group-like with respect to a representation ρ ∈ Hom(G,U(k)). Then there

is a natural isomorphism

π∗Kdef(G) ∼= π∗ hocolim
(
Rep(G,U)hU

⊕ρ
−→ Rep(G,U)hU

⊕ρ
−→ · · ·

)
,

where ⊕ρ denotes block sum with the point [∗k, ρ] ∈ Hom(G,U(k)hU(k). The analo-

gous statement holds for general linear deformation K-theory.

When Rep(G) is stably group-like with respect to the trivial representation

1 ∈ Hom(G,U(1)), we will simply say that Rep(G) is stably group-like.
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Remark 3.0.17 Naturality here has the same meaning as in Theorem 3.0.11, i.e.

these spaces are connected by a zig-zag of natural weak equivalences. The comments

after Theorem 3.0.11 regarding basepoints apply here as well.

Examples of groups to which Corollary 3.0.16 applies are provided in Chapters 4

and 6. These examples mainly consist of “surface-like” groups; that is, groups

with presentations similar to those for fundamental groups of compact surfaces.

In particular, for any compact (possible non-orientable) aspherical surface Σ, the

(unitary) representation monoid Rep(π1Σ) is stably group-like with respect to the

trivial representation 1 ∈ Hom(π1Σ, U(1)) (this result is essentially due to Ho and

Liu [25]). We note that there are two approaches to this problem (both originating

from work of Ho and Liu), one using Yang-Mills theory and the other using quasi-

Hamiltonian moment maps. The former approach is discussed in Corollaries 4.3.8

and 4.3.9, and covers all aspherical surfaces. This approach goes back to [23]. The

latter approach is discussed in Theorem 6.1.9 fails for two surfaces (the connected

sums of 2 or 4 copies of RP 2), but extends to “surface-like” groups. In the surface

case, this approach goes back to [24, 25].

Proof of Corollary 3.0.16. The result will follow immediately from Lemma 2.0.3,

Proposition 2.0.4, Lemma 3.0.13, and Theorem 3.0.11 once we show that the ele-

ment

[∗k, ρ] ∈ Hom(G,U(k))hU(k)

is anchored in the monoid Rep(G)hU = |R(G)|. We will work with |R(G)|; note

that the element [∗k, ρ] above corresponds to the object ρ ∈ Hom(G,U(k)).

Given any collection of matrices X = {X(n,m)}n,m∈N with X(n,m) ∈ U(n + m),

we can define a functor FX : R(G) × R(G) → R(G) as follows. Given objects

ψ1 ∈ Hom(G,U(n)) and ψ2 ∈ Hom(G,U(m)), we set

FX(ψ1, ψ2) = X(n,m)(ψ1 ⊕ ψ2)X
−1
(n,m).

We define FX on morphisms by sending (A,B) : (ψ1, ψ2)→ (Aψ1A
−1, Bψ2B

−1) to

the morphism

X(n,m)(ψ1 ⊕ ψ2)X
−1
(n,m) −→ X(n,m)

(
(Aψ1A

−1)⊕ (Bψ2B
−1)
)
X−1

(n,m)
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represented by the matrix X(n,m)(A⊕B)X−1
(n,m).

Let τn,m be the matrix [
0 Im

In 0

]

and choose paths γn,m from In+m to τn,m in U(n +m). When n = m = kl (l ∈ N)

we may assume, by Lemma 3.0.15, that γkl,kl(t) ∈ Stab(ρ2l) for all t ∈ I (note

that Stab(ρ2l) = C(Imρ2l)). Let X t denote collection X t
n,m = γn,m(t), and let

Ft = FXt be the associated functor. Then F0 = ⊕ is the functor inducing the

monoid structure on |R(G)|, i.e. |F0| (x, y) = x ⊕ y, and |F1| (x, y) = y ⊕ x.

Moreover, at any time t we have |Ft| (ρl, ρl) = ρ2l. The path of functors Ft provides

the desired homotopy, proving that ρ ∈ |R(G)| is anchored. (Note that a continuous

family of functors Gt : C → D defines a continuous functor C × I → D, where I

denotes the topological category whose object space and morphism space are both

the unit interval [0, 1], and hence yields a continuous homotopy). 2

Remark 3.0.18 We note that in the above proof there are obvious natural isomor-

phisms between F0 and F1, given by the matrices τn,m. This is the usual way to

show that a monoid coming from a permutative category is homotopy commutative,

but this homotopy does not stabilize ρ.

We now turn to the proof of Theorem 3.0.11. It will follow easily from the

McDuff-Segal Theorem [33] that there is a homology isomorphism

H∗(M∞(m)) ∼= H∗(ΩBM)

with any (abelian) local coefficients. Ordinarily, one would then attempt to show

that after applying a plus-construction on the left, these two spaces become weakly

equivalent. We will show, though, that the fundamental group of M∞(m) is already

abelian when m is anchored in M , and hence no plus-construction is required. This

will allow us to deduce Theorem 3.0.11.

We begin by showing that all components of M∞(m) have abelian fundamental

group, and first we discuss the component containing e = (e, 0, 0).
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γ

N(γ)

Figure 3.1: A loop γ and its normalization N(γ).

Proposition 3.0.19 Let M be a homotopy commutative monoid. If m ∈ M is

anchored, then π1(M∞(m), e) is abelian.

The idea of the proof is show that the ordinary multiplication in π1(M∞(m), e)

agrees with an operation defined in terms of the multiplication in M . This latter

operation will immediately be commutative, by our assumptions on M .

The proof will require some simple lemmas regarding loops in mapping tele-

scopes. We write p1 �p2 for composition of paths (tracing out p1 first). We begin by

describing the type of loops that we will need to use. (Our notation for mapping

telescopes was described at the start of this section.)

Definition 3.0.20 For any n, there is a canonical path γn : I →M∞(m) starting

at the basepoint e = (e, 0, 0) and ending at (mn, n, 0), defined piecewise by

γn(t) =

{
(mk, k, n(t− k/n)), k

n
6 t < k+1

n
, k = 0, . . . , n− 1

γn(1) = (mn, n, 0).

We call a loop α : I →M∞ normal (at level n) if it is based at e and has the form

α = γn � α̃ � γ−1
n , where α̃(I) ⊂ M × {n} × {0}. Note that if α is normal, then

its “middle third” α̃ is uniquely defined. We will often think of α̃ as a loop in M

rather than in M∞(m).

Given a normal loop γn � α̃ � γ−1
n , we define its kth renormalization to be the

normal loop γn+k � α̃⊕mk � γ−1
n+k.
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Lemma 3.0.21 Any loop in M∞(m) can be normalized, i.e. is homotopic (rel

{0, 1}) to a normal loop. Moreover, any normal loop is homotopic to all of its

renormalizations.

Proof. In general, say we are given a loop γ in the mapping cylinder Mf of a map

f : X → Y , and say γ is based at (x0, 0) ∈Mf for some x0 ∈ X. Then if Ht denotes

a homotopy from IdMf
to the retraction r : Mf → Y (such that Ht(x0, 0) = (x0, t)

for t < 1) we have a homotopy connecting γ to a loop whose middle third lies in Y :

γt(s) =





Hs(1+2t)(x0, 0), 0 6 s 6 t
1+2t

Ht (γ ((1 + 2t)s− t)) , t
1+2t

6 s 6 t
1+2t

H1+2t−s(1+2t)(x0, 0), t
1+2t

6 s 6 1.

Now, any loop in M∞(m) lies in some finite telescope MN(m), and applying the

above process N times produces a normal loop (up to reparametrization). Homo-

topies between a normal loop and its renormalizations are then produced similarly.

2

Definition 3.0.22 Given loops α̃ and β̃ in M , let peα,eβ denote their pointwise sum.

For normal loops α = γn � α̃ � γ−1
n and β = γn � β̃ � γ−1

n in M∞(m), we define α ⊕ β

to be the normal loop (of level 2n) given by

α⊕ β = γ2n � peα,eβ � γ−1
2n .

Lemma 3.0.23 For any normal loops α and β of level n (in M∞(m)), there is

basepoint preserving homotopy α⊕ β ≃ β ⊕ α.

Proof. Since m is anchored, there is a homotopy H : M ×M × I → M such that

H(x, y, 0) = x⊕ y, H(x, y, 1) = y⊕x, and H(mn, mn, s) = m2n for all s ∈ I and all

n ∈ N. Let α = γn � α̃ � γ−1
n , let β = γn � β̃ � γ−1

n , and define hs(α, β) to be the loop

hs(α, β)(t) = H(α̃(t), β̃(t), s)

(note that hs(α, β) is based at H(mn, mn, s) = m2n). The family of loops (based

at e) given by

ps = γ2n � hs(α, β) � γ−1
2n
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now provides the desired homotopy between α⊕ β and β ⊕ α. 2

Proof of Proposition 3.0.19. Let a and b be elements of π1(M∞(m), e). By

Lemma 3.0.21, we may choose normal representatives α = γn � α̃ � γ−1
n and β =

γk � β̃ � γ−1
k for a and b. Renormalizing if necessary, we can assume k = n. By

Lemma 3.0.23, it suffices to show that α � β ≃ α⊕β (rel {0,1}). Let mn denote the

constant loop at mn. Note that the nth renormalization of α is precisely α⊕ (γn �

mn � γ−1
n ) (and similarly for β). Using Lemma 3.0.21 and commutativity of ⊕ we

now have

α � β ≃ (α⊕ (γn �mn � γ−1
n )) � (β ⊕ (γn �mn � γ−1

n ))

≃ (α⊕ (γn �mn � γ−1
n )) � ((γn �mn � γ−1

n )⊕ β)

= (γ2n � peα,mn � γ−1
2n ) � (γ2n � pmn,eβ � γ−1

2n )

≃ γ2n � peα,mn � pmn,eβ � γ−1
2n

= γ2n � peα�mn,mn�eβ � γ−1
2n

= (γn � (α̃ �mn) � γ−1
n )⊕ (γn � (mn � β̃) � γ−1

n ).

Since α̃ � mn ≃ α̃, we have a homotopy γn � α̃s � γ−1
n from γn � (α̃ � mn) � γ−1

n to

α (we may assume each loop in this homotopy is normal) and analogously for

β. The family of loops γn � α̃s � γ−1
n ⊕ γn � β̃s � γ−1

n provides a homotopy from

(γn � (α̃ �mn) � γ−1
n )⊕ (γn � (mn � β̃) � γ−1

n ) to α⊕β, and since all homotopies involved

are basepoint preserving, this completes the proof. 2

We now show that all components of M∞(m) have abelian fundamental group,

not just the component containing e.

Corollary 3.0.24 Let M be a homotopy commutative monoid which is stably

group-like with respect to a anchored element m ∈M . Then all path components of

M∞(m) have abelian fundamental group.

Proof. For any element (x, n, t) ∈M∞(m), we define C(x,n,t) to be the component

ofM∞(M) containing this element. We need to show that π1(C(x,n,t)(M)) is abelian.

Let x−1 ∈M be a stable homotopy inverse for x, i.e. an element such that for some
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N , x ⊕ x−1 and mN lie in the same component of M . Note that by adding mn to

x−1 if necessary, we may assume that N > n. We will construct maps

f : (C(x,n,t), (x, n, t))→ (C(e,0,0), (x
−1 ⊕ x,N, t))

and

g : (C(e,0,0), (x
−1 ⊕ x,N, t))→ (C(x,n,t), (x⊕ x

−1 ⊕ x, n +N, t))

and show that the composition g∗◦f∗ is injective on π1, from which it follows that f∗

is injective. This will suffice, since by Proposition 3.0.19 the group π1(C(e,0,0), (x
−1⊕

x,N, t)) is abelian.

The maps f and g are defined by

f(y, k, s) = (x−1 ⊕ y, k + (N − n), s),

g(y, k, s) = (x⊕ y, k + n, s);

note that in both cases these are continuous maps (defined, in fact, on the whole

mapping telescope M∞(m)) and they map the basepoints in the manner indicated

above. The composite map is given by g ◦ f(y, k, t) = (x⊕ x−1 ⊕ y, k +N, t).

Consider an element [α] ∈ ker(g∗ ◦ f∗). Then α lies in some finite telescope

Mk(m), and by collapsing this telescope to its final stage, we obtain a free homotopy

from α to a loop α lying in M × {k} × {0}. Now, we have a free homotopy

g ◦ f ◦ α ≃ g ◦ f ◦ α = x⊕ x−1 ⊕ α

where the final loop lies in M × {k +N} × {0}. By assumption, there is a path in

M from x⊕ x−1 to mN , and together with homotopy commutativity of M we find

that x⊕ x−1⊕α ≃ mN ⊕α ≃ α⊕mN . But this loop, lying in M ×{k+N}× {0},

is clearly homotopic (in M∞(m)) to the loop α lying in M × {k} × {0}, which by

construction is homotopic to α. Thus we have a free homotopy g ◦ f ◦ α ≃ α, and

by assumption g ◦ f ◦ α is nullhomotopic. Hence α is freely nullhomotopic. But

freely nullhomotopic loops are always trivial in π1, so g∗ ◦ f∗ is injective as claimed.

2
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Proof of Theorem 3.0.11. To fix notation, we begin by describing the McDuff-

Segal approach to group completion [33]. Given a space X together with an (left)

action of a monoid M on X, one may form the topological category XM whose

object space is X and whose morphism space is M ×X. Here (m, x) is a morphism

from x to m ·x, and composition is given by (n,mx)◦ (m, x) = (n⊕m, x). There is

a natural, continuous functor Q : XM → BM where BM denotes the topological

category with one object and with morphism space M (the geometric realization of

BM is the classifying space of M , which we also denote by BM). On morphisms,

this functor sends (m, x) to m. When X = M (acted on via left multiplication)

the category MM has an initial object (the identity e ∈ M) and hence EM =

|MM | is canonically contractible. (Note here that MM is not the category with

a unique morphism between any pair of objects). Now, M acts on M∞(m) via

x · (y, n, t) = (x ⊕ y, n, t), and we define (M∞)M = (M∞(m))M . This space has a

natural basepoint, coming from the basepoint e ∈ M∞(m). Observe that (M∞)M

is the infinite mapping telescope of the sequence

EM
Fm−→ EM

Fm−→ · · · ,

where Fm is the functor defined by Fm(x) = x ⊕ m and Fm(n, x) = (n, x ⊕ m).

Since EM is contractible, it follows that (M∞)M is (weakly) contractible as well.

Now, as noted above we have a functor Qm : (M∞)M → BM , and we denote its

realization by qm. The fiber of the map qm (over the vertex of BM) is precisely

M∞(m), and so we have a natural map

im : M∞(m) −→ hofib(qM).

The theorem of McDuff and Segal [33] states that this map is an isomorphism

in homology with local (abelian) coefficients, so long as the action of M on M∞(m)

is by homology equivalences (again with local coefficients). The hypothesis of this

theorem is satisfied when M is stably group-like with respect to m, as follows easily

using the fact that homology of a mapping telescope may be computed as a colimit.

For completeness, we give a full proof in Lemma 3.0.25 below.

We note that McDuff and Segal actually work with the thick realization || · || of
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simplicial spaces, meaning that the real conclusion of their theorem is that the map

M∞(m)→ hofib||Qm|| is a homology equivalence with local coefficients. (Note that

M∞(m) is the fiber of both ||Qm|| and qm = |Qm|.) In the present application, the

simplicial spaces involved are good, so the thick realization is homotopy equivalent

to the ordinary realization [42]. Hence one finds that there is a weak equivalence

hofib||q|| → hofib(q), and since weak equivalences induce isomorphisms in homology

with local coefficients, we conclude that the map iM : M∞(m) → hofib(q) induces

isomorphisms in homology with local coefficients as well.

Next, since (M∞)M is (weakly) contractible, we have a weak equivalence from

ΩBM to hofib(qM ), induced by the diagram

∗ ≃ //

��

(M∞)M

qm

��
BM BM.

Here the maps from ∗ are the inclusions of the natural basepoints; note that ΩBM ∼=

hofib(∗ → BM). Hence we have a natural zig-zag

M∞(m)
im−→ hofib(qm)

≃
←− ΩBM, (3.2)

and the first map induces an isomorphism in homology with local (abelian) coeffi-

cients. (This is, of course, the full conclusion of the McDuff-Segal Theorem.) By

Corollary 3.0.24, all components of M∞(m) have abelian fundamental group, and

hence im induces isomorphisms on π1
∼= H1. It is well-known that a map inducing

isomorphisms on homology with local coefficients, and on π1, is a weak equivalence

(see, for example, [20, p. 389, Ex. 12]).

To complete the proof of Theorem 3.0.11, we must show that the zig-zag (3.2)

induces an isomorphism of groups π0(M∞(m)) ∼= π0(ΩBM) (the multiplication on

π0(M∞(m)) was described in Proposition 3.0.8). We already know that these maps

induce a bijection, so it suffices to check that the induced map is a homomorphism.

Any component of M∞(m) is represented by a point of the form (x, n, 0), with

x ∈M and n ∈ N. Now, the fiber of qm over ∗ ∈ BM is precisely the objects of the

category (M∞)M , i.e. the space M∞(m), and hence we identify (x, n, 0) with a point
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in q−1
m (∗). Hence we may write im(x, n, 0) = ((x, n, 0), c∗) ∈ hofib(qm), where c∗

denotes the constant path at ∗ ∈ BM . Next, recall that since BM is the realization

of a category with M as morphisms, every element y ∈ M determines a loop αy ∈

ΩBM . Let ψ denote the natural map from ΩBM → hofib(qm). We claim the points

ψ
(
α−1
mn � αx

)
and ((x, n, 0), c∗) lie in the same path component of hofib(qm). This

implies that the map π0(M∞(m))→ π0(ΩBM) sends the component of (x, n, 0) to

the component of α−1
mn � αx. Since M is homotopy commutative and π0(ΩBM) is

the group completion of π0M , this map is a homomorphism of monoids.

We now produce the required path between ((x, n, 0), c∗) and ψ
(
α−1
mn � αx

)
(in

hofib(qm)). By definition of the map ψ we have ψ
(
α−1
mn � αx

)
= (e, α−1

mn �αx), where

e = (e, 0, 0) ∈ M∞(m). There are morphisms in the category (M∞)M from the

object (e, n, 0) to (x, n, 0) and to (mn, n, 0), corresponding (respectively) to the ele-

ments x and mn in M . These morphisms give paths βx and βmn in |(M∞)M | which

map under qm to the paths αx and αmn , respectively. Letting αtx denote the path

αtx(s) = αx(1− t+ ts), it is easy to check that (βx(1− t), α
t
x) is a path in hofib(qm)

starting at ((x, n, 0), c∗) and ending at ((e, n, 0), αx). One next constructs an analo-

gous path from ((e, n, 0), αx) to
(
(mn, n, 0), α−1

mn � αx
)
. Finally, since (mn, n, 0) and

e lie in the same component of M∞(m) = q−1
m (∗), we have a path in hofib(qm) from

(
(mn, n, 0), α−1

mn · αx
)

to (e, α−1
mn · αx). 2

Lemma 3.0.25 Let M be a homotopy commutative monoid and assume M is

stably group-like with respect to m ∈M . Then the action of M on M∞(m) induces

isomorphisms in homology with any local (abelian) coefficients.

Proof. Recall that the action of M on M∞(m) is given by x ·(y, n, t) = (x⊕y, n, t).

Given x ∈ M , let f = fx : M∞(m) → M∞(m) denote the map induced by this

action. We need to show that for any x ∈M , and for any abelian coefficient system

A on Mm(∞), this map induces an isomorphism

H∗(M∞(m), f ∗(A))
f∗
−→ H∗(M∞(m), A)

in cohomology with local coefficients. Let An denote the restriction of A to the

finite telescope Mn(m) ≃ M and note that f ∗(An) = (f ∗A)n. Now, under the

canonical identifications Mn(m) ≃ M we see that An is just the pullback of An+1
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under the map M →M , x 7→ x⊕m, and similarly for f ∗(An). Since the homology

of the infinite telescope is the colimit of the homology of the finite telescopes, we

see that the map f∗ is the colimit of the vertical maps in the diagram

· · ·
⊕m // H∗(M, f ∗(An))

⊕m //

x⊕
��

H∗(M, f ∗(An+1))

x⊕
��

⊕m // · · ·

· · ·
⊕m // H∗(M,An)

⊕m // H∗(M,An+1)
⊕m // · · · .

Since x has a stable homotopy inverse y with x⊕ y in the connected component of

mk (for some k > 0) we have a second diagram

· · ·
⊕m // H∗(M, g ∗ f ∗(An))

⊕m //

y⊕

��

H∗(M, g ∗ f ∗(An+1))

y⊕

��

⊕m // · · ·

· · ·
⊕m // H∗(M, f ∗(An))

⊕m // H∗(M, f ∗(An+1))
⊕m // · · · .

The vertical composite of these diagrams is

· · ·
⊕m // H∗(M, f ∗(An))

⊕m //

mk⊕
��

H∗(M, f ∗(An+1))

mk⊕
��

⊕m // · · ·

· · ·
⊕m // H∗(M,An+k)

⊕m // H∗(M,An+k+1)
⊕m // · · · .

and here the map on colimits is easily seen to be an isomorphism. Repeating the

argument with x and y interchanged completes the proof. 2



Chapter 4

An Atiyah-Segal theorem for

surface groups

A well-known theorem of Atiyah and Segal [7] states that for a compact Lie

group Γ, the complex K-theory of the classifying space BΓ is isomorphic to the

completion of the representation ring R(Γ) (at the augmentation ideal). In this

chapter, we provide a relationship between (unitary) representations of the funda-

mental group of a compact aspherical surface M and the K-theory of the surface

itself. Of course, when M is aspherical (i.e. when M is neither S2 nor RP 2),

M = B(π1(M)).

Our main result (Theorem 4.4.1) shows that the homotopy groups

K∗
def(π1(M)) = π∗Kdef(π1(M))

are isomorphic to K∗(M) (in the orientable case, we require ∗ > 0). As described in

the introduction, one may view deformation K-theory as the homotopical analogue

of the representation ring, and hence this is our analogue of the Atiyah-Segal theo-

rem. We note that since the suspension of a surfaceM breaks up as a wedge, K∗(M)

is easily calculated, and hence our main result provides a complete calculation of

K∗
def(π1(M)). By similar methods, we obtain a number of results (Section 4.5) re-

garding the topology of the representation spaces themselves. In Theorem 4.5.3, we

30
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show that Hom(π1(M
g), U) is homotopy equivalent to U2g×BU , and we determine

the stable range for the inclusions

Hom(π1(M
g), U(n)) →֒ Hom(π1(M

g), U(n + 1))

in most cases. In Section 4.6, we combine our results with work of Lawson in order

to study the stable coarse moduli spaces Hom(π1M,U)/U .

All of these results rely on Morse theory for the Yang-Mills functional. To

motivate the arguments, we give a proof, along these lines, of the well-known fact

that the free loop space of a connected, compact Lie groupG is homotopy equivalent

to the homotopy orbit space EG×GG (where G acts on itself by conjugation). This

result is well-known for any group G, but the only reference of which I am aware

is the elegant proof given by Gruher in her thesis [18].

To begin, note that EG ×G G = Hom(Z, G)hG. Connections A over the circle

are always flat, and hence give rise to holonomy representations of π1S
1 = Z:

A 7→ (ρA : Z→ G) .

After modding out based gauge transformations (i.e. automorphisms of the prin-

cipal bundle S1 × G which restrict to the identity over 1 ∈ S1), one obtains a

homeomorphism (Proposition 4.2.8)

A(S1 ×G)/Map∗(S
1, G) ∼= Hom(Z, G),

and since the based gauge group acts freely, a standard fact about homotopy orbit

spaces (Lemma 4.2.11) yields a homotopy equivalence

(
A(S1 ×G)/Map∗(S

1, G)
)
hG
≃
(
A(S1 ×G)

)
hMap(S1,G)

.

But connections form a contractible (affine) space, so the right hand side is the

classifying space of the (full) gauge group. Atiyah and Bott have shown that the

space Map(S1, BG) = LBG is a model for this classifying space, so we conclude

that EG×G G ≃ LBG, as desired.
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Our interest in this argument lies in the fact that deformation K-theory (of Z,

say) is built from the homotopy orbit spaces

EU(n)×U(n) Hom(Z, U(n)) = EU(n)×U(n) U(n)

(see Proposition 4.1.1), and the homotopy groups of LBU(n) = Map(S1, BU(n))

are precisely the complex K-groups of S1 = BZ (in dimensions 0 < k < 2n). Thus

the statement EU(n)×U(n)U(n) ≃ LBU(n) may be interpreted as an Atiyah-Segal

theorem for the group Z.

When Z is replaced by the fundamental group of a two-dimensional surface,

one can try to mimic this argument. Not all connections are flat in this case,

but flat connections do form a critical set for the Yang-Mills functional. Hence

one may hope to relate this critical set to the space A of all connections via the

Morse stratification for the Yang-Mills functional, i.e. the stratification of A by

stable manifolds. R̊ade’s work provides deformation retractions from the strata to

their critical sets, and in particular allows us to pass from the critical set of flat

connections to its stable manifold. By results of Daskalopoulos, this stratification

agrees with the Harder-Narasimhan stratification from complex geometry (as was

conjectured by Atiyah and Bott) and in particular the stable manifold for the

space of flat connections is the space of semi-stable holomorphic structures. We

give precise bounds on the codimensions of the Harder-Narasimhan strata, and

our main results then follow from an application of Smale’s infinite dimensional

transversality theorem.

This chapter is organized as follows. In Section 4.1, we explain how to use the

group completion results of Chapter 3 to obtain a convenient model for the zeroth

space of the Ω-spectrum Kdef(π1M) when M is a compact, aspherical surface.

The precise passage from representation varieties to spaces of flat connections, and

then to the larger spaces of semi-stable holomorphic structures, is discussed in

Section 4.2. In Section 4.3 we discuss the Harder-Narasimhan stratification on

the space of holomorphic structures. The main theorem is proven in Section 4.4,

using the results of the previous three sections. In Section 4.5, we also study the

representation spaces themselves, as the rank tends to infinity, and in Section 4.6
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we discuss Lawson’s cofiber sequence and its implications for the homotopy groups

of the coarse moduli space Hom(π1M,U)/U . In the final section, we extend our

results to free products of surface groups.

4.1 Group completion for surface groups

The starting point for our study of Kdef(π1(M)) (for M a compact, aspherical

surface) is the following result, which gives a convenient model for the zeroth space

of this spectrum.

Proposition 4.1.1 Let M be either the circle or an aspherical compact surface.

Then there is a weak equivalence between the zeroth space of Kdef(π1(M)) and the

space

hocolim
(
Rep(π1M)hU

⊕1
−→ Rep(π1M)hU

⊕1
−→ · · ·

)

where ⊕1 denotes the map induced by block sum with the identity matrix 1 ∈ U(1)

(note that this induces maps on both the representation space and the universal

bundles, hence on homotopy orbit spaces).

We will abbreviate the homotopy colimit in Proposition 4.1.1 by writing

hocolim
−→

⊕1

(Rep(π1M)hU).

This result can be proven in a number of ways, including of course by applying

Corollary 3.0.16. The starting point for any proof is the McDuff-Segal Group Com-

pletion Theorem [33]. Recall from Chapter 3 that so long as π0 of the right-hand

side is a group, or equivalently so long as Rep(π1M) is stably group-like with respect

to the trivial representation 1 ∈ Hom(π1M,U(1)) (Proposition 3.0.8), then this the-

orem provides a zig-zag of maps between the spaces in Proposition 4.1.1, each of

which induces an isomorphism on homology with any local (abelian) coefficients.

Hence, as in the previous section, the main points are to understand the connected

components of the representation spaces, and to show that the fundamental groups

on the right (in each component) are abelian.
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As we saw in the previous section, this abelianness holds generally in deforma-

tion K-theory (Corollary 3.0.16) but for surface groups it can also be seen from

Yang-Mills theory. Specifically, the proof of Theorem 4.4.1 shows that the homo-

topy colimit in Proposition 4.1.1 is weakly equivalent to a space whose fundamental

group (in each component) is clearly abelian.

In this thesis, we present two rather different approaches to the problem of

showing that Rep(π1M) is stably group-like with respect to 1 ∈ Hom(π1M,U(1)).

For the group Z = π1S
1 this condition is trivially satisfied, since the representation

spaces U(n) are connected. In Corollaries 4.3.8 and 4.3.9 we use Yang-Mills theory

to show that Rep(π1M) is stably group-like for any compact, aspherical surface M .

In the orientable case, this amounts to showing that the representation spaces are

all connected. This argument is rather close to Ho and Liu’s proof of connectivity

for the moduli space of flat connections [23, Theorem 20]. For most surfaces, other

work of Ho and Liu [25] gives an alternative method, depending on the theory of

quasi-Hamiltonian moment maps [4]. A version of their argument, adapted to the

present situation, appears in Chapter 6 (Theorem 6.1.9). This method covers all

(compact, aspherical) orientable surfaces, but fails two non-orientable ones: the

connected sum of either 2 or 4 copies of RP 2. In the former case, we provide an

alternative, elementary argument in Propositition 6.1.11. For the latter case, I do

not know of a proof that avoids Yang-Mills theory.

Remark 4.1.2 The monoid Rep(G)hU underlying deformation K-theory is formed

using the simplicial model for EU(n) (see Chapter 2), and hence one first obtains

a version of Proposition 4.1.1 in which the homotopy orbit spaces

Hom(π1M,U(n))hU(n) = EU(n)×U(n) Hom(π1M,U(n))

are formed using this simplicial model. In this chapter, we will need to work with

classifying spaces of gauge groups, where the simplicial model may not give an honest

principal bundle. Hence it is more convenient to use Milnor’s model for universal

bundles [34], which is functorial and applies to all topological groups. There is a

natural zig-zag of weak equivalences connecting these two versions of the classifying

space, and this gives a zig-zag connecting the simplicial version of Proposition 4.1.1
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to the Milnor version.

Generally, if E1G → B1G and E2G → B2G are universal principal G-bundles,

we set EmG and BmG to be the “mixed models” EmG = E1G× E2G and BmG =

EmG/G (where G acts diagonally on EmG). One has a diagram of fibration se-

quences

G

��

G

��

=oo = // G

��
E1G

��

EmG //oo

��

E2G

��
B1G BmG

q2 //q1oo B2

and contractibility of the total spaces implies that the maps q1 and q2 are weak

equivalences. Now, for any G-space X, the diagram

G

��

G

��

=oo = // G

��
E1G×G X

��

EmG×G X //oo

��

E2G×G X

��
B1G BmG

q2 //q1oo B2

shows that the two versions of the homotopy orbit space are naturally weakly equiv-

alent.

4.2 Representations, flat connections, and semi-

stable bundles

Let M denote an n-dimensional, compact, connected manifold, with a fixed

basepoint m0 ∈ M . Let G be a Lie group, and P
π
→ M be a smooth principal

G-bundle, with a fixed basepoint p0 ∈ π−1(m0) ⊂ P . Our principal bundles will

always have a right action of the structure group G.

In this section we explain how to pass from G-representation spaces of π1(M) to



CHAPTER 4. AN ATIYAH-SEGAL THEOREM FOR SURFACE GROUPS 36

spaces of flat connections on principal G-bundles over M , which form critical sets

for the Yang-Mills functional. We then explain, in the case when M is a Riemann

surface, how Morse theory for the Yang-Mills functional allows one to pass from

these critical sets to their stable manifolds. When G = U(n), these stable manifolds

consist of semi-stable holomorphic structures on the associated vector bundles.

Before stating the result relating representations to flat connections, we need

to introduce the relevant Sobolev spaces of connections and gauge transformations.

Our notation and discussion follow [6, Section 14], and another excellent reference

is the appendix to [48].

Definition 4.2.1 Let k > 1 be an integer, and let 1 ≤ p <∞. We denote the space

of all connections on the bundle P of Sobolev class Lpk by Ak,p(P ). This is an affine

space, modeled on the Banach space of Lpk sections of the vector bundle T ∗M⊗adP

(here adP = P ×G g, and g is the Lie algebra of G equipped with the adjoint

action). Hence Ak,p(P ) acquires a canonical topology, making it homeomorphic to

the Banach space on which it is modeled.

Flat Lpk connections are defined to be those with zero curvature. The subspace

of flat connections on P is denoted by Ak,pflat(P ).

We let Gk+1,p(P ) denote the gauge group of all unitary automorphisms (i.e.

gauge transformations) of P of class Lpk+1, and (when (k+1)p > n) we let Gk+1,p
0 (P )

denote the subgroup of based automorphisms (those which are the identity on the

fiber over m0 ∈ M). These gauge groups are Banach Lie groups, and act smoothly

on Ak,p(P ). We will always use the left action, meaning that we let gauge transfor-

mations act on connections by pushforward. We denote the group of all continuous

gauge transformations by G(P ). Note that so long as (k + 1)p > n, the Sobolev

Embedding Theorem gives a continuous inclusion Gk+1,p(P ) →֒ G(P ), and hence in

this range the based gauge group is well-defined.

We denote the smooth versions of these objects by (−)∞, and when the bundle

P is trivial, we will use the notation Ak,p(n) = Ak,p(M × U(n)), and so on.

Remark 4.2.2 We use the notation Lpk to denote functions with k weak (distribu-

tional) derivatives, each in the Sobolev space Lp.

We will record the necessary assumptions on k and p as they arise. The reader

interested only in the applications to deformation K-theory may safely ignore these
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issues, noting only that all the results of this section hold in the Hilbert space L2
k

for large enough k. When n = 2, our main case of interest, we just need k > 2.

The following lemma is well-known.

Lemma 4.2.3 Assume (k + 1)p > n. Then the inclusion Gk+1,p(P ) →֒ G(P ) is a

weak equivalence.

Proof. A gauge transformation is simply a section of the adjoint bundle P ×G

Ad(G), where Ad(G) denotes the group G equipped with the adjoint action of G

on itself (see [6, Section 2]). Hence this result follows from general approximation

results for sections of smooth fiber bundles. 2

Note the continuous inclusion Gk+1,p(P ) →֒ G(P ) implies that there is a well-

defined, continuous homomorphism r : Gk+1,p(P )→ G given by restricting a gauge

transformation to the fiber over the basepoint m0 ∈ M . To be precise, r(φ) is

defined by p0 · r(φ) = φ(p0), and hence depends on our choice of basepoint p0 ∈ P .

Lemma 4.2.4 If G is connected, then the restriction map r : Gk+1,p(P ) −→ G is

surjective. If we assume further that (k+1)p > n, then r induces a homeomorphism

Gk+1,p(P )/Gk+1,p
0 (P ) ∼= G. The same statements hold for the smooth gauge group.

Proof. Thinking of gauge transformations as sections of the adjoint bundle, we

may deform the identity map P → P over a neighborhood of m0 so that it takes

any desired value at p0 (here we use, of course, connectivity of G). This proves

surjectivity.

By a similar argument, we may construct continuous local sections s : U →

G∞(P ) of the map r, where U ⊂ G is any chart. If π : G∞(P ) → G(P )∞/G∞0 (P )

is the quotient map, then the maps π ◦ s are inverse to r on U . Hence r−1 is

continuous. The same argument applies to Gk+1,p(P ), although we must require

(k + 1)p > n so that r is well-defined and continuous. 2

I do not know whether Lemma 4.2.4 holds for non-connected groups; certainly

the proof shows that the image of the restriction map is always a union of compo-

nents of G.
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Flat connections are related to representations of π1M via the holonomy map.

Our next goal is to analyze this map carefully in the current context of Sobolev

connections. The holonomy of a smooth connection is defined via parallel transport:

given a smooth loop γ based at m0 ∈ M , there is a unique A-horizontal lift γ̃ of γ

with γ̃(0) = p0, and the holonomy representation H(A) = ρA is then defined by the

equation γ̃(1) · ρA([γ]) = p0. Since flat connections are locally trivial, a standard

compactness argument shows that this definition depends only on the homotopy

class of γ. It is important to note here that the holonomy map depends on the

chosen the basepoint p0 ∈ P . For further details on holonomy, we refer the reader

to Appendix A.

Lemma 4.2.5 The holonomy map Ak,pflat(P )→ Hom(π1M,G) is continuous if k >

2 and (k − 1)p > n.

Proof. By the Sobolev Embedding Theorem, the assumptions on k and p guarantee

a continuous embedding Lpk(M) →֒ C1(M). Hence if Ai ∈ A
k,p
flat(P ) is a sequence of

connections converging (in Ak,pflat(P )) to A, then Ai → A in C1 as well. We must

show that for any such sequence, the holonomies of the Ai converge to the holonomy

of A.

Let γ1, . . . , γm be smooth curves in M which generate π1M . Since the topology

on Hom(π1M,G) is the restriction of the product topology on Gm, it suffices to

check that for each i the holonomies around γi converge. Let γ be one of the γi.

Then each connection Ai pulls back to define a vector field Vi on γ∗P , and the

holonomy of Ai along γ is defined (continuously) in terms of the integral curves of

this vector field. Hence it suffices to show that the integral curves of the vector

fields Vi converge to those of the vector field V associated to A. We may assume

that the C1 norms ti = ||Vi−V ||C1 are decreasing and less than 1. By interpolating

linearly between the Vi, we obtain a vector field on γ∗P × I which at time ti is just

Vi, and at time 0 is V . This is clearly a Lipschitz vector field and hence the integral

curves vary continuously in the initial point [28], completing the proof. 2

Remark 4.2.6 With a bit more care, one can prove Lemma 4.2.5 under the weaker

assumptions k > 1 and kp > n. The basic point is that these assumptions give an

embedding Lpk(M) →֒ C0(M), and by compactness C0(M) →֒ L1(M) (and similarly
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after restricting to a smooth curve in M). Working in local coordinates, one can

deduce continuity of the holonomy map from the fact that limits commute with

integrals in L1([0, 1]).

Lemma 4.2.7 Assume p > n/2 (and if n = 2, assume p > 4/3). If G is

connected, then each Gk+1,p
0 (P )-orbit in Ak,pflat(P ) contains a unique G∞0 (P )-orbit

of smooth connections.

Proof. The assumptions on k and p guarantee that each Gk+1,p(n) orbit in Ak,pflat(n)

contains a smooth connection: this is a special case of a result in the theory

of Uhlenbeck Compactness, which seems to have first been explicitly proven by

Wehrheim [48, Theorem 9.4]. Now, say φ · A is smooth for some φ ∈ Gk+1,p(P ).

By Lemma 4.2.4, there exists a smooth gauge transformation ψ such that r(ψ) =

r(φ)−1.

Now ψ ◦ φ is clearly based, and since ψ is smooth we know that (ψ ◦ φ) · A is

still smooth. This proves existence. For uniqueness, say φ · A and ψ · A are both

smooth, where φ, ψ ∈ Gk+1,p
0 (P ). Then φ−1ψ is smooth by [6, Lemma 14.9], so

these connections lie in the same G∞0 -orbit. 2

We can now prove the result which connects representation theory with Yang-

Mills theory.

Proposition 4.2.8 Assume p > n/2 (and if n = 2, assume p > 4/3). Assume

also that kp > n. Then for any n-manifold M and any compact, connected Lie

group G, the holonomy map induces a G-equivariant homeomorphism

∐

[Pn]

Ak,pflat(P
n)/Gk+1,p

0 (P n)
H
−→ Hom(π1(M), G),

where the disjoint union is taken over some set of representatives for the (unbased)

isomorphism classes of principal G-bundles over M . (Note that to define H we

choose, arbitrarily, base points in each representative bundle P n.)

The G-action on the left is induced by the actions of Gk+1,p(P n) together with

the homeomorphism Gk+1,p(P n)/Gk+1,p
0 (P n) ∼= G, which again depends on chosen

basepoints in the bundles P n.
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Proof. The assumptions on k and p allow us to employ all previous results in this

section (note Remark 4.2.6). It is well-known that the holonomy map

H :
∐

[Pn]

A∞
flat(P

n) −→ Hom(π1(M), G)

is invariant under the action of the based gauge group and induces an equivariant

bijection

H̄ :
∐

[Pn]

A∞
flat(P

n)/G∞0 (P n) −→ Hom(π1(M), G).

(See Appendix A for a detailed proof.) By Lemma 4.2.7, the left hand side is

unchanged (set-theoretically) if we replace A∞
flat and G∞0 by Ak,pflat and Gk+1,p

0 , and

hence Lemma 4.2.5 tells us that we have a continuous equivariant bijection

H̄ :
∐

[Pn]

Ak,pflat(P
n)/Gk+1,p

0 (P n) −→ Hom(π1(M), G).

(We note that the proof of Proposition A.0.15, although written in terms of smooth

connections, in fact goes through equally well in the present setting and proves that

holonomy is invariant under the based gauge group Gk+1,p
0 (P n).)

We will show that for each P , Ak,pflat(P )/Gk+1,p
0 (P ) is sequentially compact. Since,

by Proposition A.0.30, only finitely many isomorphism types of principal G-bundle

admit flat connections, this will imply that

∐

[Pn]

Ak,pflat(P
n)/Gk+1,p

0 (P n)

is sequentially compact. Since a continuous bijection from a sequentially compact

space to a Hausdorff space is a homeomorphism (see Lemma 4.2.9 below) this will

complete the proof.

The Strong Uhlenbeck Compactness Theorem [48] (see also [12, Proposition

4.1]) states that the space Ak,pflat(P )/Gk+1,p(P ) is sequentially compact. Now, given

a sequence {Ai} in Ak,pflat(P ), there exists a sub-sequence {Aij} and a sequence

φj ∈ Gk+1,p(n) such that φj · Aij converges in Ak,p to a flat connection A. Let

gj = r(φj) . Since G is compact, passing to a sub-sequence if necessary we may
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assume that the gj converge to an element g ∈ G. The proof of Lemma 4.2.4 shows

that we may choose a convergent sequence ψj ∈ Gk+1,p(P ) such that r(ψj) = g−1
j ;

we let ψ = limψj, so r(ψ) = g−1. Now continuity of the action implies that the

sequence (ψj ◦φj) ·Aij converges to ψ ·A. Since ψj ◦φj ∈ G
k+1,p
0 (P ), this completes

the proof. 2

For the above proof, we needed the following elementary lemma:

Lemma 4.2.9 Let f : X → Y be a continuous bijection. If X is sequentially

compact and Y is Hausdorff, then f is a homeomorphism.

Proof. We must show that f is a closed map. First, note that any closed subset

of a sequentially compact space is sequentially compact. Now, if C is closed in X

we must show that f(C) is closed in Y . But the continuous image of a sequen-

tially compact space is sequentially compact, and sequentially compact subsets of

Hausdorff spaces are closed. 2

Remark 4.2.10 It is worth noting that point-set considerations alone show that

sequential compactness of the quotient space Ak,pflat(P )/Gk+1,p
0 (P ) suffices to prove

its compactness: specifically, Ak,pflat(P ) is second countable, since it is a subspace

of a separable Banach space. Since the quotient map of a group action is always

open, we may conclude that Ak,pflat(P )/Gk+1,p
0 (P ) is second countable as well. Now,

any space which is first countable and sequentially compact is countably compact [50,

7.1.3], and any second countable space is Lindelöf [50, 5.3.2]. Finally, any countably

compact Lindelöf space is compact.

More interesting is the fact that Proposition 4.2.8 implies that the based gauge

orbits in Ak,pflat(P ) are closed (because the quotient is homeomorphic to the Haus-

dorff space Hom(π1M,G)). Since the homeomorphism is G-equivariant and G is

compact, one also concludes that the full gauge orbits are closed.

The following is a slightly more direct version of [6, 13.1].

Lemma 4.2.11 Let G be a topological group, acting on a space X. Assume that

N ⊳ G acts freely on X, with X → X/N a principal N-bundle. Then the natural

map

EG ×G X −→ E(G/N )×G/N X/N
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is a weak equivalence.

Proof. The group G acts freely on E(G/N )×X via (e, x)·g = (e·π(g), g−1·x), where

π : G → G/N is the quotient map. The quotient map factors as the composite

E(G/N )×X −→ E(G/N )×X/N −→ E(G/N )×G/N X/N .

Each of these maps is a fibration (in fact, a fiber bundle) so the composite is (at

least) a fibration. The lemma now follows from the diagram of fibrations

G //

=

��

EG ×X

≃
��

// EG ×G X

��
G // E(G/N )×X // // E(G/N )×G/N X/N .

2

Corollary 4.2.12 Assume p > n/2 (and if n = 2, assume p > 4/3). Assume also

that kp > n. If the structure group G is compact and connected, then the natural

projection map

∐

[Pn]

EGk+1(P n)×Gk+1(Pn) A
1
flat(P

n)
≃
−→ EG×G Hom(π1(M), G)

is a weak equivalence.

Proof. The based gauge groups Gk+1,p
0 (P n) acts freely on Ak,p(P n), and the

projection maps are locally trivial principal Gk+1,p
0 (P n)-bundles [35]. Hence the

same is true when we restrict to the invariant subspaces of flat connections. Since

Gk+1,p(P n)/Gk+1,p
0 (P n) ∼= G and

∐

[Pn]

Ak,pflat(P
n)/Gk+1,p

0 (P n)
∼=
−→ Hom(π1M,G)

(Lemma 4.2.4 and Proposition 4.2.8), the result follows from Lemma 4.2.11. 2

We now focus on the case whereM is a compact Riemann surface andG = U(n).

It is best here to work in the Hilbert space of L2
k connections, and we must assume
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k > 2 so that the results of this section apply. We will now suppress p = 2 from the

notation, writing simply Ak, Gk, and so on. Additionally, we will see in the proof

of Corollary 4.3.8 that if P is a principal U(n)-bundle over a Riemann surface with

Aflat(P ) 6= ∅, then P is trivial. Hence we may restrict our attention to the case

P = M ×U(n), and we use the notation Ak(n) = Ak(M ×U(n)), and similarly for

the gauge groups.

Our next goal is to pass from the spaces Akflat(n) to the larger space Ckss(n)

consisting of semi-stable holomorphic structures on the associated vector bundle

M × Cn.

The set C(E) of holomorphic structures on a complex vector bundle E may

be viewed as an affine space, modeled on the vector space Ω0,1(M ; EndE) of

endomorphism-valued (0, 1)-forms (see [6, Sections 5, 7]). Since this is the space

of (smooth) sections of a vector bundle on M , we may define Sobolev spaces

Ck(E) = Ck,2(E) of holomorphic structures simply by taking L2
k-sections of this

bundle. If we fix a Hermitian metric on E, then to each holomorphic structure

there corresponds a unique compatible (metric) connection [17, p. 73]. When M

is a Riemann surface, this induces an isomorphism of affine spaces, which extends

to an isomorphism Ak(P ) ∼= Ck(P ×U(n) Cn). For further details, see the references

cited above or [12, Section 2].

Definition 4.2.13 A holomorphic bundle E over M is semi-stable if for every

proper holomorphic sub-bundle E ′ ⊂ E, one has

deg(E ′)

rk(E ′)
6

deg(E)

rk(E)
.

(Replacing the 6 by < in this definition, one has the definition of a stable bundle.)

Here deg(E) refers to the first Chern number of the bundle, i.e. the integer obtained

by evaluating the first Chern class c1(E) on the fundamental class of the (oriented)

Riemann surface M .

As we will explain, the space of semi-stable bundles (or rather its Sobolev ana-

logue) plays the role of the stable manifold for the space of flat connections, which

is a critical set of the Yang-Mills functional L.
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For any smooth principal U(n)-bundle P → M , the Yang-Mills functional L :

Ak(P )→ R is defined by the formula

L(A) =

∫

M

||F (A)||2dvol

where F (A) denotes the curvature form of the connection A and the volume of M

is normalized to be 1. Here || · || refers to a natural Riemannian metric on the

bundle T ∗M ⊗ T ∗M ⊗ ad(P ); note that F (A) is a section of this bundle so we may

apply the Riemannian metric pointwise to F (A). (For a construction of this metric,

see [15].)

R̊ade has shown [40] that the gradient flow of the Yang-Mills functional produces

a deformation retraction of the Morse strata (defined via the flow of the Yang-

Mills functional) onto their critical sets. Daskalopoulos has shown [12, Theorem

6.2] that the Morse stratification of Ak(P ) coincides with the Harder-Narasimhan

stratification. The latter stratification, defined in the next section, exists initially

on the space of smooth holomorphic structures, but can of course be transported

to the isomorphic space of smooth connections. It extends to the space of L2
k

holomorphic structures (or connections) because each such holomorphic structure

is gauge-equivalent to a smooth connection, and the smooth gauge-equivalence class

of this smooth connection is well-defined. Here we need to use the complex gauge

group; see [6, Section 14].

As discussed in Section 4.3, the space Ckss(n) of semi-stable holomorphic struc-

tures (on the trivial bundle M ×Cn) is one of the Harder-Narasimhan strata, and

its critical set is precisely the space of flat connections. To see that every flat con-

nection corresponds to a semi-stable bundle, one uses the Narasimhan-Seshardri

Theorem [6, (8.1)], which says that irreducible representations induce stable bun-

dles. By Proposition 4.2.8, every flat connection comes from some unitary repre-

sentation, which is a sum of irreducible representations, and hence the holomorphic

bundle associated to any representation, i.e. any flat connection, is a sum of stable

bundles. But it is an elementary fact that an extension of stable bundles of the

same degree is always semi-stable.

In summary, we have:
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Theorem 4.2.14 (Daskalopoulos, Rade) Let M be a compact Riemann sur-

face. Then there is a continuous deformation retraction from the space Ckss(n) of all

semi-stable L2
k holomorphic structures on M × Cn to the subspace Akflat(n) of flat

(unitary) connections.

We will discuss the analogue of this result in the non-orientable case in the proof

of Proposition 4.3.7.

4.3 The Harder-Narasimhan stratification

In the previous section, we explained how to pass from spaces of representations

to spaces of semi-stable holomorphic structures. The next step will be to pass

from semi-stable structures to the affine space of all holomorphic structures (or,

equivalently, all connections). Although for any finite n there is a substantial

difference between these spaces, this difference will disappear when we pass to the

limit (by adding trivial holomorphic lines).

We fix a Riemann surface M of genus g and suppress g from the notation when

possible.

We now introduce the Harder-Narasimhan stratification [6, Section 7] on the

space Ck(n) of holomorphic structures on a trivial rank n vector bundle over M .

This stratification is induced from a stratification on the subspace C(n) of smooth

structures, via the fact that each a ∈ Ck(n) is gauge-equivalent to a unique (smooth)

orbit of smooth structures (this result is proven in [6, Section 14]; here the gauge

transformations may lie in the complex gauge group of vector bundle automor-

phisms).

Given a (smooth) holomorphic structure E on the bundle M × Cn, there is a

unique filtration (the Harder-Narasimhan filtration [19])

0 = E0 ⊂ E1 ⊂ · · · Er = E

of E by holomorphic sub-bundles with the property that each quotient Di = Ei/Ei−1

is semi-stable (i = 1, . . . , r) and µ(D1) > µ(D2) > · · · > µ(Dr), where µ(Di) =
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deg(Di)
rank(Di)

, and deg(Di) is the first Chern number of the vector bundle Di. Letting

ni = rank(Di) and ki = deg(Di), we call the sequence

µ = ((n1, k1), . . . , (nr, kr))

the type of E . Let Ckµ = Ckµ(n) ⊂ Ck(n) denote the subspace of all holomorphic

structures gauge-equivalent to a smooth structure of type µ. Note that the semi-

stable stratum corresponds to µ = ((n, 0)), and that since degrees add in exact

sequences we have
∑

i ki = 0.

The following definition will be useful.

Definition 4.3.1 Consider a sequence of pairs of integers ((n1, k1), . . . , (nr, kr)).

We call such a sequence admissible of total rank n (and total Chern class 0) if

ni > 0 for each i,
∑
ni = n,

∑
i ki = 0, and k1

n1
> · · · > kr

nr
. Hence admissible

sequences of total rank n and total Chern class 0 are precisely those describing

Harder-Narasimhan strata in C(n).

We denote the collection of all admissible sequences of total rank n and total

Chern class 0 by I(n).

With this notation, we now have the following result from [6, Section 7] (see

also [12, Theorem B]).

Theorem 4.3.2 Let µ = ((n1, k1), . . . , (nr, kr)) ∈ I(n). Then the stratum Ckµ is a

locally closed submanifold of Ck(n) with complex codimension given by

c(µ) =

(
∑

i>j

nikj − njki

)
+ (g − 1)

(
∑

i>j

ninj

)
.

We now introduce useful way of thinking about the Harder-Narasimhan strata

(due to Shatz [43], see also [6, Section 7]). Given an admissible sequence µ, we can

construct a convex path P (µ) in the plane starting at (0, 0) and ending at (n, 0)

by connecting the points (
∑i

j=1 nj ,
∑i

j=1 kj) with straight lines (i = 1, 2, · · ·n).

Convexity of the path corresponds precisely to the condition that the slopes of
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(1, 3)

(3, 5)

(7, 6)
(11, 5)

Figure 4.1: The convex path P ((1, 3), (2, 2), (4, 1), (4,−1), (1,−5)).

these lines decrease, i.e. that

k1

n1

>
k2

n2

> · · · >
kr
nr
.

See Figure 4.1 for an example.

We now compute the minimum codimension of a non semi-stable stratum. In

particular, this computation shows that this minimum tends to infinity with n, so

long as the genus g is positive.

Lemma 4.3.3 The minimum (real) codimension of a non semi-stable stratum in

Ck(n) (n > 1) is precisely 2n+ 2(n− 1)(g − 1) = 2g(n− 1) + 2.

Proof. Let µ = ((n1, k1), . . . , (nr, kr)) ∈ I(n) be any admissible sequence with

r > 1. Then from Theorem 4.3.2, we see that it will suffice to show that

∑

i>j

nikj − njki > n (4.1)

and ∑

i>j

ninj > n− 1. (4.2)

To prove (4.1), we begin by noting that since
∑
ki = 0 and the slopes ki

ni
are

strictly decreasing, we must have k1 > 0 and kn < 0 (in terms of convex paths, this

simply says that a convex path from (0, 0) to (0, n) must have positive initial slope

and negative final slope). Moreover, there is some l0 ∈ R such that kl > 1 for l < l0
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and kl 6 −1 for l > l0 (this number just indicates when the path P (µ) switches

from increasing to decreasing). We allow l0 to be an integer if and only if kl = 0

for some l; then this integer l is unique, and we set l0 := l. Since r > 2, we know

that 1 < l0 < r.

Now, if i > l0 > j we have kj > 1 and ki 6 −1, so,

nikj − njki > ni + nj .

If i > l0 and j = l0, we have kj = 0 and ki 6 −1, so

nikl0 − nl0ki > 0 + nl0 = nl0 .

Finally, if i = l0 and j < l0, then ki = 0 and kj > 1 so we have

nl0kj − njkl0 > nl0 − 0 = nl0 .

Now, since nikj−njki = ninj(kj/nj−ki/ni) and the slopes kl/nl are strictly de-

creasing, we know that each term in the sum
∑

i>j nikj−njki is positive. Dropping

terms and applying the above bounds gives

∑

i>j

nikj − njki >
∑

i>l0>j

(nikj − njki) +
∑

l0>j

(nl0kj − njkl0) +
∑

i>l0

(nikl0 − nl0ki)

>
∑

i>l0>j

(ni + nj) +
∑

l0>j

nl0 +
∑

i>l0

nl0 .

(In the second and third expressions, the latter sums are taken to be empty if l0 is

not an integer.) Since
∑
ni = n, to check that the above expression is at least n it

suffices to check that each ni appears in the final sum. But since 1 < l0 < r, each

nl with l 6= l0 appears in the first term, and if l0 ∈ N then nl0 appears in both of

the latter terms. This completes the proof of (4.1).

To prove (4.2), we fix r ∈ N (r > 2) and consider partitions
⇀
p= (p1, . . . , pr) of

n. We will minimize the function φr(
⇀
p) =

∑
i>j pipj , over all length r partitions of

n. (It is useful to note that the sum defining φr is taken over all 2-element subsets

of {1, . . . , r}; the condition i > j is simply convenient notation.)
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Consider a partition
⇀
p= (p1, . . . , pr) with pm > pl > 1 (l 6= m), and define

another partition
⇀

p′ by setting

p′i =





pi, i 6= l, m,

pl − 1, i = l,

pm + 1 i = m.

We claim that

φr(
⇀
p) > φr(

⇀

p′).

Indeed, the right hand side is

(pl − 1)(pm + 1) +
∑

i,j 6=l,m; i>j

pipj +
∑

j 6=l,m

(pl − 1)pj +
∑

i6=l,m

pi(pm + 1)

= pl − pm − 1 +
∑

i>j

pipj −
∑

j 6=l,m

pj +
∑

i6=l,m

pi

= pl − pm − 1 +
∑

i>j

pipj,

and since pm > pl, we have pl − pm − 1 < 0.

Now, if we start with any partition
⇀
p such pi > 1 for more than one index i,

the above argument shows that
⇀
p cannot minimize φr. Thus φr is minimized by

the partition
⇀
p0= (1, . . . , 1, n − r − 1), and φr(

⇀
p0) =

(
r−1
2

)
+ (r − 1)(n − r − 1).

If we let f(r) =
(
r−1
2

)
+ (r − 1)(n − r − 1), then we see that this is an increasing

function on the interval (0, n) and hence for partitions of length at least 2, the

formula
∑

i>j pipj is minimized by the length 2 partition (1, n − 1). In this case,

of course, we obtain the desired lower bound of n− 1. This completes the proof of

(4.2).

To complete the proof of the lemma we must exhibit, for each n > 2, an admis-

sible sequence µ with complex codimension n+(n−1)(g−1). This is the sequence

((1, 1), (n− 1,−1)). 2

Remark 4.3.4 It is interesting to note that the results in the next section clearly

fail in the case when M has genus 0. In this case, M is the sphere, so π1M = 0

and Hom(π1M,U(n)) is a point. From the point of view of homotopy theory, the
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problem is that S2 is not the classifying space of its fundamental group, and so

one should not expect a relationship between K-theory of S2 and representations of

π1S
2 = 0. But the only place where our argument breaks down in the genus 0 case

is the previous lemma, which tells us that there are strata of complex codimension

1 in the Harder-Narasimhan stratification of Ck(S2 × C(n)), and in particular the

minimum codimension does not tend to infinity with the rank. Thus there appears to

be a relationship between the codimensions of these strata and the contractibility of

the universal cover of M . It is difficult, however, to formulate a general conjecture

(for 3-manifolds, rather than surfaces, say). Letting the rank tend to infinity must

be replaced by a different sort of limiting process, governed by the structure of the

monoid π0Rep(π1M). The reason we let the rank tend to infinity in the surface case

is that this monoid is stably group-like with respect to the trivial representation 1 ∈

Hom(π1M,U(1)) (or more specifically, each representation space Hom(π1M,U(n))

is connected), and block sum with this representation corresponds to increasing the

rank. There is no reason to expect π0Rep(π1M) to be so simple when M is a

3-manifold.

The main result of this section will be an application of the following infinite-

dimensional transversality theorem, due to Smale [2, Theorem 19.1] (see also [1]).

Recall that a residual set in a topological space is a countable intersection of open,

dense sets. By the Baire category theorem, any residual subset of a Banach space

is dense, and since any Banach manifold is locally a Banach space, any residual

subset of a Banach manifold is dense as well.

Theorem 4.3.5 (Smale) Let A, X, and Y be second countable Cr Banach man-

ifolds, with X of finite dimension k. Let W ⊂ Y be a (locally closed) submanifold

of Y , of finite codimension q. Assume that r > max(0, k − q). Let ρ : A →

Cr(X, Y ) be a Cr-representation, that is, a function for which the evaluation map

evρ : A×X → Y given by evρ(a, x) = ρ(a)x is of class Cr.

For a ∈ A, let ρa : X → Y be the map ρa(x) = ρ(a)x. Then {a ∈ A|ρa ⋔ W} is

residual in A, provided that evρ ⋔ W .

Corollary 4.3.6 Let Y be a second countable Banach space, and let {Wi}i∈I be

a collection of (locally closed) submanifolds of Y with finite codimension (we need
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not assume the Wi are disjoint). Then if U = Y −
⋃
i∈IWi is non-empty, it has

connectivity at least µ− 2, where

µ = min{codim Wi : i ∈ I};

equivalently the inclusion U →֒ Y is (µ− 2)-connected.

Proof. To begin, consider a continuous map f : Sk−1 → U , with k − 1 6 µ − 2.

We must show that f is null-homotopic in U ; note that our homotopy need not

be based. First we note that f may be smoothed, i.e. we may replace f by a

homotopic map which is of class Ck+1.

Choose a smooth function φ : R → R with the property that φ(t) = 1 for

t > 1/2 and φ vanishes to all orders at 0. Let Dk ⊂ Rk+1 denote the closed unit

disk, so ∂Dk = Sk−1. The formula H+(x) = φ(||x||)f(x/||x||) gives a Ck+1 map

Dk → Y which restricts to f on each shell {x ∈ Dk | ||x|| = r} with r > 1/2. In

particular, H+ defines a Ck+1 null-homotopy of f . We may now define another

Ck+1 map H : Sk → Y by gluing two copies of the map H+. (The point of this

construction is to obtain a “null-homotopy” which is defined on a compact manifold

without boundary.)

We now define

A = {F ∈ Ck+1(Sk, Y ) | F (x) = 0 for x ∈ Sk−1 ⊂ Sk}.

Note that A is a Banach space: since Sk is compact, [1, Theorem 5.4] implies that

Ck+1(Sk, Y ) is a Banach space, and A is a closed subspace of Ck+1(Sk, Y ). (This

is the reason for working with Ck+1 maps rather than smooth ones.)

Next, we define ρ : A→ Ck+1(Sk, Y ) by setting ρ(F ) = F +H . The evaluation

map evρ : A × Sk → Y is given by evρ(F, x) = F (x) +H(x). Since both (F, x) 7→

F (x) and (F, x) 7→ x 7→ H(x) are of class Ck+1, so is their sum (the fact that the

evaluation map (F, x) 7→ F (x) is of class Ck+1 follows from [1, Lemma 11.6]).

We are now ready to apply the transversality theorem. SettingX = Sk, W = Wi

(for some i ∈ I) and with A as above, all the hypotheses of Theorem 4.3.5 are clearly

satisfied, except for the final requirement that evρ ⋔ Wi. But this is easily seen
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to be the case. In fact, the derivative of evρ surjects onto TyY for each y in the

image of evρ, because given a Ck+1 map F : Sk → Y with F (x) = y and a vector

v ∈ TyY , we may adjust F in a small neighborhood of x so that the map remains

Ck+1 and its derivative hits v.

We now conclude that {F ∈ A|ρa ⋔ Wi} is residual in A, for each stratum Wi.

Since the intersection of countably many residual sets is (by definition) residual,

we in fact see that

{F ∈ A | ρF ⋔ Wi ∀ i ∈ I, }

is residual, hence dense, in A. In particular, since A is non-empty, there exists a

map F : Sk → Y such that F |Sk−1 = f and ρF = F +H is transverse to each Wi.

Since k < µ = codim(Wi), this implies that the image of F + H must be disjoint

from each Wi. Hence (F + H)(Sk) ⊂ U , and so f represents the zero element in

πk−1U . 2

We can now prove the main result of this section. This result extends work of Ho

and Liu, who showed that spaces of flat connections over surfaces are connected [23,

Theorem 20]. We note, though, that their work applies to general structure groups

G.

Proposition 4.3.7 Let M = Mg denote a compact Riemann surface of genus

g, and let n > 1 be an integer. Then the space Akflat(n) of flat connections on a

trivial rank n bundle over M is 2g(n− 1)-connected, and if M is a non-orientable

surface with double cover Mg, then the space of flat connections on any principal

U(n)-bundle over M is (g(n− 1)− 1)-connected.

Proof. We begin by noting that Sobolev spaces (of sections of fiber bundles) over

compact manifolds are always second countable; this follows from Bernstein’s proof

of the Weierstrass theorem since we may approximate any function by smooth

functions, and locally we may approximate smooth functions (uniformly up to the

kth derivative for any k) by Bernstein polynomials.

I. The orientable case: By Theorem 4.2.14, we know that the inclusion

Akflat(n) →֒ Ckss(n)
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is a homotopy equivalence, so it suffices to show that Ckss(n) is 2g(n−1)-connected.

Since Ck(n) is a second countable Banach space, we may apply Corollary 4.3.6. The

Harder-Narasimhan stratification gives the desired decomposition of Ck(n)−Ckss(n)

into locally closed submanifolds of finite codimension. The result now follows from

the calculation of codimensions in Lemma 4.3.3.

II. The non-orientable case: We work in the set-up of non-orientable Yang-Mills

theory, as developed by Ho and Liu [23]. Let M be a non-orientable surface with

double cover Mg, and let P be a principal U(n)-bundle over M . Let π : Mg → M

be the projection, and let P̃ = π∗P . Then the deck transformation τ : Mg → Mg

induces an involution τ̃ : P̃ → P̃ , and τ̃ acts on the space Ak(P̃ ) by pullback.

Connections on P pull back to connections on P̃ , and in fact, as observed by Ho [22],

the image of the pullback map is precisely the set of fixed points of τ . Hence we

have a homeomorphism Ak(P ) ∼= Ak(P̃ )eτ , which we treat as an identification. The

Yang-Mills functional L is invariant under τ̃ , and hence its gradient flow restricts

to a flow on Ak(P ).

The flat connections on P pull back to flat connections on P̃ , and again the

image of Akflat(P ) in A(P̃ ) is precisely Akflat(P̃ )eτ . If we let Ckss(P ) denote the fixed

set Ckss(P̃ )eτ , then the gradient flow of L restricts to give a deformation retraction

from Ckss(P ) to Akflat(P ). The complement of Ckss(P ) in Ak(P ) may be stratified as

follows: for each Harder-Narasimhan stratum Ckµ(P̃ ) ⊂ Ak(P̃ ) ∼= Ck
(
P̃ ×U(n) Cn

)
,

we consider the fixed set Ckµ(P ) :=
(
Ckµ(P̃ )

)eτ
. By [23, Proposition 17], Ckµ(P ) is

a real submanifold of Ak(P ), and if it is non-empty then its real codimension in

Ak(P ) is half the real codimension of Ckµ(P̃ ) in Ak(P̃ ). The codimensions of the

non semi-stable strata Ckµ(P ) are hence at least g(n−1)+1 (by Lemma 4.3.3). The

result now follows from Corollary 4.3.6. 2

Corollary 4.3.8 For any compact Riemann surface M and any n > 1, the repre-

sentation space Hom(π1(M), U(n)) is connected. In particular, Rep(π1M) is stably

group-like.

Proof. The genus 0 case is, of course trivial. Now, for any g, n > 1 we have

2g(n−1) > 0, so Proposition 4.3.7 implies that Akflat(n) is connected. Connectivity
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of Hom(π1(M), U(n)) will follow from Proposition 4.2.8, once we check that any

U(n) bundle over a Riemann surface which admits a flat connection is trivial.

Let P be a U(n)-bundle with a flat connection. Then the Chern classes of P are

all zero; this follows from Chern-Weil theory, but can also be seen more elementarily

as follows. Since M is 2-dimensional, only c1 can be non-zero and c1(P ) = c1(detP ).

Now, P is isomorphic to the bundle Eρ associated to its holonomy representation

ρ via mixing with universal cover, and det(Eρ) ∼= Edetρ. But det(ρ) is a homomor-

phism to the abelian group U(1), and hence factors through H1(M) = Z2g; since

Z2g is free abelian we may now connect this homomorphism to the identity by a

path. This gives a bundle homotopy between det(Eρ) and the trivial bundle. (I

learned this argument from [45].)

Now, the bundle P is determined up to isomorphism by its classifying map

M → BU(n), and since the 3-skeleton of (a minimal cell complex for) BU(n) is a

2-sphere, we see that this map is classified by its degree. But this degree is precisely

the Chern class of P , and hence must be nullhomotopic. 2

Corollary 4.3.9 Let M be a compact, non-orientable, aspherical surface. Then

for any n > 1, the representation space Hom(π1M,U(n)) has two connected com-

ponents, and if ρ ∈ Hom(π1M,U(n)) and ψ ∈ Hom(π1M,U(m)) lie in the non-

identity components, then ρ⊕ψ lies in the identity component of Hom(π1M,U(n+

m)). In particular, Rep(π1M) is stably group-like.

Proof. It follows immediately from Proposition 4.3.7 that the space of flat connec-

tions on any principal U(n)-bundle over M is connected, unless n = 2 and the genus

of the universal cover of M is 1, i.e. M is the Klein bottle. In this case of the Klein

bottle, we give a separate algebraic argument in Proposition 6.1.11. (Note though

that our main interest at the moment is in the statement that Rep(π1M) is stably

group-like, and to prove this, we are free to ignore the structure of Hom(π1M,U(n))

for small n.)

Now, we claim that there are precisely two isomorphism types of principal U(n)-

bundles over any non-orientable surface. A map from M into BU(n) may be ho-

motoped to a cellular map, and since the 3-skeleton of BU(n) is a 2-sphere, the

classification of U(n)-bundles is independent of n. Hence it suffices to compute
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relative K-theory, which is easily done using the Mayer-Vietoris sequence together

with the fact that M is stably a wedge (see Lemma 4.5.1). (Note here that since

BU(n) is simply connected, the sets of unbased and based homotopy classes of

maps M → BU(n) are the same.) The homeomorphism from Proposition 4.2.8

now shows that Hom(π1M,U(n)) has at most two components, and the simple

invariant developed by Ho and Liu [24, 25] easily shows that the representation

spaces have at least two components (a discussion of their invariant, adapted to the

present situation, appears in Chapter 6; see in particular Proposition 6.1.5 and the

end of the proof of Theorem 6.1.9).

To complete the proof, we need to show that the sum of two representations in

the non-identity components of Hom(π1M,U(−)) lies in the identity component. It

suffices to check that the sum of two non-trivial bundles P and Q over M is trivial.

The first Chern classes satisfy c1(P ⊕Q) = c1(P )⊕ c1(P ), and the first Chern class

of a non-trivial bundle on M is always the non-trivial element of H2(M,Z) ∼= Z/2Z

(certainly there exists a U(n) bundle over M with non-zero first Chern class, and

there is only one non-trivial bundle in each dimension). So c1(P ⊕ Q) = 0, and

since, as just explained, all non-trivial bundles over M have non-trivial first Chern

class, we conclude that P ⊕Q is trivial. 2

4.4 Proof of the Atiyah-Segal theorem for surface

groups

Theorem 4.4.1 Let M be a compact, aspherical surface (in other words, M 6=

S2,RP 2). Then for ∗ > 0,

K∗
def(π1(M)) ∼= K∗(M),

where K∗(M) = π∗Map(M,Z × BU) denotes the complex K-theory of M . In the

non-orientable case, this in fact holds in degree 0 as well; in the orientable case, we

have K0
def(π1(M)) ∼= Z.
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The cohomology of a compact surface is easily computed, and together with

the Atiyah-Hirzebruch spectral sequence this immediately yields a computation

of complex K-theory. Thus Theorem 4.4.1 gives a complete computation of the

deformation K-groups.

Corollary 4.4.2 If Mg is a compact Riemann surface of genus g > 0, then we

have

K∗
def(π1M

g) =





Z, ∗ = 0

Z2g, ∗ odd

Z2, ∗ even, ∗ > 0.

Let M be a compact, non-orientable surface of the form M = Mg#Nj (g > 0),

where j = 1 or 2 and N1 = RP 2, N2 = RP 2#RP 2 (so N2 is the Klein bottle). So

long as M 6= RP 2, we have:

K∗
def(π1M

g#Nj) =

{
Z⊕ Z/2Z, ∗ even

Z2g+j−1, ∗ odd.

Proof of Theorem 4.4.1.

I. The orientable case: Let M be a Riemann surface of genus g > 0. We will

show that for any ∗ ≥ 0,

K∗
def(π1(M)) ∼= π∗(Map0(M,BU)),

where Map0 denotes the connected component of the constant map. This will

clearly suffice. In fact, we will exhibit a zig-zag of weak equivalences between the ze-

roth space of the deformation K-theory spectrum and the space Z×Map0(M,BU).

By Proposition 4.1.1, the zeroth space of the spectrum Kdef(π1M) is weakly

equivalent to

hocolim
−→

⊕1

Rep(π1M)hU .

Corollary 4.2.12, together with the definition of Rep(π1M)hU , shows that this space

is weakly equivalent to

hocolim
−→

⊕τ

∐

[Pn]

(
Akflat(P

n)
)
hGk+1(Pn)

,
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where the maps are induced by direct sum with the trivial connection τ on the

trivial line bundle ε1 (and the maps Gk+1(P n) → Gk+1(P n ⊕ ε1) are induced by

block sum with the identity 1 ∈ Gk+1(ε1)). Since Akflat(P
n) = ∅ unless P n is trivial

(see the proof of Corollary 4.3.8), this space is simply

Z× hocolim
−→

⊕τ

Akflat(ε
n)hGk+1

0 (n).

Proposition 4.3.7 shows that the connectivity of the projections Akflat(ε
n)hGk+1(n) →

BGk+1(n) tends to infinity, and hence these maps induce a weak equivalence

Z× hocolim
n→∞

Akflat(ε
n)hGk+1(n) −→ Z× hocolim

n→∞
BGk+1(n). (4.3)

(Here we are simply using the fact that the homotopy groups of a mapping telescope

are the colimit of the homotopy groups; one need not consider the homotopy fiber of

this map.) By Lemma 4.2.3, the inclusion Gk+1(n) →֒ G(n) is a weak equivalence,

so we may replace Gk+1(n) with G(n) on the right. Recall that so far we have

been using Milnor’s functorial model for classifying spaces (see Remarks 4.1.2). To

complete the proof, we will need to instead use Atiyah and Bott’s model [6, Section

2] for the classifying space of G(n). Their result states that the natural map

Map(M,EU(n))→ Map0(M,BU(n))

is a universal principal Map(M,U(n)) = G(n) bundle, where Map0 denotes the

connected component of the constant map. We now have weak equivalences (see

Remark 4.1.2)

BG(n)←− (EG(n)×Map(M,EU(n))) /Map(M,U(n)) −→ Map0(M,BU(n)),

which are natural in n and hence induce weak equivalences on homotopy colimits

(taken with respect to the maps induced by the standard inclusions U(n) →֒ U(n+

1)). The space hocolimn→∞ Map0(M,BU(n)) is weakly equivalent to the colimit

Map0(M,BU), since maps from compact sets into a colimit land in some finite

piece.
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Hence we have a zig-zag of weak equivalences connecting the zeroth space of

Kdef(π1M) to Z×Map0(M,BU), as desired.

II. The non-orientable case: Let M be a non-orientable surface. Once again,

Proposition 4.1.1 and Corollary 4.2.12 tell us that the zeroth space of Kdef(π1M)

is weakly equivalent to

hocolim
−→

⊕τ

∐

[Pn]

(
Akflat(P

n)
)
hGk+1(Pn)

.

By Proposition 4.3.7 we know that Akflat(P
n) is

(
g
(
M̃
)

(n− 1)− 1
)
-connected

for any U(n)-bundle P n, where g
(
M̃
)

denotes the genus of the double cover of

M . Since we have assumed M 6= RP 2, we know that g
(
M̃
)
> 0, and hence the

connectivity of Akflat(P
n) tends to infinity with n. This shows that the natural map

hocolim
−→

⊕τ

∐

[Pn]

(
Akflat(P

n)
)
hGk+1(Pn)

−→ hocolim
−→

⊕1

∐

[Pn]

BGk+1(P n)

is a weak equivalence (on the right hand side, 1 denotes the identity element in

Gk+1(ε1)). As in the orientable case, we may now switch to the Atiyah-Bott models

for BG(P n), obtaining the space

hocolim
n→∞

∐

[Pn]

MapP
n

(M,BU(n)),

where MapP
n

denotes the component of the mapping space consisting of those maps

f : M → BU(n) with f ∗(EU(n)) isomorphic to P n. But since the union is taken

over all isomorphism classes, this space is simply

Z× hocolim
n→∞

Map(M,BU(n)),

and as before is weakly equivalent to

Z×Map(M,BU) = Map(M,Z× BU).
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2

We now make the following conjecture regarding the homotopy type of the

spectrum Kdef(π1M), as a module over the connective K-theory spectrum ku.

Note that it is easy to check (using Theorem 4.4.1) that the homotopy groups of

the proposed spectrum are the same as K∗
def(π1(M)).

Conjecture 4.4.3 For any Riemann surface Mg, the spectrum Kdef(π1M) is

weakly equivalent, as a ku-module, to

ku ∨

(
∨

2g

Σku

)
∨ Σ2ku.

4.5 Stable representation spaces

Using an argument similar to the proof of Theorem 4.4.1, we can extract the

homotopy type of the representation spaces Hom(π1(M), U(n)), after stabilizing

with respect to rank, as well as the connectivity of the inclusions

Hom(π1(M), U(n)) →֒ Hom(π1(M), U(n + 1)).

First we need a simple lemma regarding the (stable) homotopy types of surfaces,

and a well-known fact about connectivity of mapping spaces.

Lemma 4.5.1 Let Mg
j denote the surface Mg#Nj, j = 0, 1, or 2, where N0 = S2,

N1 = RP 2, and N2 = K is the Klein bottle. Then

ΣMg
j ≃ Σ(

∨

2g

S1 ∨Nj).

Proof. In the standard cell decomposition of Mg
j , the single 2-cell is attached via

the relator map

αj =

g∏

1

[ai, bi] · ωj : S1 →
∨

2g+j

S1,
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where

ωj =





∗, j = 0

c2, j = 1

cdc−1d, j = 2.

Here ai, bi, c and d denote the identity maps from S1 to the various wedge factors

in
∨

2g+j S
1 and ∗ denotes the constant map to the wedge point. Hence we may

identify Mg
j with the mapping cone

C(αj) = C(S1) ∪αj

∨

2g+j

S1.

Letting C ′(X → Y ) = C(X → Y )/{x0} × I denote the reduced mapping cone,

where x0 ∈ X is the basepoint, it is easy to check that reduced mapping cones

commute with reduced suspensions in the sense that there is a homeomorphism

C ′(ΣX
Σf
−→ ΣY ) ∼= ΣC ′(X

f
−→ Y ).

Hence ΣM = Σ(Cαj) ≃ C(Σαj), and since Σ induces a homomorphism

π1

(
∨

2g+j

S1

)
−→ π2

(
∑

(
∨

2g+j

S1

))
,

we have Σαj = Σ(
∏g

1[ai, bi] · ωj) ≃
∏g

1[Σai,Σbi] · Σωj. But π2 is abelian, so for

each i, [ai, bi] is nullhomotopic and hence C(Σαj) is homotopy equivalent to the

mapping cone of the map

Σωj : S2 −→
∑

(
∨

2g+j

S1

)
∼=
∨

2g+j

S2.

Letting ωj denote the map S1 →
∨
j S

1 defined by the same word ωj, we now have

C(Σωj) =

(
∨

2g

S2

)
∨ Σ(Cωj) =

(
∨

2g

S2

)
∨ ΣNj = Σ

(
∨

2g

S1 ∨Nj

)
,

as desired. 2
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Lemma 4.5.2 Let f : X → Y be an d-connected map. Then for any finite k-

dimensional CW-complex K, the map

Map∗(K,X) −→Map∗(K, Y )

induced by f is (d− k)-connected. The same statement holds for unbased mapping

spaces. (Here an n-connected map is a map inducing isomorphisms on homotopy

through dimension n, and inducing a surjection on πn+1. When the spaces in ques-

tion are not connected, we require these conditions for all compatible choices of

basepoints.)

Proof. We prove the statement in the based case; the argument in the unbased

case is identical. The proof is by induction on k. If k = 0, then K is a finite set of

points, and so Map∗(K,X) and Map∗(K, Y ) are just products of |K| copies of X

and Y respectively. So the result is immediate in this case. Now, assume the result

for spaces of dimension less that k. Letting K(k−1) denote the (k− 1)-skeleton, the

inclusion K(k−1) →֒ K is a cofibration and hence the restriction map

Map∗(K,X) −→ Map∗(K
(k−1), X)

is a fibration, and similarly for Y . The fibers over the constant map are then

the based mapping spaces Map∗(K/K
(k−1), X) and Map∗(K/K

(k−1), Y ). Since

K/K(k−1) is a wedge of k-spheres, we find that Map∗(K/K
(k−1), X) is a prod-

uct of copies of ΩkX and similarly for Y . Since f : X → Y is d-connected, the

map ΩkX → ΩkY is (d − k)-connected, and by induction we may assume that

Map∗(K
(k−1), X) → Map∗(K

(k−1), Y ) is d − (k − 1) = d − k + 1 connected. The

result now follows (using the strong 5-lemma) from the diagram of fibrations

(ΩkX)n //

��

(ΩkY )n

��
Map∗(K,X) //

��

Map∗(K, Y )

��

Map∗(K
(k−1), X) // Map∗(K

(k−1), Y ).
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2

Theorem 4.5.3 Let M = Mg be a compact Riemann surface of genus g > 0.

Then there is a homotopy equivalence

Hom(π1(M
g), U) ≃ U2g × BU,

and the inclusions

Hom(π1(M
g), U(n))

in
→֒ Hom(π1(M

g), U(n + 1))

are precisely (2n− 2)-connected. Hence for k 6 2n− 2, we have

πkHom(π1M,U(n)) ∼= πk
(
U2g ×BU

)
=





0, k = 0,

Z2g, k odd,

Z, k = 2l with l > 0.

The phrase “precisely (2n − 2)-connected” means that the maps in are not

(2n−1)-connected: we will show that these maps do not induce surjections on π2n.

One may also ask whether in induces a isomorphism on π2n−1, rather than just a

surjection. In general we do not know the answer, but when n = 1, U(1) = S1 is

abelian and we have

Hom(π1(M
g), S1) ∼= Hom(Z2g, S1) ∼= (S1)2g.

Hence the surjections

Z2g = π1 (Hom(π1(M
g), U(1)) −→ π1 (Hom(π1(M

g), U(m))) = Z2g

must in fact be isomorphisms (note that on the right hand side, this group is in

the stable range so long as m > 2). (One can also see this from the proof of

Theorem 4.5.3, using the fact that all holomorphic structures on M × C are semi-

stable, so Akflat(ε
1) is contractible.) The determinant maps U(m)→ U(1) split the

inclusions U(1) →֒ U(m), and hence induce inverse isomorphisms on fundamental

groups of the representation spaces.
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Corollary 4.5.4 Let Mg be a Riemann surface of genus g > 1. Then the maps

Z2g = π1 (Hom(π1(M
g), U(1))) −→ π1 (Hom(π1(M

g), U(m)))

are isomorphisms, with inverses induced by the determinant maps U(m)→ U(1).

Proof of Theorem 4.5.3. In analogy with the proof of Theorem 4.4.1, we have a

diagram

Hom(π1(M), U(n))
in // Hom(π1(M), U(n + 1))

Akflat(ε
n)hGk+1

0 (n)

≃
OO

pn

��

// Akflat(ε
n+1)hGk+1

0 (n+1)

≃

OO

pn+1

��

BGk+1
0 (n)

OO

≃

��

// BGk+1
0 (n+ 1)

OO

≃

��

Map0
∗(M,BU(n)) // Map0

∗(M,BU(n + 1)).

(4.4)

The double headed arrows in the bottom square abbreviate a zig-zag of weak equiv-

alences, as we will explain. The notation Map0
∗ denotes the component of the based

mapping space consisting of all null-homotopic maps. The map

Map∗(M,EU(n))→ Map0
∗(M,BU(n))

is a universal principal G0(n)-bundle (the proof is analogous to the corresponding

proof for G(n), given in [6, Section 2]) so we have weak equivalences

BGk+1
0 (n)

≃
−→ BG0(n) ≃ Map0

∗(M,BU(n)).

The final weak equivalence is again a natural zig-zag, just as in Remark 4.1.2.

In Diagram (4.4), the first and third vertical maps are weak equivalences. Since

Akflat(ε
n) has connectivity 2g(n− 1), the fibration

pn : Akflat(ε
n)hGk+1

0 (n) −→ BGk+1
0 (n)

is a 2g(n−1)-connected map and similarly pn+1 is (2gn)-connected; note that since
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g > 1 both of these connectivities are at least 2n− 2.

The inclusions U(n) →֒ U(n + 1) are (2n− 1)-connected (this follows from the

fibration U(n) →֒ U(n + 1) −→ S2n+1) so by Lemma 4.5.2, the inclusions

Map0
∗(M,BU(n)) →֒ Map0

∗(M,BU(n + 1))

are (2n− 2)-connected. It now follows from commutativity of Diagram (4.4) that

the inclusions

in : Hom(π1M,U(n)) →֒ Hom(π1M,U(n + 1))

are (2n − 2)-connected (note that on π2n−1, the map pn induces a surjection and

pn+1 induces an isomorphism, so we may conclude, as desired, that in induces a

surjection on π2n−1).

To show that the map in is not more highly connected, we will check that the

induced map

π2nHom(π1M,U(n)) −→ π2nHom(π1M,U(n + 1))

is never surjective. We first note that surjectivity of this map would imply surjec-

tivity of the other horizontal maps in Diagram (4.4); note that the connectivity of

pn+1 is (at least) 2gn > 2n. So we just need to show that the bottom map

π2nMap0
∗(M,BU(n)) −→ π2nMap0

∗(M,BU(n + 1)) ∼= Z

is not surjective. The group on the left does not lie in the stable range, and we now

show that it is in fact torsion. The skeletal filtration of M induces a long exact

sequence in homotopy for the spaces of based maps into BU(n), and this sequence

has the form

· · · −→ π2nΩ
2BU(n) −→ π2nMap∗(M,BU(n)) −→ π2n (ΩBU(n))2g −→ · · · .

The left and right terms are π2n+1U(n) and (π2nU(n))2g, and these groups are

both torsion. In fact, π2nU(n) ∼= Z/n!Z [9], and π2n+1U(n) is trivial for odd n, and

isomorphic to Z/2 for even n [46, 27]. This completes our connectivity calculations.
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To determine the homotopy type of Hom(π1(M
g), U), we begin by noting the

homeomorphism

colim
n→∞

Hom(π1(M
g), U(n))

∼=
−→ Hom(π1(M

g), U).

Moreover, the map from the homotopy colimit to the colimit is a weak equivalence

because in either case compact sets lie in some finite piece. So we have

Hom(π1(M
g), U) ≃ hocolim

n→∞
Hom(π1(M

g), U(n)).

Now, taking homotopy colimits in Diagram (4.4) gives

hocolim
n→∞

Hom(π1(M
g), U(n)) ≃ hocolim

n→∞
Map0

∗(M,BU(n)).

Furthermore, the right-hand side is again weakly equivalent to the colimit

colim
n→∞

Map0
∗(M,BU(n)) ∼= Map0

∗(M,BU).

Bott periodicity, adjointness, and Lemma 4.5.1 combine to give a sequence of

homotopy equivalences

Map0
∗(M

g, BU) = Map0
∗(M

g,Z× BU) ≃ Map0
∗(M

g,ΩU) ∼= Map0
∗(ΣM

g , U)

≃ Map0
∗(Σ(S2 ∨

∨

2g

S1), U) ≃ Map0
∗(S

2 ∨
∨

2g

S1,ΩU) ≃ Map0
∗(S

2 ∨
∨

2g

S1,Z×BU).

By Bott Periodicity, the full based mapping space on the right is homotopy equiv-

alent to Z × U2g × BU . Hence we have a zig-zag of weak equivalences between

Hom(π1(M
g), U) and U2g × BU .

We claim that both of these spaces have the homotopy type of CW-complexes.

Note that Hom(π1(M
g), U(n)) is a real algebraic variety and Hom(π1(M

g), U(n−1))

is included as a subvariety, and hence these spaces have compatible triangula-

tions [21]. Thus the inclusions are cofibrations, meaning that the homotopy colimit

of these spaces is a CW-complex and the projection to the colimit is a homotopy

equivalence. Similarly, U = colimU(n) and BU = colimBU(n) have the homotopy
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type of (countable) CW-complexes; hence so does U2g × BU .

By using CW-approximations, we obtain a new zig-zag of weak equivalences be-

tween Hom(π1(M
g), U) and U2g×BU , in which all other spaces are CW-complexes.

By the Whitehead Theorem, we may (homotopy) invert the maps in this zig-zag

to obtain an honest homotopy equivalence Hom(π1(M
g), U)

≃
→ U2g ×BU . 2

There are similar results (proven in essentially the same manner) regarding the

homotopy orbit spaces Hom(π1(M
g), U(n))hU(n). In particular, their colimit has

the (weak) homotopy type of U2g × (BU)2. Results of Park and Suh [38] show

that Hom(π1(M
g), U(n)) is a U(n)-CW complex, and hence these homotopy orbit

spaces are CW complexes as well. Moreover, the inclusions are cofibrations, and

we may again conclude that we have an actual homotopy equivalence.

It would of course be interesting to have an explicit homotopy equivalences

between these spaces, both for the representation spaces and their homotopy orbit

spaces. The proofs clearly do not provide explicit maps.

Next we consider the case of a non-orientable surface Mg
j = Mg#Nj , where

j = 1 or 2. Recall that N1 = RP 2, and N2 is the Klein bottle.

Theorem 4.5.5 Let M = Mg
j be as above. Then there is a homotopy equivalence

Hom(π1(M
g
j ), U) ≃ Z/2Z× U2g ×Map∗(Nj , BU),

and letting

µn,g =

{
0, n = 1,

min {2n− 2, g(n− 1)− 1}, n > 1,

the inclusions

Hom(π1M,U(n)) →֒ Hom(π1M,U(n + 1))

are µn,g-connected. Hence in the stable range k 6 µn,g, we have

πkHom(π1M,U(n)) ∼= πk(Z/2Z× U2g ×Map∗(Nj , BU))
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=





Z/2Z⊕ Z/2Z, k = 0

Z2g+j−1, k odd

Z/2Z, k = 2l with l > 0.

The reader should recall our definition of connectivity from Lemma 4.5.2; in

particular the above theorem is valid for any choice of basepoints.

As in the orientable case, several comments are in order. First, say g > 2 and

n > 2. Then the connectivity bound in Theorem 4.5.5 is 2n − 2, and one can see

just as in the orientable case that the maps

π2nHom(π1M,U(n)) −→ π2nHom(π1M,U(n + 1))

are not surjective. Hence in these cases the connectivity bound cannot be improved.

When n = 1 (so µn,g = 0), we have Hom(π1(M
g
j , U(1)) ∼= Z/2Z × (S1)2g+j−1, and

as in the orientable case the maps

Hom(π1(M
g
j ), U(1)) −→ π1Hom(π1(M

g
j ), U(m))

are all isomorphisms on π1 (with inverse given by the determinant map), but are

certainly not 1-connected. In the remaining cases, the upper bound for connectivity

remains at 2n−2, but the lower bound in Theorem 4.5.5 is either n−2 (when g = 1)

or 2n− 3 (when g = 2).

One can also show that the homotopy orbit spaces Hom(π1(M
g
j ), U)hU have the

homotopy type of Z/2Z× U2g ×Map∗(Nj, BU)×BU .

Proof of Theorem 4.5.5. The proof is essentially the same as in the orientable

case. The only subtlety comes in checking connectivity of the map

Hom(π1M
g, U(n)) →֒ Hom(π1M

g, U(n+ 1)).

This is the same as the connectivity of the upper horizontal the map ιn in the
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diagram ∐
[Pn]

Akflat(P )hGk+1
0 (P )

qn
��

ιn //
∐

[Pn+1]

Akflat(Pn+1)hGk+1
0 (Pn+1)

qn+1

��∐
[Pn]

BGk+1
0 (P n) jn //

∐
[Pn+1]

BGk+1
0 (Pn+1).

(4.5)

When k 6 µn,g, we know that qn, qn+1 and jn all induce isomorphisms on πk, and

hence so does ιn (note that when n = 1, all holomorphic structures are semi-stable

and hence q1 is a weak equivalence). The fact that ιn induces a surjection on π1+µn,g

follows easily from the fact that the connectivity of qn+1 is more than that of qn.

The calculation of π∗(Z/2Z×U2g ×Map∗(Nj , BU)) follows from the long exact

sequence for the (split) fibration

Map∗(Nj, BU)) −→ Map∗(Nj , BU))→ BU,

together with knowledge of the groups π∗Map(Nj , BU)). After dimension 0 these

are just the complex K-groups ofNj , andK-theory of RP 2 (and of the Klein bottle)

is easily calculated using the Mayer-Vietoris sequence. 2

4.6 The stable coarse moduli space

We now turn to the quotient space Hom(π1M,U)/U , which we think of as the

stable (coarse) moduli space of representations. Lawson has shown [30] that for

any finitely generated group Γ, there is a homotopy cofiber sequence of spectra

Σ2Kdef(Γ) −→ Kdef(Γ) −→ Rdef(Γ), (4.6)

where Rdef(Γ) denotes the “deformation representation ring” of Γ, as we will ex-

plain. (The first map in this sequence is the Bott map in deformation K-theory, and

is obtained from the Bott map in connective K-theory by smashing with Kdef(G).)

We note that since the Kdef(Γ) is connective, the first two homotopy groups of

Σ2Kdef(Γ) are zero, and hence the long exact sequence in homotopy associated to
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(4.6) immediately gives isomorphisms

Ki
def(Γ) ∼= πiR

def(Γ) (4.7)

for i = 0, 1.

The deformation representation ring Rdef(Γ) is the spectrum associated to the

abelian topological monoid

Rep(Γ) =

∞∐

n=0

Hom(Γ, U(n))/U(n).

We briefly discuss the construction of this spectrum. Given any topological abelian

monoid A (for which the inclusion of the identity is a cofibration), one may ap-

ply Segal’s infinite loop space machine [42] to produce a connective Ω-spectrum;

equivalently the bar construction BA is again an abelian topological monoid and

one may iterate. In particular, the zeroth space of this spectrum is exactly ΩBA.

Hence we have

π∗R
def(Γ) ∼= π∗ΩB

(
Rep(Γ)

)
.

It is in general rather easy to identify the group completion ΩBA when A is an

abelian monoid; in light of Theorem 3.0.11 one essentially just needs an under-

standing of π0(A). In the case of surface groups, we have the following result,

whose proof we sketch for completeness.

Proposition 4.6.1 Let Γ be a finitely generated discrete group, and assume that

Rep(Γ) stably group-like with respect to the trivial representation 1 ∈ Hom(Γ, U(1))

(e.g. Γ = π1M with M an aspherical compact surface). Then the zeroth space of

Rdef(Γ) is weakly equivalent to K0
def(Γ)× Hom(Γ, U)/U . Hence we have

π∗Hom(Γ, U)/U ∼= π∗R
def(Γ)

for ∗ > 0, and in particular π1Hom(Γ, U)/U ∼= K1
def(Γ).

Proof. This follows from (a rather easy case of) Theorem 3.0.11. Specifically,

when Rep(Γ) is stably group-like with respect to the trivial representation 1 ∈
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Hom(Γ, U(1)), the same is true for the monoid of isomorphism classes Rep(Γ).

We can now apply Theorem 3.0.11, because the additional hypothesis (that the

representation 1 must be “anchored”) is trivially satisfied for abelian monoids.

Hence we conclude that there is a weak equivalence

ΩB
(
Rep(Γ)

)
≃ hocolim

−→

⊕1

Rep(Γ).

The monoid of connected components of these spaces is the Grothendieck group of

π0

(
Rep(Γ)

)
, but since U(n) is connected the projection induces an isomorphism

π0Rep(Γ) ∼= π0(Rep(Γ)).

Thus the Grothendieck groups of these monoids are isomorphic, and by Lemma 2.0.5

the Grothendieck group on the left is K0
def(Γ).

Since the space ΩB(Rep(Γ)) is a group-like H-space, all of its components are

homotopy equivalent, and hence the same is true of the above homotopy colimit.

To complete the proof we just need to check that one of these components, say

hocolim
n→∞

Hom(Γ, U(n))/U(n),

is weakly equivalent to the actual colimit

colim
n→∞

Hom(Γ, U(n))/U(n).

But the natural projection from the homotopy colimit to the colimit is a weak equiv-

alence, because in each case compact sets land in some finite piece (for the colimit,

this requires that points are closed in Hom(Γ, U(n))/U(n); this space is in fact

Hausdorff because the orbits of U(n) are compact, hence closed in Hom(Γ, U(n)),

which is a metric space, hence normal). 2

Combining Proposition 4.6.1 with (4.7) and the computation of Kdef(π1M) in

Theorem 4.4.1, we have:
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Corollary 4.6.2 If Mg is a compact Riemann surface of genus g, then

π1 (Hom(π1M,U)/U) ∼= Z2g.

In the non-orientable cases, we have

π1

(
Hom(π1M

g#RP 2, U)/U
)
∼= Z2g and π1 (Hom(π1M

g#K,U)/U) ∼= Z2g+1,

where K denotes the Klein Bottle.

We note that the proof of this result requires not only the Yang-Mills theory

used to prove Theorem 4.4.1 (which includes deep analytical results like Uhlenbeck

compactness and convergence of the Yang-Mills flow) but also the modern stable

homotopy theory underlying Lawson’s cofiber sequence. His results require, for

example, the model categories of module and algebra spectra constructed in [13].

Assuming Conjecture 4.4.3, we know that for Riemann surfaces, Kdef(π1M
g)

is free as a ku-module. Hence the Bott map is easily calculated, and one may

compute the homotopy groups of Hom(π1(M
g), U)/U . It is interesting to note that

they vanish above dimension 2. The reader should note the similarity between this

calculation (and the previous theorem) and the main result of Lawson’s paper [30],

which states that Uk/U , the space of isomorphism classes of representations of a

free group, has the homotopy type of Sym∞(S1)k = Sym∞B(Fk). (Of course this

space is homotopy equivalent to (S1)k.)

4.7 Free products

The behavior of deformation K-theory on free products will be described in

Theorem 5.1.1. This theorem allows one to calculate K∗
def(π1(M1 ∨M2)) for any

compact, aspherical surfaces M1 and M2 (using our computation of deformation K-

theory of the factors in Theorem 4.4.1). Similarly, one may calculate K∗(M1∨M2),

obtaining the same answer (in the orientable case, we must assume ∗ > 0). This

provides, computationally at least, an Atiyah-Segal theorem for free products of
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surface groups. In this section we explain a more natural approach, using Yang-

Mills theory.

We need some definitions and lemmas regarding gauge transformations and

flat connections over wedges of manifolds. For these definitions, let M1, . . . ,Ml

denote a collection of smooth, compact manifolds, and let W =
∨l

1Mi. We let

dim(W ) = maxi dim(Mi).

It will be most convenient to work with trivial bundles only; this essentially

amount to restricting attention to the identity component of Hom(π1W,U(n)),

which will suffice for computing K∗
def(π1W ) (when ∗ > 0 and dim(W ) 6 2). We

denote this component by HomI(−, U(n).

Definition 4.7.1 We define the continuous gauge group of the trivial bundle W ×

Cn by setting

G(W,n) = Map(W,U(n)) ⊂
∏

i

G(Mi, n),

and we define the L2
k+1 gauge group to be the subgroup Gk+1(W,n) ⊂

∏
i G

k+1(Mi, n)

consisting of those maps which agree over the wedge point. Note that evaluation at

the wedge point gives a surjective homomorphism Gk+1(W ) −→ U(n), with kernel

the product of the L2
k+1 based gauge groups of the Mi. We will denote this kernel

by Gk+1
0 (W,n), and refer to it as the based gauge group.

Remark 4.7.2 We will assume throughout this section that our Sobolev parameter

k is greater than dim(W )/2. This will allow us to apply the results of Section 4.2

on each wedge factor of W .

Just as in Lemma 4.2.3, the inclusion Gk+1(W,n) →֒ G(W,n) is a weak equiv-

alence, and just as in [6, Section 2] the space Map0(W,BU(n)) is a model for the

classifying space of G(W,n).

Definition 4.7.3 We define the space Ak(W,n) of L2
k connections on the trivial

bundle (W )×Cn to be the product
∏

iA
k(Mi, n), and we define the space Akflat(W,n)

of flat L2
k connections to be the subspace

∏
iA

k
flat(Mi, n).

Note that Ak(W,n) is always contractible, since it is a product of contractible

(affine) spaces.
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Lemma 4.7.4 Assume dim(W ) 6 2. The gauge group Gk+1(W,n) acts continu-

ously on Ak(W,n), and the holonomy map induces a U(n)-equivariant homeomor-

phism

Akflat(W,n)/Gk+1
0 (W,n) −→ HomI(π1W,U(n)),

where the right-hand side denotes the component of the identity.

Proof. Continuity of the action follows from the fact that

Gk+1(W,n) ⊂
∏

i

Gk+1(Mi, n),

and the latter acts continuously on

Akflat(W,n) =
∏

i

Akflat(Mi, n).

The desired homeomorphism now follows from Proposition 4.2.8, because the spaces

and the groups in question are all products. Note here that over a one- or two-

dimensional manifold, the space of flat connections on the trivial U(n)-bundle is

connected (Proposition 4.3.7) so the holonomy of any flat connection on this bundle

lies in HomI(π1W,U(n)). 2

We can now prove the desired version of the Atiyah-Segal theorem for free

products of surface groups. Note that there is a homotopy equivalence B(G ∗H) ≃

BG ∨ BH ; generally the classifying space of an injective amalgamated product is

the homotopy pushout of the classifying spaces [20, Theorem 1B.11].

Theorem 4.7.5 Let M1, . . . ,Mk be one- or two-dimensional aspherical manifolds,

and let W =
∨k

1 Mi. Then there exist isomorphisms

K∗
def(π1(W )) ∼= K∗(W )

for ∗ > 0. These isomorphisms are natural with respect to projections onto the

wedge factors and inclusions of wedge factors. If all of the Mi are either circles or

non-orientable surfaces, then the result holds for ∗ = 0 as well.
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Proof. As in Proposition 4.1.1, we have an isomorphism

K∗
def(π1W ) ∼= π∗ hocolim

−→

⊕1

Rep(π1W )hU .

For ∗ > 0, the latter group is just

π∗ hocolim
n→∞

HomI(π1W,U(n))hU(n),

and one can easily check the result on π0 separately. We can now proceed as in the

proof of Theorem 4.4.1; naturality will be clear from the construction.

For each n, there is a zig-zag of maps connecting

HomI(π1(W ), U(n))hU(n) and Map0(W,BU(n)),

and all but one of these maps is a weak equivalence. The remaining map is the

projection

Akflat(W,n)hGk+1(W,n)
qn
−→ BGk+1(W,n).

Since all of these maps are natural in n, it will suffice to show that qn becomes a

weak equivalence after passing to homotopy colimits.

Since Ak(W,n) is the product of the Ak(Mi, n), we may stratify Ak(W,n) by

the product of the stratifications on the factors. Moreover, each product stratum is

still a locally closed submanifold of finite codimension, and in fact its codimension

is just the sum of the codimensions of its factors. So the codimensions of the

non-semi-stable strata still tend to infinity with n, and we may proceed just as in

Proposition 4.3.7. 2

Just as in Corollary 4.6.2, we have:

Corollary 4.7.6 Let W be as in Theorem 4.7.5. Then there is an isomorphism

π1Hom(π1W,U)/U ∼= K1(W ).



Chapter 5

Excision in deformation K-theory

We begin by describing the excision problem for amalgamated products. Let G,

H , and K be finitely generated discrete groups, with homomorphisms f1 : K → G

and f2 : K → H . Then associated to the co-cartesian (i.e. pushout) diagram of

groups

K
f1 //

f2
��

G

��
H // G ∗K H

there is a diagram of spectra

Kdef(G ∗K H) //

��

Kdef(G)

f∗1
��

Kdef(H)
f∗2 // Kdef(K).

(5.1)

We will say that the amalgamated productG∗KH satisfies excision (for deformation

K-theory) if diagram (5.1) is homotopy cartesian, i.e. if the natural map from

Kdef(G ∗K H) to the homotopy pullback is a weak equivalence. Note that since we

are dealing with connective Ω-spectra, this is the same as saying that the diagram

of zeroth spaces is homotopy cartesian.

Excision may be thought of as the statement that deformation K-theory maps

75
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(certain) co-cartesian diagrams of groups to homotopy cartesian diagrams of spec-

tra. Excision results are important from the point of view of computations, since

associated to any homotopy cartesian diagram of spaces

W
f //

g

��

X

h
��

Y
k // Z

there is a long exact “Mayer-Vietoris” sequence of homotopy groups

. . . −→ πk(W )
f∗⊕g∗
−→ πk(X)⊕ πk(Y )

h∗−k∗−→ πk(Z)
∂
−→ πk−1(W ) −→ . . . (5.2)

which comes from combining the long exact sequences associated to the vertical

maps (see [20, p. 159]; note that the homotopy fibers of the vertical maps in a

homotopy cartesian square are weakly equivalent). It is not difficult to check that if

all the spaces involved are group-like H-spaces, and the maps are homomorphisms

of H-spaces, then the maps in this sequence (including the boundary maps) are

homomorphisms in dimension zero. Hence when applied to (the zeroth spaces of)

the deformation K-theory in an amalgamation diagram, assuming excision one

obtains a long exact sequence in K∗
def .

Deformation K-theory can fail to satisfy excision in low dimensions. We will

now describe examples of this phenomenon (in the unitary case) that arise from the

fundamental groups of Riemann surfaces. Letting M = Mg1+g2 denote the surface

of genus g1 + g2 and Fk the free group on k generators, if we think of M as a

connected sum then the Van Kampen Theorem gives us an amalgamation diagram

Z
c1 //

c2
��

F2g1

��
F2g2

// π1(M).

(5.3)

If we write the generators of F2gi
as ai1, b

i
1, . . . , a

i
gi
, bigi

the map ci is the multiple-

commutator map, sending 1 ∈ Z to
∏gi

j=1[a
i
j, b

i
j ]. If deformation K-theory were

excisive on diagram (5.3), there would be a long exact sequence of the form (5.2).
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Since the representation spaces of Fk are always connected, Rep(Fk) is stably group-

like with respect to 1 ∈ Hom(Fk, U(1)). Hence (using Corollary 3.0.16) one finds

that the induced map c∗i : K∗
def(F2gi

)→ K∗
def(Z) may be identified with the map

π∗(Z× (U2gi)hU)→ π∗(Z× UhU)

induced by the multiple commutator map C : U2gi → U (here the actions of U are

via conjugation). The induced map C∗ on homotopy is always zero, and from the

diagram of fibrations

U2gi //

C

��

EU ×U U2gi //

��

BU

=

��
U // EU ×U U // BU

one now concludes (using Bott Periodicity) that c∗i is zero for ∗ odd.

Next, Lemma 2.0.5 implies that K0
def(Fk)

∼= Z for any k, and moreover that

any map between free groups induces an isomorphism on K0
def (essentially K0

def just

records the dimension of a representation). Hence excision would give us a long

exact sequence ending with

K1
def(Fg1)⊕K

1
def(Fg2)

0
−→ K1

def(Z) →֒ K0
def(π1(M)) −→ Z⊕ Z ։ Z,

which would imply an isomorphism K0
def(π1(M)) ∼= Z⊕K1

def(Z). Now, K1
def(Z) ∼=

π1(EU ×U U), and it is well-known that the latter space is weakly equivalent to the

free loop space of BU (see [18] for an elegant proof) and hence has fundamental

group Z. The representation spaces of the fundamental group of a compact Rie-

mann surface are always connected (see Corollary 4.3.8), so as with Fk we have

K0
def(π1(M)) ∼= Z. This contradiction shows that excision cannot hold for such

diagrams.

On the other hand, we do expect that connected sum decompositions satisfy

excision above dimension zero. Theorem 4.4.1 tells us that the homotopy groups

of Kdef (π1(M
g1#Mg2)) are isomorphic to K∗(Mg1#Mg2) in positive dimensions,

and the same is true for the free groups appearing in this amalgamation diagram
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(Theorem 4.7.5). The Mayer-Vietoris sequences for the homotopy pullback H of

the diagram

Kdef(F2g1) −→ Kdef(Z)←− Kdef(F2g2)

and for K∗(Mg1#Mg2) show that these groups are also (abstractly) isomorphic

above dimension zero. Hence we conclude that the deformation K-groups of the

amalgamated product are (abstractly) isomorphic to the homotopy groups of the

homotopy pullback H. Unfortunately, this is not enough to conclude that the

natural map

Kdef (π1(M
g1#Mg2)) −→ H

is a weak equivalence; one needs some sort of naturality.

One approach is to try to relate the square

Kdef (π1(M
g1#Mg2)) //

��

Kdef(F2g2)

��
Kdef(F2g1) // Kdef(Z)

to the square of mapping spaces

Map(Mg1#Mg2 , BU) //

��

Map ((S1)2g2, BU)

��
Map ((S1)2g1 , BU) // Map(S1, BU),

which is clearly homotopy cartesian (this is essentially excision for complex K-

theory). The problem, though, is that the zig-zags of maps connecting the corners

of these squares, as constructed in Chapter 4, does not complete to a diagram of

squares: the multiple commutator maps Z→ F2gi
do not correspond to maps from

the space of flat connections over the appropriate wedges of circles to the space of

flat connections over S1 (flat connections over a wedge of manifolds were discussed

in Section 4.7). There are other methods for relating deformation K-theory of a

free group to the above mapping spaces, as in [30] or the appendix to [18], but these

maps bear no obvious relation to our arguments for surface groups, so one again

meets problems of commutativity. Nevertheless, we make the following conjecture:
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Conjecture 5.0.7 Let M1 and M2 be compact surfaces such that the connected

sum M1#M2 is aspherical, and let ki denote the rank of the free group π1(Mi−D2),

where D2 ⊂Mi is a disk. Then the natural map

K∗
def (π1(M1#M2)) −→ π∗ holim (Kdef(Fk1) −→ Z←− Kdef(Fk2))

is an isomorphism for ∗ > 0. (If M1#M2 is non-orientable, then we expect that

this holds for ∗ = 0 as well; see Proposition 5.2.5 for further evidence.)

5.1 Excision for free products

In this section we present our results on the excision problem for free products

and discuss some resulting computations. Using the results from Chapter 3, we will

show that deformation K-theory satisfies excision for free products:

Theorem 5.1.1 Let G and H be finitely generated discrete groups. Then the

diagram of spectra

Kdef(G ∗H) //

��

Kdef(G)

��
Kdef(H) // Kdef({1})

is homotopy cartesian.

Note that Kdef({1}) ≃ ku, the complex connective K-theory spectrum, since

(in the unitary case) Rep({1})hU =
∐∞

n=0BU(n). This also holds for general linear

deformation K-theory, because U(n) ≃ GLn(C).

As discussed above, Theorem 5.1.1 yields a long exact sequence in K∗
def . In fact,

the boundary maps in this sequence are always zero because the map K∗
def(G) →

K∗
def({1}) admits an obvious splitting. Hence we conclude:

Corollary 5.1.2 For any finitely generated discrete groups G and H, the diagram
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of homotopy groups

K∗
def(G ∗H) //

��

K∗
def(G)

��
K∗

def(H) // K∗
def({1})

is cartesian. For ∗ odd, K∗
def({1}) = π∗ku = 0 and hence K∗

def(G ∗H) = K∗
def(G)⊕

K∗
def(H).

The proof of Theorem 5.1.1 requires a technical result regarding the topology

of homotopy orbit spaces.

Lemma 5.1.3 For any discrete groups G, H and K, the homotopy orbit space

Hom(G ∗K H,U(n))hU(n) is naturally homeomorphic to the pullback

Hom(G,U(n))hU(n) ×Hom(K,U(n))hU(n)
Hom(H,U(n))hU(n).

The analogous statement holds for the general linear groups in place of the unitary

groups.

Proof. It follows from the proof of Proposition 2.0.4 that for any group L, the

space Hom(L,U(n))hU(n) is homeomorphic to the realization of a simplicial space

of the form ∣∣k 7→ U(n)k ×Hom(L,U(n))
∣∣ .

The lemma now follows from the fact that geometric realization commutes with

pullbacks in the category of compactly generated spaces. The proof for GLn(C) is

identical. 2

Remark 5.1.4 The above result actually holds much more generally, for homotopy

orbit spaces formed using any reasonable model for the universal bundle. One cannot

in general use simplicial spaces, though, and hence a somewhat lengthy point-set

argument is required.

Proof of Theorem 5.1.1. The proofs for the general linear and unitary cases are

identical, so we work in the unitary case. The proof involves reducing to a diagram

of homotopy orbit spaces, which will be homotopy cartesian by Lemma 5.1.3.
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We begin by noting that since the spectra involved are all connective Ω-spectra,

it will suffice to show that the diagram of zeroth spaces is homotopy cartesian. In

order to apply Theorem 3.0.11 we need to filter the underlying monoids by sub-

monoids which are stably group-like with respect to compatible representations.

For each n = 1, 2, . . ., we will define submonoids Rep(G ∗H)
(n)
hU ⊂ Rep(G ∗H)hU ,

Rep(G)
(n)
hU ⊂ Rep(G)hU and Rep(H)

(n)
hU ⊂ Rep(H)hU having the following proper-

ties:

1. Each of these submonoids is a union of connected components in the larger

monoid, and Rep(·)hU =
⋃
n Rep(·)(n)

hU .

2. Under the natural maps from Rep(G ∗ H)hU to Rep(G)hU and Rep(H)hU ,

Rep(G ∗H)
(n)
hU maps to Rep(G)

(n)
hU and to Rep(H)

(n)
hU (respectively).

3. There are representations ρn of G and ψn of H (of the same dimension d =

d(n)) such that Rep(G∗H)
(n)
hU is stably group-like with respect to [∗d, (ρn, ψn)]

and Rep(G)
(n)
hU and Rep(H)

(n)
hU are stably group-like with respect to [∗d, ρn] and

[∗d, ψn] (respectively).

4. For each n, the square

Rep(G ∗H)
(n)
hU

//

��

Rep(G)
(n)
hU

��

Rep(H)
(n)
hU

// Rep({1})hU

is cartesian, i.e. the natural map

Rep(G ∗H)
(n)
hU −→ lim

(
Rep(G)

(n)
hU → Rep({1})hU ← Rep(H)

(n)
hU

)

is a homeomorphism.
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Assuming the existence of such filtrations, we now complete the proof of Theo-

rem 5.1.1. By Lemma 2.0.3, it suffices to show that the diagram

ΩB(Rep(G ∗H)hU) //

��

ΩB(Rep(G)hU)

��
ΩB(Rep(H)hU) // ΩB(Rep({1})hU)

(5.4)

is homotopy cartesian. It is easily seen, using properties (1) and (2) of the filtrations,

that Diagram (5.4) is the colimit of the diagrams

ΩB(Rep(G ∗H)
(n)
hU ) //

��

ΩB(Rep(G)
(n)
hU )

��

ΩB(Rep(H)
(n)
hU ) // ΩB(Rep({1})hU)

(5.5)

(as n tends to infinity). Hence it will suffice to show that for each n, Diagram (5.5)

is homotopy cartesian.

Now, by property (3) we know that there are representations ρn: G→ U(d(n))

and ψn: H → U(d(n)) such that these monoids are stably group-like with respect

to the points [∗d(n), (ρn, ψn)], [∗d(n), ρn] and [∗d(n), ψn] (respectively). Furthermore,

the proof of Corollary 3.0.16 shows that these basepoints are anchored, so we may

apply Theorem 3.0.11. To simplify notation, we let X(n) =
∐∞

k=0BU(k), Y (n) =

Rep(G)
(n)
hU , Z(n) = Rep(H)

(n)
hU , and W (n) = Rep(G ∗H)

(n)
hU . Also, let

W (n)
∞ = colim

(
W (n) ⊕[∗d(n),(ρn,ψn)]

−−−−−−−−−→W (n) ⊕[∗d(n),(ρn,ψn)]
−−−−−−−−−→ · · ·

)

and let W̃
(n)
∞ denote the homotopy colimit of the same sequence. We define X

(n)
∞ ,

X̃
(n)
∞ , Y

(n)
∞ , Ỹ

(n)
∞ , Z

(n)
∞ , and Z̃

(n)
∞ analogously; the direct system for X uses block

sum with ∗d(n) ∈ BU(d(n)).

With this notation, Theorem 3.0.11 shows that for any n, Diagram (5.5) is
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homotopy cartesian if and only if the diagram

W̃
(n)
∞

//

��

Ỹ
(n)
∞

��

Z̃
(n)
∞

// X̃
(n)
∞

(5.6)

is homotopy cartesian. Note that here the naturality statement in Theorem 3.0.11

is extremely important. The fact that Diagram (5.6) is homotopy cartesian es-

sentially follows from property (4) of the filtrations together with the general fact

that homotopy pull-backs commute with directed homotopy colimits. In this case,

though, we can provide the following direct argument.

We must show that the natural map

W̃ (n)
∞ −→ holim

(
Ỹ (n)
∞ −→ X̃(n)

∞ ←− Z̃(n)
∞

)

is a weak equivalence. But this map fits into the commutative diagram

W̃
(n)
∞

//

≃

��

holim
(
Ỹ

(n)
∞ −→ X̃

(n)
∞ ←− Z̃

(n)
∞

)

≃

��

W
(n)
∞

∼=

��

lim
(
Y

(n)
∞ −→ X

(n)
∞ ←− Z

(n)
∞

)
α // holim

(
Y

(n)
∞ −→ X

(n)
∞ ←− Z

(n)
∞

)
.

(5.7)

The maps labeled ≃ are clearly weak equivalences, since they arise from collapsing

mapping telescopes. Property (4) states that W (n) ∼= lim(Y (n) → X(n) ← Z(n)),

and hence (after unwinding the notation) one sees that the homeomorphism on

the right comes from interchanging a colimit and a limit. To see that the bottom

map α is a weak equivalence, note that the maps Zn → Xn are Serre fibrations (in

each component, this map is just the map from a homotopy orbit space ChU(k) to

BU(k)), and a colimit of Serre fibrations is a Serre fibration. Hence Z
(n)
∞ → X

(n)
∞

(and similarly Y
(n)
∞ → X

(n)
∞ ) is a Serre fibration. It is a well-known fact that if

f : E → B is a Serre fibration, then for any map g: A → B there is a weak
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equivalence

lim
(
A

g
−→ B

f
←− E

)
≃
−→ holim

(
A

g
−→ B

f
←− E

)
,

and this precisely tells us that α is a weak equivalence. Since all of the other maps

in Diagram (5.7) are weak equivalences, so is the top map.

To complete the proof, we must construct filtrations satisfying the four proper-

ties listed above. Given a topological monoid M and a submonoid A ⊂ π0(M), we

have a corresponding submonoid M(A) ⊂ M generated by all elements represent-

ing components in A. Clearly π0(M(A)) = A. Now, let Cn(G) ⊂ π0Rep(G)hU =

π0Rep(G) denote the submonoid generated by all representations of dimension

at most n. We set Rep(G)
(n)
hU = Rep(G)hU(Cn(G)), and we define Cn(H) and

Rep(H)
(n)
hU similarly.

The unitary and general linear representation spaces of any finitely generated

group are real algebraic varieties, cut out by the ideal corresponding to the group

relations. Hence these spaces are triangulable [21], which implies that their path

components and their connected components coincide. In the unitary case, the rep-

resentation spaces Hom(G,U(m)) and Hom(H,U(m)) are always compact, hence

have finitely many (path) components. This implies that Cn(G) and Cn(H) are

finitely generated in the unitary case. More generally, Whitney’s theorem [49]

states that any (real) algebraic variety has finitely many connected components,

and hence these monoids are finitely generated in the general linear case as well.

Now, choose generators [ρ1], . . . , [ρrn ] for Cn(G) and [ψ1], . . . , [ψqn ] for Cn(H).

Of course, we may assume that all of these representations have dimension at most

n. We define Cn(G ∗H) ⊂ π0(Rep(G ∗H)) to be the pullback of Cn(G) and Cn(H)

over N = π0Rep({1})hU , i.e. the submonoid generated by all components of the

form

[
rn
⊕
i=1

ρai

i ,
qn
⊕
j=1

ψ
bj
j ].

We set Rep(G ∗H)
(n)
hU = Rep(G ∗H)hU (Cn(G ∗H)). It is easily checked that the

components of this monoid are in fact generated by the finite subset

Fn = {[⊕
i
ρai

i ,⊕
j
ψ
bj
j ] : either ai < n ∀i, or bj < n ∀j}.
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(When n = 1, we must replace < by 6.)

Properties (1) and (2) are now immediate from the definitions. To prove prop-

erty (3), note that Rep(G ∗ H)
(n)
hU is automatically stably group-like with respect

to the sum of (the obvious representatives for) the elements in the generating set

Fn. Letting [αn, βn] denote this sum, we need to check that Rep(G)
(n)
hU is stably

group-like with respect to αn and similarly for H . But this follows immediately

from the fact the every ρi (i = 1, . . . , rn) appears as a summand in αn (note that

some ψj must be one-dimensional), and similarly for the ψj . Finally, property (4)

follows easily from the definitions, using Lemma 5.1.3. This completes the proof of

Theorem 5.1.1. 2

As an application of Theorem 5.1.1, we now compute K∗
def(PSL2(Z)) in the

unitary case. It is well known that PSL2(Z) ∼= Z/2 ∗ Z/3 (see [5] for a short

proof). We work with PSL2(Z) for concreteness, although the same argument

gives a computation of K∗
def(G ∗H) for any finite groups G and H .

Lawson [29] has shown, using basic representation theory, that for any finite

group G, Kdef(G) ≃
∨
k ku, where k is the number of irreducible representations of

G. Hence in particular

K∗
def(Z/m) =

{
0, ∗ odd,

Zm, ∗ even.

By Remark 5.1.2, we now have (for any i > 0) K2i+1
def (Z/2 ∗ Z/3) ∼= 0⊕ 0 = 0 and

an exact sequence

0 −→ K2i
def(Z/2 ∗ Z/3) −→ Z2 ⊕ Z3 −→ Z −→ 0,

from which it follows that K2i
def(Z/2 ∗ Z/3) ∼= Z4. Thus we have:

Proposition 5.1.5

K∗
def(PSL2(Z)) =

{
0, ∗ odd,

Z4, ∗ even.
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We briefly indicate Lawson’s computation of Kdef(G) for G finite. Any rep-

resentation ρ of G breaks up canonically into isotypical components, and together

with Schur’s Lemma this gives a permutative functor R(G)→ Vectk, which records

the dimensions of the isotypical components. Here k is the number of irreducible

representations of G and Vect is the category with N as objects and
∐

n U(n) as

morphisms (we will work in the unitary case, but the general linear case is identi-

cal). This functor is continuous, since any two representations connected by a path

are isomorphic (since G is finite, the trace gives a continuous, complete invariant

of the isomorphism type, and it can take on only countably many values). One

now checks that this functor induces a weak equivalence on classifying spaces, and

hence on K–theory spectra. This is rather like the proof of Proposition 2.0.4: one

sees that BR(G) is a model for
∐

ρi
B (Stab(ρi)), where the ρi are representatives

for the isomorphism types. Now Schur’s Lemma implies that Stab(ρi) ∼=
∏
U(nj),

where the nj are the dimensions of the isotypical components of ρi. The comparison

with B(Vectk) ∼= B(Vect)k ∼= (
∐

nBU(n))k is now straightforward.

5.2 Reduction of excision to representation vari-

eties, and an example

The first goal of this section is to reduce the question of excision to repre-

sentation varieties, at least when the groups in question have stably group-like

representation monoids (in an appropriately compatible manner). In other words,

we wish to show that information about the maps

Hom(G ∗K H,U(n))
φ
−→ holim




Hom(H,U(n))

��
Hom(G,U(n))

Hom(K,U(n))

OO
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allows us to deduce information about the map

Kdef(G ∗K H)
Φ
−→ holim




Kdef(H)

��
Kdef(G)

Kdef(K)

OO




.

Before stating the result precisely, we discuss some preliminary lemmas.

We will be comparing the long exact sequences associated to certain fibrations,

using the 5-lemma. In low degrees, some caution is necessary, since π1 is not in

general an abelian group. For convenience of the reader, we record the necessary

result.

Lemma 5.2.1 Consider a commutative diagram of (possibly non-abelian) groups

A //

a

��

B //

b
��

C //

c

��

D //

d
��

E

e

��
A′ // B′ // C ′ // D′ // E ′

in which the rows are exact.

If a is surjective and both b and d are injective, then c is injective.

If b and d are surjective and e is injective, then c is surjective.

In order to pass from representation varieties to deformation K-theory, we first

need to deduce results about homotopy orbit spaces. This will be done by studying

the fibration X → XhG → BG associated to a G-space X. We need a simple fact

about fibrations and homotopy limits. (A more general statement is possible, with

essentially the same proof.) In order to state the result, we make the following

definition:

Definition 5.2.2 We call a map f : X → Y of based spaces (l, k)-connected

(0 6 l 6 k) if f∗ : πnX → πnY is an isomorphism for l 6 n 6 k, a surjection for
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n = k + 1, and an injection for n = l − 1. We call a commutative square of spaces

X //

��

Y

��
Z // W

(l, k)-cartesian if the natural map

X −→ holim (Y −→ Z ←−W )

is (l, k)-connected.

We allow k = ∞ and l = 0, and we set π−1Z = 0 for any space Z, so that

the injectivity condition is vacuous and hence (0, k)-connectivity is the standard

notion of k-connectivity. The above definition is useful since we are interested in

comparing K∗
def(G) with K∗(BG), and in certain cases (e.g. fundamental groups of

Riemann surfaces) these groups are known to be isomorphic only above a certain

dimension (hence we don’t want to consider only ordinary connectivity of maps).

Lemma 5.2.3 Let G be a connected group. Then a commutative square of G-spaces

(with all maps equivariant)

X //

��

Y

��
Z // W

is (l, k)-cartesian if and only if the diagram of homotopy orbit spaces

XhG
//

��

YhG

��
ZhG // WhG

is (l, k)-cartesian.
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Proof. Consider the commutative diagram of fibrations

Y //

��

YhG //

��

BG

��
X

??
���

//

��

XhG

??
���

//

��

BG

??
���

��
W // WhG

// BG,

Z

??
���

// ZhG

??
���

// BG

??
���

in which all the maps BG → BG are the identity. Let B̃G denote the homotopy limit

holim
(
BG

=
→ BG

=
← BG

)
, and note that there is an obvious homotopy equivalence

BG
≃
→ B̃G. Let

X
φ
−→ holim (Y →W ← Z) and XhG

Φ
−→ holim (YhG → WhG ← ZhG)

denote the natural maps. Consider the diagram

X //

φ

��

XhG
//

Φ
��

BG

≃
��

holim (Y →W ← Z) //

ι

��

holim (YhG → WhG ← ZhG)
α //

≃

��

B̃G,

hofib(α) // Pα

55lllllllllllllllllll

in which Pα denotes the total space of the fibration associated to α, and the map

ι exists because the composite along the middle row is constant. We claim that

the map ι is a weak equivalence, i.e. that the middle row is a homotopy fibration.

Assuming this, the lemma follows easily by applying Lemma 5.2.1 to the resulting

diagram of long exact sequences in homotopy. (Note that since we have assumed

G is connected, π1BG = 0. Hence these long exact sequences can be cut off after

the π1 stage, and we need not worry about applying the five lemma to a diagram

containing sets. Moreover, π0 is easily dealt with since π1BG = π0BG = 0 implies

that the maps on π0 induced by φ and Φ are isomorphic.)

To see that ι is a weak equivalence, note for any G-space T , the natural inclusion

T →֒ hofib(ThG → BG) is (obviously) a weak homotopy equivalence, and hence the
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induced map

holim




Y

��
W

Z

OO




Ψ
−→ holim




hofib(YhG → BG)

��
hofib(WhG → BG)

hofib(ZhG → BG)

OO




.

is a homotopy equivalence as well. Now ι is simply the composition of Ψ with the

natural homeomorphism

holim




hofib(YhG → BG)

��
hofib(WhG → BG)

hofib(ZhG → BG)

OO




∼=
−→ hofib




holim




YhG

��
WhG

ZhG

OO




−→ holim




BG

=

��
BG

BG

=

OO







,

so ι is a homotopy equivalence as well. 2

We are now ready to discuss our reduction of the excision problem to represen-

tation varieties. Given an amalgamation diagram

K
f1 //

f2
��

G

h
��

H
k // G ∗K H,

we say that Rep(G ∗K H) is compatibly stably group-like if the representation

monoids Rep(−) are stably group-like with respect to representations which map

to one another via the natural restriction maps.

Proposition 5.2.4 Assume that Rep(G ∗K H) is compatibly stably-grouplike. If
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the natural map

Hom(G ∗K H,U(n))
φ
−→ holim




Hom(H,U(n))

��
Hom(G,U(n))

Hom(K,U(n))

OO




is (l, k)-connected for infinitely many n, then the natural map

Kdef(G ∗K H)
Φ
−→ holim




Kdef(H)

��
Kdef(G)

Kdef(K)

OO




is (l, k)-connected as well.

Proof. Theorem 3.0.11 allows us to replace the diagram of deformation K-theory

spectra with a diagram of infinite mapping telescopes formed from the representa-

tion monoids Rep(−)hU (via block sum with the appropriate representations). Since

we are only interested in the components containing the basepoints, and since the

homotopy groups of a telescope are simply the colimit of the homotopy groups of

the spaces involved, it suffices to show that the diagrams

Hom(G ∗K H,U(n))hU(n)
//

��

Hom(H,U(n))hU(n)

��
Hom(H,U(n))hU(n)

// Hom(K,U(n))

are (l, k) cartesian for infinitely many n. But by Lemma 5.2.3, this is equivalent to

the hypothesis that φ is (l, k)-connected for infinitely many n. 2

We now consider a simple example to which Proposition 5.2.4 applies. Let Γk
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be the group

Γk = {a, b|ak = bk}.

Then we have the following description of Γk as an amalgamated product:

Γk ∼= colim(Z
µk←− Z

µk−→ Z),

where µk : Z → Z denotes multiplication by k. Note that Γ2 is the fundamental

group of RP 2#RP 2, which is homeomorphic to the Klein bottle. We will prove

later (Proposition 6.1.11) that Rep(Γk) is stably group-like (with respect to the

trivial representation 1 ∈ Hom(Γk, U(1))).

Proposition 5.2.5 The natural map

Φ : Kdef(Γk)→ holim

(
Kdef(Z)

µ∗
k−→ Kdef(Z)

µ∗
k←− Kdef(Z)

)

is 0-connected, i.e. Φ induces an isomorphism on π0 and a surjection on π1.

We make the following conjecture.

Conjecture 5.2.6 For any k ∈ N the group Γk satisfies excision for deformation

K-theory, i.e. the map Φ in Proposition 5.2.5 is a weak equivalence.

We note that for k = 2, the group Γ2 is isomorphic to the fundamental group of

RP 2#RP 2. In this case, it follows from Theorem 4.4.1 that the domain and range

of Φ have abstractly isomorphic homotopy groups (and Conjectures 5.2.6 and 5.0.7

coincide).

The following proof is a bit ad-hoc. A more natural approach, based on transver-

sality and stratified systems of fibrations, is described afterwards.

Proof of Proposition 5.2.5. Proposition 5.2.4 reduces the problem to the study

of the representation varieties Hom(Γk, U(n)), since by Proposition 6.1.11, Rep(Γk)

is stably group-like. (It is immediate that Rep(Z) is stably grouplike.)

For ease of notation, let us define

H(k, n) = holim(U(n)
pk−→ U(n)

pk←− U(n)),
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where pk denotes the kth power map A 7→ Ak (this is, of course, the map on

representations induced by µk). We just need to show that the natural map

Ψ : Hom(Γk, U(n))→ H(k, n)

induces an isomorphism on π0 and a surjection on π1.

First we consider π0. From the long-exact Mayer-Vietoris sequence associated

to the homotopy pullback H(k, n), one immediately sees that H(k, n) has precisely

k connected components. By Proposition 6.1.11, we know that Hom(Γk, U(n)) also

has k components, and hence it will suffice to show that the natural map

Ψ : Hom(Γk, U(n))→ H(k, n)

is surjective on π0. Points in H(k, n) are described by triples (A,B, γ), with A,B ∈

U(n) and γ a path in U(n) from Ak to Bk. Using the fact that U(n) is connected,

one may easily construct a path in H(k, n) connecting any such point (A,B, γ) to

a point of the form (In, In, β). Now, β is a loop in U(n) based at the identity, and

hence is homotopic to a loop of the form αm(t) = e2πimt ⊕ In−1 for some m ∈ Z.

Hence each path component of H(k, n) contains a point of the form (I, I, αm) for

some m ∈ Z. We will show that each of these points is connected by a path to a

representation, i.e. a point of the form (A,B, cAk) where cAk is the constant path

at Ak = Bk.

Let α̃m(t) = e2πim(k−1
k

+ t
k
) ⊕ In−1. Let αmr denote the loop αm restricted to

the interval [0, r] (and reparametrized on the interval [0, 1]). We define a path in

H(k, n) by the formula

s 7→ (In, α̃
m(1− s), αm1−s).

One easily checks that this defines a path in H(k, n), starting at (In, In, α
m) and

ending at (In, e
2πi k−1

k
m ⊕ In−1, cIn). This completes the proof that Ψ induces an

isomorphism on π0.

The proof of surjectivity on π1 is a simple algebraic calculation. In fact, we will
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show that the map

Ψ∗ : π2l+1Hom(Γk, U(n))→ π2l+1H(k, n)

is surjective for any k ≥ 2 and any l < n.

Since Hom(Γk, U(n)) is the limit of the diagram describing H(k, n), we have a

commutative diagram

π2l+2U(n) // π2l+1H(k, n) // π2l+1U(n)⊕ π2l+1U(n) // π2l+1U(n)

π2l+1Hom(Γk, U(n))

OO 44iiiiiiiiiiiiiiiii

in which the top line comes from the Mayer-Vietoris sequence for the homotopy

pullback H(k, n). Since π2l+2U(n) = 0, this diagram gives us a commutative dia-

gram

π2l+1H(k, n)
∼= // ker

(
π2l+1U(n)⊕ π2l+1U(n) −→ π2l+1U(n)

)

π2l+1Hom(Γk, U(n).

OO

ψ

33ggggggggggggggggggggg

So it suffices to check that the map ψ is surjective. But the map π2l+1U(n) ⊕

π2l+1U(n) −→ π2l+1U(n) is simply (α, β) 7→ (pk)∗α − (pk)∗β, and since pk is the

kth power map on the group U(n), (pk)∗ is the kth power map on the homotopy

group π2l+1U(n) ∼= Z. Hence the kernel is precisely the diagonal subgroup of

π2l+1U(n) ⊕ π2l+1U(n). If we choose a generator α for π2l+1U(n), then the image

of the map (α, α) : S2l+1 → U(n) × U(n) lies inside Hom(Γk, U(n)), and clearly

ψ(α, α) = (α, α). This shows that ψ is surjective, and hence completes the proof

of Proposition 5.2.5. 2

We now describe a less ad-hoc approach to the excision problem for the groups

Γk. Unfortunately, this approach does not immediately give any further informa-

tion, and hence we omit the proofs. We hope, however, that in other situations this

technique might be useful.



CHAPTER 5. EXCISION IN DEFORMATION K-THEORY 95

In order to simplify notation, we will work with k = 2 from now on. The central

idea is that the squaring map p2 : U(n) → U(n) can be given the structure of a

stratified system of fibrations, in the sense of Quinn [39], and one may then attempt

to mimic the simplest possible proof that any pull-back square in which one map

is a fibration is homotopy-cartesian.

More precisely, we have a stratification of U(n) by disjoint submanifolds, over

which the squaring map is a fiber-bundle whose fibers are manifolds. Moreover, the

strata (and their “square roots”) have neighborhoods homeomorphic to mapping

cylinders, in a manner compatible with µ2. One then wants to use the lifting

properties of the various strata to analyze homotopy groups. The difficulty comes

in interpolating between the lifting properties of the various fibrations appearing

in our stratified system. One might hope that this could be handled by careful

use of the mapping cylinder neighborhoods of the strata (which themselves have

convenient lifting properties). Unfortunately we have no concrete results along

these lines at the moment.

We begin by describing the eigenvalue stratification of U(n), which seems to be

well-known. Before stating the result precisely, we introduce some terminology. Let

A ∈ U(n) be any unitary matrix. We define the eigenpartition of A, denoted e(A),

to be the partition of n whose components are the dimensions of the eigenspaces of

A. By convention, we will always represent partitions as vectors
⇀
p= (p1, . . . , pm)

with 1 ≤ p1 ≤ · · · ≤ pm, and we denote the number of terms in
⇀
p by l(p).

For any partition
⇀
p we define

E⇀
p

= {A ∈ U(n) | e(A) =
⇀
p}.

In order to describe these subspaces, we need some further terminology.

Definition 5.2.7 Given a vector
⇀
v= (v1, . . . , vm) ∈ Zm, we define a subgroup Σ⇀

v

of the symmetric group Σm on m letters by setting

Σ⇀
v

= {σ ∈ Σm | vσ(i) = vi, i = 1, . . .m}.

For any partition
⇀
p of n, we denote the manifold of orthogonal flags in Cn with
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dimensions pi by Flag(
⇀
p) (so Flag(

⇀
p) ∼= U(n)/

∏
i U(pi)). Note that the group Σ⇀

p

acts naturally on Flag(
⇀
p) by permuting subspaces of equal dimension.

We now have:

Proposition 5.2.8 For any partition
⇀
p of n with l(

⇀
p) = l, E⇀

p
is a submanifold

of U(n) (neither open nor closed, in general) and

Ep ∼=
(
(S1)l − ∆̃)× Flag(

⇀
p)
)
/Σ⇀

p
,

where

∆̃ = {(λ1, . . . , λl) ∈ (S1)l | λi = λj for some i 6= j}

denotes the “fat diagonal,” and Σ⇀
p

acts diagonally.

We will only need a small part of the following proposition, but we state the

full result anyhow.

Proposition 5.2.9 The map pk : p−1
k (E⇀

p
) → E⇀

p
is a fiber bundle. In the case

k = 2, the fiber is 
∐

⇀

i 6
⇀
p

l(
⇀
p)∏

j=1

Grij (C
pj)




2

,

where
⇀

i 6
⇀
p simply means that these partitions have the same length and ij 6 pj

for each j.

Remark 5.2.10 It is not difficult to work out the fibers for k > 2, but the nota-

tion becomes cumbersome. The proof of this result is rather like the proof that the

universal bundle over the Grassmanian is locally trivial.

We now explain how to use these results to give another proof that the map

π0Hom(Γk, U(n)) −→ π0H(k, n)

is surjective. Points inH(k, n) may be represented by triples (A,B, γ) where A,B ∈

U(n) and γ is a path in U(n) from Ak to Bk. First, note that since U(n) is connected
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we may assume that Ak and Bk lie in the open stratum E(1,...,1). Next, note that

if we homotope the path γ this also does not change the path component of our

point. Hence we may assume that γ is smooth and transverse to each stratum E⇀
p
.

The following easy computation of codimensions shows that this in fact allows us

to assume γ lies in E(1,...,1).

Lemma 5.2.11 For any length k partition
⇀
p of n, the codimension of E⇀

p
in U(n)

is
∑k

i=1(p
2
i − 1), and hence this codimension is bounded below by 3 ·#{j : pj > 1}.

Now, by Proposition 5.2.9 we know that pk restricts to a fiber bundle (in fact,

a covering map) over the open stratum E(1,...,1). Hence we may lift γ (or rather

the reversed path γ) to a path γ̃ starting at B and ending at some kth root A′ of

Ak. This provides us with a path t 7→ (A, γ̃(t), γ|[0,1−t]) in H(k, n) from (A,B, γ)

to (A,A′, cAk) (where cAk denotes the constant path). Since the latter element is in

the image of Hom(Γk, U(n)), this completes our second proof of surjectivity on π0.



Chapter 6

Examples

In this section we examine various cases in which the monoid underlying defor-

mation K-theory is stably group-like with respect to some representation ρ. The

first two results deal with groups modeled on the fundamental groups of (possibly

non-orientable) compact surfaces, and these results deal exclusively with unitary

deformation K-theory. In these first two cases, we show that the monoid Rep(G)

is stably group-like with respect to the trivial representation 1 ∈ Hom(G,U(1)),

so that Corollary 3.0.16 gives a particularly simple model for the zeroth space of

Kdef(G). The third result deals with finitely generated abelian groups, and here we

find that the monoid underlying deformation K-theory (in both the unitary and the

general linear case) is stably group-like with respect to a larger representation (the

sum of the characters of the torsion subgroup). All three results yield computations

of K0
def(G).

We will say that Rep(G) is stably group-like if it is stably group-like with respect

to the trivial representation 1 ∈ Hom(G,U(1)). Recall that this means that for

every representation ρ there is a representation ψ (a stable homotopy inverse for ρ)

such that ρ⊕ ψ lies in the connected component of the trivial representation.

The first two types of group we will study are both modeled on fundamen-

tal groups of (possibly non-orientable) surfaces. In each case we will distinguish

path components using a simple obstruction to the existence of paths between rep-

resentations. This obstruction was originally defined for fundamental groups of

98
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non-orientable surfaces by Ho and Liu [24, 25]. In the second section, we discuss

finitely generated abelian groups.

6.1 Surface-type groups

We begin with a general discussion of Ho and Liu’s obstruction. First we note

that there is a particularly simple model for the universal cover of the unitary

group.

Lemma 6.1.1 The homomorphism pn : R × SU(n) → U(n) given by (t, A) 7→

e2πitA is a universal covering map for U(n).

Proof. The group R × SU(n) is simply connected, and ker(pn) is the discrete

subgroup generated by (1/n, e−
2πi
n ). 2

From now on we will denote R×SU(n) by Ũ(n), and pn : Ũ(n)→ U(n) will be

the above homomorphism. In addition, we will identify ker(pn) with Z via the map

(1/n, e−
2πi
n ) 7→ 1.

In order to describe the structure of π0 in our examples, we need some notation

and a lemma.

Notation 6.1.2 If M is a monoid with identity e ∈ M , we define the partial

product Z>0×̃M to be the submonoid of Z>0 ×M obtained by removing all pairs

(0, m) with m 6= e. Here Z>0 denotes the monoid of non-negative integers under

addition.

Lemma 6.1.3 If A is an abelian group, then the Grothendieck group of Z>0×̃A

is simply Z×A (and the universal map is the obvious inclusion of monoids).

Proof. Given a morphism of monoids f : Z>0×̃A → G with G a group, writing

(n, a)(−n+ 1, 1A) = (1, a) ∈ Z×A we see that the unique extension of f to Z×A
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must be given by

f̃(n, a) =

{
f(n, a) n > 0

f(1, a)f(−n+ 1, 1A)−1 n 6 0.

We leave to the reader the (somewhat tedious) verification that f̃ is a homomor-

phism. (This verification requires the observation that since Z>0×̃A is an abelian

monoid, the subgroup of G generated by f(Z>0×̃A) is abelian as well.) 2

The idea behind Ho and Liu’s obstruction is simply that if we lift the matrices

defining a representation up to Ũ(n), then the relations for G, when applied to the

lifts, will produce elements in ker(pn). Moreover, paths between representations will

lift to paths between such lifts, and this will give path-invariance of the obstruction.

Precisely, the obstruction is defined as follows. Let G be a group with presen-

tation

G =< x1, . . . , xg|r1(x1, . . . xg) = · · · = rk(x1, . . . , xg) = 1 >

where each rj is a word in the free group Fg on g letters. Let Nj,i denote the total

exponent of xi in rj (i.e. exponent of xi in the word ab(rk) which is the image of rk

in the abelianization Zg of Fg), and let Nj = gcd(Nj,1, . . . , Nj,g). (By convention,

gcd(0, N1, . . . , Nl) = gcd(N1, . . . , Nl), and gcd(0, . . . , 0) = 0.)

Consider a representation ρ : G → U(n) with ρ(xi) = Ai, and choose lifts

(ai, αi) ∈ Ũ(n) of Ai (i = 1, . . . , g). We now define

o(ρ) ∈ Z/N1Z× · · · × Z/NkZ

by setting the jth coordinate of o(ρ) to be oj(ρ) = [n
∑g

i=1Nj,iai] (where the brackets

denote reduction modulo Nj).

Remark 6.1.4 For each j we have

rj ((a1, α1), . . . , (ag, αg)) =

(
g∑

i=1

Nj,iai , rj(α1, . . . , αk)

)
∈ ker(p) =< (

1

n
, e−

2πi
n ) >,

so
∑g

i=1Nj,iai ∈
1
n
Z for each j. Hence the formula defining oj(ρ) makes sense.
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Note that although each Nj,i is divisible by Nj, oj(ρ) need not be trivial in Z/NZ,

because the ai need not be integers.

Proposition 6.1.5 The obstruction o(ρ) is well-defined (i.e. does not depend on

the lifts chosen) and is an invariant of path components. Moreover, o is additive

in the sense that o(ρ ⊕ ψ) = o(ρ) + o(ψ). In particular, o defines a morphism of

monoids

o : π0(Rep(G))→ Z>0×̃ (Z/N1Z× · · · × Z/NlZ) ,

via the formula o([ρ]) = (dim(ρ), o(ρ)).

Proof. Let ρ be a representation ρ : G → U(n) with ρ(xi) = Ai, and choose

lifts Ãi = (ai, αi) ∈ Ũ(n) for each i. Any other lift of Ai may be written Ã′
i =

(yi/n+ ai, e
−2πiyi

n αi) for some yi ∈ Z. We now have

n

g∑

i=1

Nk,i(ai + yi/n) =

(
n

g∑

i=1

Nk,iai

)
+

(
g∑

i=1

Nk,iyi

)

≡ n

g∑

i=1

Nk,iai

(modulo Nk = gcd(Nk,i)). Thus o(ρ) is well-defined.

As noted above, the fact that o is an invariant of path components follows

immediately from the fact that paths in U(n) lift to paths in Ũ(n). The main point

here is that the function n
∑g

i=1Nk,iai is continuous as a function of the ai ∈ R,

but takes values in the discrete set Z (when restricted to those vectors (a1, . . . , ag)

coming from lifts of representations). Hence this function is locally constant.

Finally, we must check that o(ρ⊕ ψ) = o(ρ) + o(ψ) for any ρ : G → U(n) and

ψ : G→ U(m). Say ρ and ψ are represented by matrices Ai ∈ U(n) and A′
i ∈ U(m)

respectively (i = 1, . . . , g). Choose lifts (ai, αi) ∈ Ũ(n) and (a′i, α
′
i) ∈ Ũ(m) of these

matrices to the universal covers. Then the homomorphism ρ⊕ ψ is represented by

the matrices Ai ⊕ A′
i and it is easy to see that

(
nai +ma′i
n+m

, e−2πi·(
nai+ma′i

n+m
)
(
(e2πiaiαi)⊕ (e2πia

′

iα′
i)
))
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is a lift of Ai⊕A′
i to ˜U(n +m). Fixing j ∈ {1, . . . , k}, we will check that oj(ρ⊕ψ) =

o(ρ) + o(ψ). Let a =
∑

iNj,iai and let a′ =
∑

iNj,ia
′
i. Then we have oj(ρ) = [na],

oj(ψ) = [ma′] and the above formula gives

oj(ρ⊕ ψ) =

[
(n +m)

∑

i

Nk,i

(
nai +ma′i
n+m

)]
= [na+ma′].

Hence o is additive. 2

In order to obtain concrete results about the path components of representation

varieties, we need to look for cases in which the obstruction o is actually a complete

invariant of components. In other words, we are interested in finding groups for

which the fibers of o are connected.

If, on the other hand, we are only interested in showing the Rep(G) is stably

group-like, we can get away with less. For any ρ : G→ U(n), let ρm : G→ U(mp)

denote the representation obtained by adding ρ to itself m times. Additivity of o

shows that o(ρm) = (0, . . . , 0) for some m (since o takes values in a finite group).

Hence if o−1(0, . . . 0) is connected for infinitely many n, then Rep(G) is stably

group-like.

Fact 6.1.6 If G is a finitely presented group for which the fibers o−1
n (0, . . . , 0) of

the obstruction maps are connected infinitely often, then Rep(G) is stably group-like.

Our first class of examples is based on the fundamental group of a (possibly

non-orientable) surface S, and the method of proof is an extension of Ho and Liu’s

computation of the connected components of the space of surface group represen-

tations [24, 25]. In particular, the key geometric input is the following theorem of

Anton, Malkin and Meinrenken [4, Theorem 7.2] regarding their notion of quasi-

Hamiltonian moment maps:

Theorem 6.1.7 If G is a compact, simply connected Lie group, then any quasi-

Hamiltonian moment map Φ : M → G has connected fibers.

An important observation [4, Section 9.2] is that the multiple-commutator map
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µl : G2l → G,

µ(a1, b1, . . . , al, bl) =

l∏

i=1

[a1, bi],

is a quasi-Hamiltonian moment map. We quickly sketch the proof of this fact. One

of the most basic examples of a quasi-Hamiltonian moment map is the double of

a group G [4, p. 452]. This is the map d : G × G → G × G which sends (g, h)

to (gh, g−1h−1). Applying “internal fusion” [4, p. 465] to this moment map shows

that the map µ1 is a q-Hamiltonian moment map. It is a straightforward exercise

to check that the cartesian product of two q-Hamiltonian moment maps is still a

q-Hamiltonian moment map, and applying fusion repeatedly to the l-fold product

of µ1 with itself yields µl. Hence we have:

Corollary 6.1.8 The l-fold commutator map µl : G2l → G is a quasi-Hamiltonian

moment map. Hence if G is compact and simply connected, µl has connected fibers.

We can now discuss the first class of examples. The proof of the following result

traces the arguments of Ho and Liu [24, 25] rather closely.

Theorem 6.1.9 Let ω(c1, . . . , ck) = cν1j1 · · · c
νm

jm
be a reduced word in the free group

on the letters c1, . . . , ck, and let G be the group with presentation

〈a1, b1, . . . , ag, bg, c1, . . . , ck|(

g∏

i=1

[ai, bi])ω(c1, . . . , ck) = e〉.

If m ≤ g, the monoid of unitary representation spaces Rep(G) is stably group-like.

If we assume further that for some j0 ∈ {1, . . . , k}, there is a unique i such that

ji = j0 (in other words, assume that all occurrences of cj0 in ω are adjacent), then

π0(Rep(G)) ∼= Z>0×̃Z/NZ and K0
def(G) ∼= Z × Z/NZ, where N = gcd(N1, . . . Nk)

and Nj is the total degree of cj in ω (i.e. Nj =
∑

i:ji=j
νi).

Finally, if we assume that Nj = 0 for each j, then π0(Rep(G)) ∼= Z>0 and and

K0
def(G) ∼= Z.

Remark 6.1.10 When Nj = 0 for all j, we conclude that the representation vari-

ety Hom(G,U(n)) connected for every n. This generalizes the well-known fact that

unitary the representation varieties of the fundamental group of a Riemann surface
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are connected. (In the course of the proof, we will also see that Hom(G, SU(n)) is

connected for any ω.)

The proof of Theorem 6.1.9 can easily be extended to deal with similar groups

having multiple relations, but the notation becomes quite cumbersome. Essentially,

one may add additional relations of the form
∏

[ai(ω
′), bi(ω

′)]ω′(c1, . . . , ck). Here

ω′ is still a word in the generators ci, but the generators ai(ω
′) and bi(ω

′) are new.

As above the number of commutators must be greater than the length (measured

as above) of ω′. (Such groups may also be constructed as follows: begin with two

groups of the form described in Theorem 6.1.9, with generators ai, bi, cj and a′i, b
′
i, c

′
j

respectively. Then form the amalgamated product of these groups by identifying c1

with c′1, c2 with c′2, et cetera. This gives a two-relator group; iterating the process

adds more relations.)

Proof of Theorem 6.1.9. In order to prove that Rep(G) is stably group-like,

it suffices (by Fact 6.1.6), to check that o−1([0]) is always connected. In the

cases where we are able to determine the complete structure of π0Rep(G), we will

prove that the obstruction o is a complete invariant for the path components of

Hom(G,U(n)), i.e. that o−1([r]) is connected for any r ∈ Z. This will show that

the obstruction map gives an injection π0Rep(G) →֒ Z/NZ. The desired computa-

tions will then follow easily.

To study the obstruction map, we follow [25] and define

XU(n)(Y ) = {A1, B1, . . . , Ag, Bg, C1, . . . Ck |
( g∏

i=1

[Ai, Bi]
)
ω(C1, . . . , Ck) = Y }.

The space XG(Y ) is defined similarly for any group G; note that when Y = I we

obtain the representation spaces.

Call the word ω good if it satisfies the hypothesis for the second part of the

theorem; without loss of generality we may assume in this case that there is a

unique i for which ji = 1. We will mainly work in the case when ω is good, and

we will show that in this case o−1([r]) is connected for any r ∈ Z. The first and

last statements of the theorem essentially follows from the observation that the

argument does not require ω to be good if r = 0. We will deal with all three cases
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simultaneously in what follows, pointing out the places where the arguments differ.

To show that o−1([r]) is connected (for some fixed r ∈ Z), let ζn = (1/n, e
−2πi

n )

denote our chosen generator for ker(pn), and consider the space X
Ũ(n)

(ζrn). The map

p induces a map X
Ũ(n)

(ζrn) → o−1([r]). We will show that this map is surjective,

and that X
Ũ(n)

(ζrn) is connected if either ω is good or r = 0. As we will see, these

statements essentially suffice to prove the theorem. For surjectivity, consider any

ρ = ({Ai}, {Bi}, {Cj}) ∈ o−1([r]). Then there exist lifts Ãi, B̃i, and C̃j in Ũ(n)

such that
( g∏

i=1

[Ãi, B̃i]
)
ω(C̃1, . . . , C̃k) = ζrn · ζ

mN
n

for some m ∈ Z. Since N = gcd(N1, . . . , Nj) we may write

mN =
∑

j

mjNj

for some mj ∈ Z. Let

C̃ ′
j = C̃j · ζ

−mj
n .

Since ζ
−mj
n is central in Ũ(n), we see that

( g∏

i=1

[Ãi, B̃i]
)
ω(C̃ ′

1, . . . , C̃
′
k) = ζrn · ζ

mN
n · ζ

P
−mjNj

n = ζrn.

This proves surjectivity, since ({Ãi}, {B̃i}, {C̃ ′
j}) ∈ XŨ(n)

(ζrn) and p(C̃ ′
j) = Cj .

Next, we consider connectivity of X
Ũ(n)

(ζrn). We can write X
Ũ(n)

(ζrn) as

X
Ũ(n)

(ζrn) = {(a1, α1), . . . , (bg, βg), (c1, γ1), . . . , (ck, γk) ∈ Ũ(n) |
∑

j

Njcj =
r

n
and

∏

i

[αi, βi] = e
−2πir

n I}. (6.1)

Assuming ω is good, we have N1 = ν1 6= 0 and hence

X
Ũ(n)

(ζrn)
∼= R2l+k−1 ×XSU(n)(e

−2πir/nI).

Hence when ω is good it will suffice to show that XSU(n)(e
−2πir/nI) is connected
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for any r ∈ Z. To prove the first statement in the theorem, we need only show

that XSU(n)(ζ
0
n) = Hom(G, SU(n)) is connected, and this also suffice for the third

statement because when Nj = 0 for all j, formula (6.1) shows that XSU(n)(e
−2πir/nI)

is empty unless r = 0 (so in particular all representations have trivial obstruction

class), in which case this space is homeomorphic to

R2g+k ×XSU(n)(I) = R2g+k × Hom(G, SU(n)).

Consider the map Q : XSU(n)(e
2πir/nI) → SU(n)k given by projecting onto

the last k factors. The fiber Q−1(γ1, . . . , γk) is homeomorphic to the fiber of the

multiple-commutator map µg : SU(n)2g → SU(n) over the point ω(γ1, . . . , γk)

and hence is connected by Corollary 6.1.8. Thus to show that XSU(n)(e
−2πir/nI) is

connected, it will suffice to produce paths between the fibers of Q.

When ω is good, we will produce a path starting in the fiber over

zr = (qr, I, . . . , I)

and ending in the fiber over (γ1, . . . , γk), where qr ∈ SU(n) is a diagonal matrix

such that qN1
r = e

2πir
n I (since the diagonal subgroup of SU(n) is a torus, such an

N th
1 -root always exists; it is of course easy to write it out explicitly). In the other

cases, we may assume r = 0, and we simply set qr = I and use the argument to

follow.

To construct the desired path, we begin by choosing gj ∈ SU(n) such that

γ′j := g−1
j γjgj is diagonal (j = 1, . . . , k). Also, let gj(t) be a path in SU(n) with

gj(0) = I and gj(1) = gj . Letting T ⊂ SU(n) denote the diagonal torus, we can

choose ξj ∈ Lie(T ) such that exp(ξj) = γ′j for j = 2, . . . , k and exp(ξ1) = γ′1q
−1
r .

We now define paths

γj(t) = gj(t) exp(tξj)gj(t)
−1 (j = 1, . . . , k)

in SU(n).
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We claim that there exist paths al(t) and bl(t) (l = 1, . . . , m) such that

[al, bl] = γjl(t)
−νl. (6.2)

Assuming this for the moment, we complete the proof of connectivity. Consider

the path

(I, . . . , I, am(t), bm(t), . . . , a1(t), b1(t), γ1(t)g1(t)qrg1(t)
−1, γ2(t), . . . , γk(t)).

It is easy to check that this path starts in Q−1(qr, I, . . . , I), ends in Q−1(γ1, . . . , γk).

In fact, this path lies in XSU(n)(e
−2πir/nI) for each t ∈ [0, 1] because

(γ1(t)g1(t)qrg1(t)
−1)N1 = γ1(t)

N1g1(t)q
N1
r g1(t)

−1 = γ1(t)
N1 · e

2πir
n I

and e
2πir

n I is central in SU(n). Hence

ω(I, . . . , I, am(t), bm(t), . . . , a1(t), b1(t), γ1(t)g1(t)qrg1(t)
−1, γ2(t), . . . , γk(t))

= e
2πir

n I · [am(t), bm(t)] · · · [a1(t), b1(t)]γj1(t)
ν1 · · · γjm(t)νm

and by (6.2), everything but e
2πir

n I cancels. Note that in the construction of this

path we have used the assumption m 6 g, and that it is important that c1 appear

only once in ω, since otherwise we would have non-central matrices qνl
r appearing

for those l with jl = 1.

The construction of the paths ai and bi follows [24]; for completeness we repeat

the argument. Let D ⊂ SU(n) denote the diagonal torus and choose a Coxeter

element w = αD in the Weyl group N(D)/D. When w acts by conjugation on

Lie(D), none of its eigenvalues equal 1 [26]. Identifying Lie(D) with a subspace

of n × n matrices, we see that the map ξ 7→ αξα−1 − ξ is onto, and hence we

may choose ξ′j such that ξj = αξ′jα
−1 − ξ′j for j = 1, . . . , k. Multiplying by s and

exponentiating gives

α exp(sξ′j)α
−1 exp(−sξ′j) = exp(sξ′j)
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for any s ∈ R. Now, setting ai(t) = gjiαg
−1
ji

(a constant path) and

bi(t) = gji exp(−aitξ
′
i)g

−1
ji
,

one easily checks that (6.2) holds. This completes the proof that XSU(n)(e
2πir/nI)

is connected for all r when ω is good, and also completes the proof that XSU(n)(I)

is connected for any ω. Thus we have shown that Rep(G) is stably group-like for

any ω, and that o is a complete invariant when either Nj = 0 for all j or ω is good.

Finally, we must determine the structure of π0(Rep(G)) and K0
def(G). When

N = 0, we have shown that all representations have trivial obstruction class and

that Hom(G,U(n)) is connected. Hence π0
∼= Z>0 and K0

def(G) ∼= Z in this case.

When ω is good, o defines a morphism o : π0(Rep(G,U(n))) → Z>0×̃Z/NZ. This

map is injective because o is a complete invariant of path components. So we

just need to check that it is surjective, i.e. we need to produce representations

in each obstruction class. Note that it will suffice to do this for n = 1, since

o is a homomorphism and hence block sum with the identity does not change

the obstruction class. Again we assume N1 6= 0. Given r ∈ Z, let ρr be the

representation defined by setting Ai = Bi = 1 (i = 1, . . . l), C1 = e
2πir
N1 and Cj = 1

for j = 2, . . . , k. Setting Ãi = B̃i = (0, 1), C̃1 = ( r
N1
, 1) and C̃j = (0, 1) for j > 1,

we see that o(ρ) = [r] as desired. Since K0
def(G) is the Grothendieck group of

π0(Rep(G)) (Lemma 2.0.5), Lemma 6.1.3 shows that K0
def(G) = Z× Z/NZ. 2

We now present a second class of examples for which Rep(G) is stably group-

like, and again we will show that the obstruction o gives a complete invariant of

path components. Falling into this class is the group 〈a, b | a2 = b2〉, which is the

fundamental group of RP 2#RP 2. This group is missing from the previous class of

examples, since no commutators appear in the presentation, and is also not covered

by the results of [24, 25] (for the same reason).

Proposition 6.1.11 Let Gk,m denote the group with presentation

Gk,m = 〈x1, x2, . . . , xk|x
m
1 = xm2 = · · · = xmk 〉.

Then the monoid of unitary representation spaces Rep(Gk,m) is stably group-like,
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and the obstruction map induces an isomorphism

π0(Rep(Gk,m)) ∼= Z>0×̃(Z/mZ)k−1.

It follows that

K0
def(Gk,m) ∼= Z× (Z/mZ)k−1.

Proof. We begin by noting that the computation ofK0
def(Gk,m) follows immediately

from the computation of π0(Rep(G)) (as in the proof of Theorem 6.1.9) so we

proceed to analyze the latter.

In order to use Proposition 6.1.5, we need to specify the relations for Gk,m: we

will use the relations ri = xmi x
−m
i+1 for i = 1, . . . , k − 1. It will suffice (by Propo-

sition 6.1.5) to show that o−1([l1], . . . , [lk]) is connected for any li ∈ Z, and that

representations of each obstruction class exist. The latter statement is immediate,

since it suffices by additivity to produce representations into U(1) with each ob-

struction class, and one can set x1 = e
2πil1

m and x̃1 = l1/m ∈ Ũ(n) = R, and then

solve recursively x̃2, . . . , x̃k ∈ Ũ(1) = R, giving the desired result.

Now we must show that the fibers of o are connected. Since there exist repre-

sentations in each obstruction class, it suffices to show that Hom(Gk,m, U(n)) has

at most mk−1 components. Given any representation ρ : Gk,m → U(n), we will

show that ρ is connected by a path in Hom(Gk,m, U(n)) to a representation of the

form

x1 7→ e
2πil1

m ⊕ In−1, . . . , xk−1 7→ e
2πilk−1

m ⊕ In−1, xk 7→ In

(here the li are integers between 0 and m− 1). Since there are mk−1 such represen-

tations, we obtain the desired bound on |π0Hom(Gk,m, U(n))|.

Let ρ(xi) = Ai. Note that since U(n) is connected, any two conjugate repre-

sentations lie in the same path component. Hence we may assume that Ak is a

diagonal matrix. Now write

Amk = λ1In1 ⊕ · · · ⊕ λlInp

for some distinct λj ∈ S1 and some partition (n1, . . . , np) of n. Now, since Ami = Amk ,

each eigenvalue of Ai is an mth root of some λj . If v ∈ Cn is an eigenvector of Ai, we
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have Aiv = m
√
λjv for some j, and now we have Amk v = Ami v = ( m

√
λj)

mv = λjv,

meaning that v lies in the λj-eigenspace of A. It is now easy to see that in the

standard basis for Cn, each Ai has a block decomposition

Ai = Ai,1 ⊕ · · · ⊕ Ai,p

with Ai,j ∈ U(nj). Moreover, Ami,j = λjImj
, so Ai,j is determined by its flag

of eigenspaces for the various mth roots of λj. But the for any fixed elements

a1, . . . , am ∈ S
1 and fixed partition j = j1 + · · · + jm, the space of matrices A in

U(j) such that A has an a1-eigenspace of dimension j1, etc., is a flag manifold,

hence connected (more precisely, this space is homeomorphic to U(j)/
∏

i U(ji).

Moreover, this subspace certainly contains diagonal matrices. Now, replacing the

Ai,j with any matrices in these subspaces produces a representation, and so we may

connect our representation ρ to a representation ρ′ in which each matrix is diagonal.

Next, note that there is a path Dt of diagonal matrices from the diagonal ma-

trix ρ′(xk)
−1 to the identity. Since all the matrices in question are diagonal, they

commute with Dt, and multiplying through by Dt yields a path of representations

ρ′t connecting ρ′ to a representation ρ′′ with ρ′′(xi) diagonal and ρ′′(xk) = I.

To finish the proof, we will check that the representations ρ ∈ Hom(Gk,m, U(2))

given by

ρ(xi) = Ai = ζai
m ⊕ ζ

bi
m (i = 1, . . . , k − 1) , ρ(xk) = I2

and ψ ∈ Hom(Gk,m, U(2)) given by

ψ(xi) = Ai for i 6= i0 and ψ(xi0) = ζ
ai0

+bi0
m ⊕ 1

are connected by a path; here ζm = e2πi/m and 1 6 i0 6 k − 1. (The full result

then follows by an easy induction, in which one sets the last entry of each matrix

to 1, the the next to last, and so on.) First, we can multiply through by a path of

diagonal matrices starting at I2 and ending at 1⊕ ζ
ai0
m . This yields a path from ρ

to the representation ρ′ given by

ρ′(xi) = ζai
m ⊕ ζ

bi+ai0
m (i < k), ρ(xk) = 1⊕ ζ

ai0
m .
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Now, if we choose a path in CP 1 = S2 from the ζ
ai0
m -eigenspace of ρ′(xi0) to its

orthogonal complement, we get a path of mth-roots of I2 starting at ζ
ai0
m ⊕ ζ

bi0+ai0
m

and ending at ζ
ai0

+bi0
m ⊕ ζ

ai0
m . This yields a path of representations from ρ′ to the

representation ρ′′ given by

ρ′′(xi0) = ζ
ai0

+bi0
m ⊕ ζ

ai0
m , ρ′′(xi) = ρ′(xi) for i 6= i0.

Multiplying through by a path from I2 to 1 ⊕ ζ
ai0
m gives a path from ρ′′ to ψ,

completing the proof. 2

6.2 Finitely generated abelian groups

We now discuss an example in which the groups in question are stably group-

like with respect to larger representations (rather than the representation 1). This

result applies to both unitary and general linear deformation K-theory. First we

need a lemma regarding simultaneous diagonalizability of commuting matrices.

Lemma 6.2.1 Let A1, . . . , Ak ∈ U(n) be commuting unitary matrices. Then there

is a matrix X ∈ U(n) such that for i = 1, . . . , k, the matrix XAiX
−1 is diagonal.

The same statement holds with U(n) replaced by GLn(C).

Proof. It is well-known that commuting diagonalizable operators admit a basis

consisting of simultaneous eigenvectors (for a short proof, see [11]). This completes

the proof for GLn(C). For the unitary case, we need to show that this basis can be

assumed orthonormal, since then the matrix X taking this basis to the standard

basis is unitary. Say {v1, . . . , vn} is a basis for Cn such that Aivj = λijvj for some

λi,j ∈ S
1. Replacing vj by vj/ |vj | if necessary, we may assume each vj has length

one. We will now describe an inductive procedure for making this basis orthogonal.

Assume that the first l − 1 basis vectors are orthogonal to all the other vi, i.e.

assume that for 1 6 j 6 l−1 and i 6= j we have 〈vi, vj〉 = 0. (Here we allow l = 1.)

Consider the set Z = {j : λij = λil for all i}. Observe that Z contains l, and is

hence non-empty. It is easy to check that

Span{vj : j ∈ Z} = {w : Aiw = λilw for all i}.
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Let {wj : j ∈ Z} be an orthonormal basis for Span{vj : j ∈ Z}. It follows from the

definitions that B = {vj : j /∈ Z} ∪ {wj : j ∈ Z} is a simultaneous eigenbasis for

the Ai. The set B is ordered (the ordering on the wj is of course arbitrary), and we

claim that it satisfies the induction hypothesis with l − 1 replaced by l. This will

complete the induction step, and the proof. If b is one of the first l elements in B,

then either b = vj with j < l and j /∈ Z, or b = wj with j 6 l and j ∈ Z.

In the first case, we know by assumption that vj is orthogonal to all vj′ (j 6= j′)

so we just need to check that vj is orthogonal to wj′. But since j /∈ Z, there exists

i such that λij 6= λil, i.e. vj is not in the λil-eigenspace of Ai. Since Ai is unitary,

this means vj is orthogonal to this entire eigenspace. By construction, wj′ lies in

this eigenspace and so 〈vj , wj′〉 = 0.

In the second case, we know by assumption that wj is orthogonal to wj′ for each

j′ ∈ Z, so we just need to check that wj is orthogonal to vj′ for j′ /∈ Z. But this is

precisely what was proven in the previous case. 2

Proposition 6.2.2 Let A = Zk × T be a finitely generated abelian group, with T

the torsion subgroup of A. Let ρ1, · · · , ρm : T → U(1) be the irreducible characters

of T . Then Rep(A) is stably group-like with respect to

ρ = ⊕
i
ρi.

(Here the ρi are extended to A by the projection A→ T .)

Proof. We claim that the components of the representations ρi (i = 1, . . . , m) gen-

erate π0Rep(A). This implies A is stably group-like with respect to ρ, as in Exam-

ple 3.0.9. Let α ∈ Hom(A,U(n)) be any representation of A. Then α is determined

by a representation α′ of T together with matrices X1, . . . , Xk ∈ Stab(α′). Now, the

collection of matrices {X1, . . . , Xk} ∪ {α′(a)|a ∈ T} are pairwise commuting, so by

Lemma 6.2.1 these matrices are simultaneously diagonalizable by a unitary matrix

S. Choosing a path from S to the identity gives a path from α to a representation

lying in the diagonal subgroup of U(n). Moreover, we may now choose paths in the

diagonal connecting the images of the free generators of A to the identity, so we

conclude that α is connected to a representation α̃ which factors through T . The
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representation α̃ is a sum of characters, and hence π0(Rep(A)) is generated by the

representations ρi, as claimed. 2

Remark 6.2.3 The above argument provides a non-standard proof that irreducible

representations of abelian groups are one-dimensional. The same argument appears

in [11].



Appendix A

Holonomy of flat connections

The goal of this appendix is to give a careful discussion of the holonomy repre-

sentation associated to a flat connection on a principal G-bundle over a connected

manifold M . We show that holonomy induces a bijection from the set of all such

(smooth) connections to the set of representations of π1M into G, after taking the

action of the based gauge group into account (Theorem A.0.20). This material is

essentially well-known, but there does not appear to be any published reference.

Some of the results to follow may be found in Morita’s books [36, 37], and the main

result is essentially stated in the introduction to [14].

All manifolds and maps in this appendix will be smooth.

Definition A.0.4 Let G be a Lie group. A principal G-bundle P over a manifold

M is a manifold P together with a map

π : P →M

such that there exist local trivializations P |U ∼= U ×G, and such that the transition

maps (U ∩ V ) × G
∼=
−→ (U ∩ V ) × G all have the form (x, g) 7→ (x, h(x) · g) for

some smooth map h : U ∩V → G. Note that with this definition, P acquires a right

action of the structure group G.

Let π : P →M be a principal G-bundle. Then there is a natural map of vector

114
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bundles over P

TP
α
−→ π∗TM

which is equivariant with respect to the action of G.

Definition A.0.5 A connection on P is a G-equivariant splitting of the map α,

i.e. a (smooth) map of vector bundles

A : π∗TM −→ TP

such that α ◦ A = idπ∗TM . We denote the set of all connections on P by A(P ).

Next we introduce the action of the gauge group G = G(P ) on the set A(P ) of

connections.

Definition A.0.6 The gauge group G(P ) is the group of all equivariant maps

P
φ
−→ P such that π ◦ φ = π.

Given a map P
φ
−→ Q of principal G-bundles over M (that is, an equivariant

map such that π2 ◦φ = π1, where π1 : P →M and π2 : Q→M are the projections)

we obtain a map φ∗ : A(P )→ A(Q) as follows: given a connection A on P , consider

the diagram

TP //

Dφ

��

π∗
1TM

A
xx

TQ // π∗
2TM,

eφ−1

OO

φ∗A
ww Q_
m

where φ̃−1 denotes the natural map induced from φ−1; note that φ̃ is invertible

because φ is invertible (all principal bundle maps are diffeomorphisms). Then we

define φ∗A to be the map

Dφ ◦ A ◦ φ̃−1.

It is straightforward to check that φ∗A is an equivariant splitting.

Definition A.0.7 The (left) action of G(P ) on A(P ) is given by (A, φ) 7→ φ∗A.
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We are now ready to discuss parallel transport on a principal G-bundle P

equipped with a connection A, which will lead to the holonomy representation.

Given a smooth curve γ : [0, 1]→M (which we assume extends smoothly to R and

is constant outside (−ǫ, 1+ ǫ) for some ǫ > 0) we want to define a parallel transport

operator Tγ : Pγ(0) → Pγ(1), where Pγ(0) and Pγ(1) denote the fibers of P over these

points.

This operator is defined by following A-horizontal lifts of the path γ. Specifically,

we have a vector field Vγ on the pullback γ∗P , defined by

Vγ(t, p) = (εt, A(γ′(t), p))

for any t ∈ (−ǫ, 1 + ǫ), p ∈ Pγ(t). Here εt denotes the canonical unit vector in

Tt(−ǫ, 1 + ǫ); so γ′(t) = (Dγ)(εt). This is a smooth vector field on γ∗P , and hence

for any p ∈ Pγ(0) there exists a unique curve Γp : R→ γ∗P with Γ′
p(t) = Vγ (Γp(t))

and Γp(0) = (0, p) ∈ γ∗P. Our horizontal lift of γ, starting at p ∈ Pγ(0), will be the

curve γ̃p = f ◦ Γp|[0,1], where f : γ∗P → P is the natural map.

Lemma A.0.8 The curve γ̃p : [0, 1]→ P satisfies

π ◦ γ̃p = γ and γ̃′p(t) = A (γ′(t), γ̃p(t))

Proof. We may write Γp : R → γ∗P as Γp = (Γ1,Γ2) with Γ1 : R → R and

Γ2 : R→ P (so Γ2 = γ̃p). Now, the equation Γ′
p(t) = Vγ(Γp(t)) becomes

(
Γ′

1(t), γ̃
′
p(t)
)

=
(
εΓ1(t), A (γ′(Γ1(t)), γ̃p(t))

)
,

from which we see that Γ1(t) satisfies the differential equation Γ′
1(t) = εΓ1(t). This

equation is also satisfied by the identity map R→ R (by definition of ε) so Γ1(t) = t

for any t ∈ R.

We now have

γ̃′p(t) = A (γ′(Γ1(t)), γ̃p(t)) = A (γ′(t), γ̃p(t))
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as desired, and

Dπ(γ̃′p(t)) = Dπ (A(γ′(t),Γ2(t))) = γ′(t)

(because A is a splitting) which implies π ◦ γ̃p(t) = γ(t). 2

Definition A.0.9 Given a connection A on a principal G-bundle P over M , the

parallel transport operator associated to a smooth curve γ : [0, 1] → M is the

function

Tγ = TAγ : Pγ(0) → Pγ(0)

defined by Tγ(p) = γ̃p(1).

We now record several simple properties of parallel transport, which are easily

checked.

Lemma A.0.10 For any γ : I →M , p ∈ Pγ(0), and g ∈ G,

a) (γ̃p) · g = γ̃p·g;

b) Parallel transport is G-equivariant, i.e.

Tγ(p · g) = Tγ(p) · g;

c) Tγ = T−1
γ , where γ(t) = γ(1− t);

d) Tα�γ = Tγ ◦ Tα, if α : I →M satisfies α′(1) = γ′(0);

e) If γ is constant, then Tγ = Id.

Here we have used the notation p1 � p2 for composition of paths (tracing out p1

first).

When our connection A is flat, parallel transport will be homotopy invariant,

and will allow us to define the holonomy representation ρA : π1M → G. We will

need the following result from [44, p. 349], which may be taken as the definition

of flatness, for the purposes of this appendix.
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Proposition A.0.11 Let P
π
−→ M be a principal G-bundle and let A be a flat

connection on P . Then for each m ∈ M there exists a neighborhood U ∋ m

on which A is isomorphic to the trivial connection; that is, there exists a map of

principal G-bundles π−1(U)
t
−→ U ×G such that A|U = t∗τ , where τ is the trivial

connection on U × G (so τ ((U, g), V ) = (V, 0) ∈ TuU × TgG). Here t∗ denotes

the pullback operator on connections, defined analogously to the pushforward (so

A|U = t∗τ ⇔ t∗(A|U) = τ).

Lemma A.0.12 Let A be a flat connection on P , and let γ0, γ1 : [0, 1] → M be

two paths. If γ0 is homotopic to γ1 (relative to {0, 1}) then the parallel transport

operators Tγ0 and Tγ1 are equal.

Proof. To begin, note that if τ is the trivial connection on M × G, then the τ -

horizontal lifts of any curve γ : I →M are simply γ̃(m,g)(t) = (γ(t), g). This implies

that T τγ is always the identity, and moreover if t = (π, t2) : P → M × G is a map

of principal bundles, then the t∗τ -horizontal lift of γ : I → M (at p ∈ P ) is just

t−1(γ, t2(p)). Hence the map T t
∗τ
γ : Pγ(0) → Pγ(1) is

T t
∗τ
γ (p) = t−1(γ(1), t2(p)),

and is independent of the path γ.

Now, say A is a flat connection on P and H : I × I → M is a homotopy

between H(t, 0) = γ0 and H(t, 1) = γ1 (with H|{0}×I and H|{1}×I constant). We

may assume H is smooth (and extends smoothly over (−ǫ, 1+ ǫ)2). By Proposition

A.0.11 and compactness, we know that there exists a finite covering of I × I by

open sets {Ui}ni=1 over which A is trivial. In particular we may assume that for

some ε > 0 and some 0 < t0 < t1 < ... < tk = 1 we have [ti−1, ti] × [0, ε] ⊂ Ui

(i = 1, ..., k). Now parallel transport along γ0|[ti−1,ti] agrees with parallel transport

along the other three sides of the square [ti−1, ti] × [0, ε], and by induction we see

(using Lemma A.0.10 c), d) and e)) that Tγ0 = Tγε
. We can complete the proof

by iterating this process. The simplest way to see that this process terminates at

γ1 is probably to assume that Ui are circles, in which case the supremum of the

ε which may be used above is the second coordinate of some intersection point
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between these circles. The same is true at each stage of the process and there are

only finitely many such intersection points. 2

We can now define the holonomy representation.

Definition A.0.13 Let P be a principal G-bundle over M , and choose basepoints

m0 ∈ M , p0 ∈ Pm0. Associated to any flat connection A on P , the holonomy

representation

ρA : π1(M,m0)→ G

is defined by setting ρA([γ]) to be the unique element of G satisfying

p0 = TAγ (p0) · ρA([γ]).

Here γ : I →M is a smooth loop based at m0 and [γ] is its class in π1(M,m0).

Note here that TAγ : Pm0 → Pm0 depends only on [γ] (by Lemma A.0.12) and

that ρA is a homomorphism:

TAγ1�γ2
(p0) · (ρA([γ1])ρA([γ2])) = TAγ2

(
TAγ1(p0)

)
· ρA([γ1])ρA([γ2])

= TAγ2
(
TAγ1(p0) · ρA([γ1])

)
· ρA([γ2])

= TAγ2(p0) · ρA([γ2])

= p0,

so ρA([γ1])ρA([γ2]) = ρA([γ1 � γ2]).

From here on we assume that M is equipped with a basepoint m0 ∈M , and we

assume all principal bundles P are equipped with basepoints p0 ∈ Pm0 .

We now describe how holonomy changes as we vary the basepoints p0 ∈ P and

m0 ∈ M .

Proposition A.0.14 Let (P, p0) be a principal G-bundle on (M,m0), equipped with

a flat connection A. Let ρ0 = ρ0
A denote the holonomy representation of A, computed

at the basepoints p0 and m0.

If ρ0
g : π1(M,m0) → G denotes the holonomy representation of A computed at

the basepoints p0 · g and m0, then ρ0
g = g−1ρ0g.
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M

T A
γ (p0)

p0 · g

T A
γ (p0 · g) = T A

γ (p0) · g

P

γ̃A
p0
· g = γ̃A

p0·g

γ

p1 = T A
α (p0)

T A
α�γ�α(p1)

m0

m1

p0γ̃A
p0

α

α̃A
p0

Figure A.1: Basepoints and holonomy.

Let α be a smooth path in M with α(0) = m0 and let m1 = α(1). If ρ1 :

π1(M,m1) denotes the holonomy representation of A computed at the basepoints

m1 ∈ M and p1 = TAα (p0) ∈ Pm1, then ρ1 and ρ0 are identified under the isomor-

phism π1(M,m0)
∼=
−→ π1(M,m1) induced by α. In other words, ρ1([α�γ�α]) = ρ0([γ])

for any [γ] ∈ π1(M,m0).

Proof. For the first statement, we need to show that for any loop γ based at

m0 ∈ M ,

p0 · g = TAγ (p0 · g) · g
−1ρ([γ])g.

By G-equivariance of parallel transport (Lemma A.0.10), the right-hand side is just

TAγ (p0) · ρ([γ])g = p0 · g,

as desired.

For the second statement, we need to show that

TAα�γ�α(p1) · ρ
0([γ]) = p1.
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We have:

TAα�γ�α(p1) · ρ
0([γ]) =

(
TAα T

A
γ T

A
α (TAα (p0)

)
· ρ0([γ])

= TAα
(
TAγ (p0)

)
· ρ0([γ])

= TAα (p0)

= p1.

2

We denote the set of all (smooth) flat connections on a principal bundle P by

Aflat(P ). We now want to study the effect of the gauge group on holonomy.

Proposition A.0.15 For any A ∈ Aflat(P ) and any φ ∈ G(P ) we have

ρφ∗A = φm0ρAφ
−1
m0
,

where φm0 ∈ G is the unique element such that p0 · φm0 = φ(p0). (Note that with

this definition, the map φ 7→ φm0 is a homomorphism G(P )→ G.)

Proof. We must show that for any smooth curve γ : [0, 1]→M ,

T φ∗Aγ (p0) · (φm0ρA([γ])φ−1
m0

) = p0. (A.1)

Let γ̃Ap0 denote the A-horizontal lift of γ starting at p0. We claim that γ̃φ∗Ap0
=

(φ◦γ̃Ap0)·φ
−1
m0
. It suffices (by Lemma A.0.10 a)) to check that φ◦γ̃Ap0 is φ∗A-horizontal.

This is just a calculation:

(φ ◦ γ̃Ap0)
′(t) = Dφ

(
(γ̃Ap0)

′(t)
)

= Dφ
(
A(γ′(t), γ̃Ap0(t))

)

and

(φ∗A)
(
γ′(t), φ(γ̃Ap0(t))

)
= Dφ ◦ A ◦ φ̃−1

(
γ′(t), φ(γ̃Ap0(t))

)

= Dφ ◦ A(γ′(t), γ̃Ap0(t))
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as well. So T φ∗Aγ (p0) = φ(TAγ (p0)) · φ
−1
m0

, and the left and side of (A.1) is now

T φ∗Aγ (p0) · (φm0ρA([γ])φ−1
m0

) = φ(TAγ (p0)) · φ
−1
m0
· (φm0ρA([γ])φ−1

m0
)

= φ(TAγ (p0) · ρA([γ])) · φ−1
m0

= φ(p0) · φ
−1
m0

= p0.

2

Definition A.0.16 The based gauge group G0(P ) ⊂ G(P ) is the kernel of the re-

striction homomorphism r : G(P ) → G, r(φ) = φm0. Equivalently, G0(P ) is the

subgroup of gauge transformations which are the identity on Pm0.

An immediate consequence of Proposition A.0.15 is:

Corollary A.0.17 The based gauge group G0(P ) acts trivially on holomony; that

is, for all φ ∈ G0(P ) and all A ∈ Aflat(P ) we have

ρφ∗A = ρA.

Holonomy defines a map

H :
∐

[P ]

Aflat(P )→ Hom(π1(M,m), G) (A.2)

via the formula H(A) = ρA. The disjoint union ranges over some chosen set of

representatives for the unbased isomorphism classes of (based) principal G-bundles.

In other words, we choose a set of representatives for the unbased isomorphism

classes, and then choose, arbitrarily, a basepoint in each representative (at which

we compute holonomy).

The set Aflat(P ) will often be empty; in fact we will see that if M is compact

(or more generally, if π1M is finitely generated) and G is either compact or a real

algebraic variety, then only finitely many isomorphism types of principal G-bundles

on M admit flat connections.

Corollary A.0.17 shows that we have a diagram
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∐
[P ]

Aflat(P )

''NNNNNNNNNNN

H // Hom(π1(M,m0), G)

∐
[P ]

Aflat(P )/G0(P )

H

66mmmmmmmmmmmmmmmm

Our next goal is to explain the equivariance properties of this diagram. Propo-

sition A.0.15 is a sort of equivariance statement for H, at least when restricted to a

particular bundle P . To understand equivariance for the map H, we need a lemma

regarding the existence of gauge transformations with prescribed values.

Lemma A.0.18 Assume G is connected. Then for any principal G-bundle (P, p0)

on M , and any g ∈ G, there exists a gauge transformation φg ∈ G(P ) such that

(φg)m0 = g, i.e. φg(p0) = p0 · g. Hence the restriction homomorphism G(P ) → G,

φ 7→ φm0, is surjective.

Remark A.0.19 The argument below shows that for any group G, the image of

the restriction map is a union of connected components of G. In general, though, I

do not know how to prove that this map is surjective.

Proof.[Proof of Lemma A.0.18] Consider the adjoint bundle (see [6, Section 2])

AdP = (P ×G)/G

where G acts via (p, g) · h = (p · h, h−1gh). The projection AdP → M , (p, g) 7→

π(p), makes AdP a (locally trivial) fiber bundle with fiber G (although it is not a

principal G-bundle) and there is a one-to-one correspondence between sections of

AdP and gauge transformations of P , given by sending a section s : M → AdP to

the gauge transformation φs : P → P given by

φs(p) = p · gs(p),

where gs(p) ∈ G is the unique element satisfying s(π(p)) = [p, gs(p)] ∈ AdP. (See

[6] for more details.) It now suffices to show that for each g ∈ G there exists a section

s of AdP with gs(p0) = g. Note that AdP has a canonical section e(m) = [p, e]
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(p ∈ Pm arbitrary), corresponding to the identity element in G(P ), and AdP is

trivial on some neighborhood of m0 ∈ M . Since G is connected, we may modify

the section e(m) in this neighborhood in order to make it take any given value over

the basepoint. 2

When G is connected, we now see that G acts on the space

∐

[P ]

Aflat(P )/G0(P ).

Specifically, the action of g ∈ G on an equivalence class [A] ∈ Aflat(P )/G0(P ) is

given by the formula

g · [A] = [(φg)∗A],

where φg ∈ G(P ) is any gauge transformation satisfying (φg)m0 = g (the existence

of φg is guaranteed by Lemma A.0.18). This action is well-defined by Corollary

A.0.17.

We can now state the main result of this appendix.

Theorem A.0.20 The holonomy map defines a (continuous) bijection

H :
∐

[P ]

Aflat(P )/G0(P )→ Hom(π1M,G),

and if G is connected then this map is G-equivariant with respect to the G-action

described above.

We begin by noting that equivariance is immediate from Proposition A.0.15, and

continuity of the holonomy map is immediate from its definition in terms of integral

curves of vector fields (here we are thinking of the C∞-topology on Aflat(P )).

In order to prove bijectivity of H, we will need to introduce the mixed bundles

associated to representations ρ : π1M → G.

Definition A.0.21 Let ρ : π1M → G be a representation. We define the mixed

bundle Eρ = M̃ ×ρ G by

Eρ =
(
M̃ ×G

)/
(x, g) ∼ (x · γ, ρ(γ)−1g)
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Here M̃
πfM−→ M is the universal cover of M , considered as a principal π1M-

bundle and equipped with a basepoint m̃0 ∈ M̃ lying overm0 ∈ M . The equivalence

relation is defined for all (x, g) ∈ M̃ ×G and all γ ∈ π1M .

It is easy to check that Eρ is a principal G-bundle on M , with projection

[(m̃, g)] 7→ πfM(m̃). We denote this map by πρ : Eρ → M . Note that since we

have chosen basepoints m0 ∈ M and m̃0 ∈ M̃ , Eρ acquires a canonical basepoint

[(m̃0, e)] ∈ Eρ making Eρ a based principal G-bundle. (Here e ∈ G denotes the

identity element.)

In fact, Eρ also admits a canonical flat connection Aρ. We must define a G-

equivariant splitting of the natural map

T (Eρ)
α
−→ π∗

ρTM.

This is given by the formula

Aρ

(
[x̃, g],

⇀
vx

)
= Dq

((
Dx̃πfM

)−1
(
⇀
vx),

⇀

0g

)
.

On the left, x ∈M ,
⇀
vx∈ TxM , x̃ ∈ π−1

fM (x) ⊂ M̃ , and g ∈ G. On the right,
⇀

0g∈ TgG

denotes the zero vector, q denotes the quotient map M̃ ×G→ M̃ ×ρ G = Eρ, and

Dx̃πfM is invertible because πfM : M̃ →M is a covering map.

Lemma A.0.22 The map Aρ is a well-defined, G-equivariant splitting of the nat-

ural map α : TEρ → π∗
ρTM ; in other words, Aρ is a connection on Eρ.

Proof. To show that Aρ is well-defined, let γ ∈ π1M be any element. We must

check that

Dq
((
Dx̃πfM

)−1
(
⇀
vx),

⇀

0g

)
= Dq

((
Dx̃·γπfM

)−1
(
⇀
vx),

⇀

0ρ(γ)−1g

)
.

By abuse of notation, for each γ ∈ π1M we let γ denote the maps M̃ → M̃ , x̃ 7→ x̃·γ

and M̃ ×G→ M̃ ×G, (x̃, g) 7→ (x̃ · γ, ρ(γ)−1 · g), i.e. the maps defining the actions

of π1M . Then since πfM ◦ γ = πfM we have

(
Dx̃·γπfM

)−1
= Dx̃γ ◦

(
Dx̃πfM

)−1
,
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and since q ◦ γ = q we have DqDγ = Dq. Thus

Dq
(
(Dx̃·γ)

−1 (
⇀
vx),

⇀

0ρ(γ)−1g

)
= Dq

(
Dx̃γ ◦

(
Dx̃πfM

)−1
(
⇀
vx),

⇀

0ρ(γ)−1g

)

= DqDγ
((
Dx̃πfM

)−1
(
⇀
vx),

⇀

0g

)

= Dq
((
Dx̃πfM

)−1
(
⇀
vx),

⇀
0g

)
,

as desired.

For equivariance, we must check that Aρ

(
[x̃, gh],

⇀
vx

)
= Aρ

(
[x̃, g],

⇀
vx

)
· h, i.e.

Dq
((
Dx̃πfM

)−1
(
⇀
vx),

⇀

0gh

)
= Dq

((
Dx̃πfM

)−1
(
⇀
vx),

⇀

0g

)
· h.

This formula is immediate from G-equivariance of q.

Finally, we must check that Aρ is a splitting, i.e. that α ◦ Aρ = Idπ∗

ρTM . This

follows from commutativity of the diagram

M̃ ×G
q //

πfM
◦p1

&&
Eρ

πρ // M .

Specifically,

α
(

Aρ

(
[x̃, g],

⇀
vx

))
= α

(
Dq
((
Dx̃πfM

)−1
(
⇀
vx),

⇀

0g

))

=
(
[x̃, g], DπρDq

((
Dx̃πfM

)−1
(
⇀
vx),

⇀

0g

))

=
(
[x̃, g], D

(
πfM ◦ p1

) ((
Dx̃πfM

)−1
(
⇀
vx),

⇀
0g

))

=
(
[x̃, g],

⇀
vx

)

as desired. 2

Proposition A.0.23 The connection Aρ is flat, with holonomy representation

H(Aρ) = ρ.

Proof. To show that Aρ is flat, it suffices (by Proposition A.0.11) to check local
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triviality. Let U ⊂ M be an open set over which M̃ is trivial. Over this neighbor-

hood, Eρ is simply

(U × π1M ×G)/π1M ∼= U ×G,

and Aρ is clearly identified with the trivial connection on U ×G under this isomor-

phism.

To compute H(Aρ), let γ : I → M be a smooth loop based at m0 ∈ M . We

must show that if γ̃ρ is the Aρ-horizontal lift of γ with γ̃ρ(0) = [m̃0, e], then

γ̃ρ(1) = [m̃, e] · ρ(γ) = [m̃, ρ(γ)].

To begin, let γ̃fM : I → M̃ be the unique lift of γ to M̃ with γ̃fM(0) = m̃0. Then

by definition of the principal bundle structure on M̃ , we have γ̃fM(1) = m̃ · [γ]. The

Aρ-horizontal lift of γ to Eρ =
(
M̃ ×G

)/
π1M is now given by

γ̃ρ(t) =
[
γ̃fM(t), e

]
= q

(
γ̃fM(t), e

)
,

where e ∈ G denotes the identity element. Indeed, γ̃ρ(0) = [γ̃ em(0), e] = [m̃0, e], and

γ̃′ρ(t) = Dq
(
γ̃′fM(t),

⇀

0e

)
= Dq

((
Dγ̃fM

(t)πfM

)−1

(γ′(t)) ,
⇀

0e

)

= Aρ (γ̃ρ(t), γ
′(t))

as desired. We now have

γ̃ρ(1) =
[
γ̃fM(1), e

]
= [m̃0 · γ, e] = [m̃0, ρ(γ)e] = [m̃0, ρ(γ)] ,

completing the proof. 2

Complementing this result, we have:

Proposition A.0.24 Let (P, p0) be a based principal G-bundle over M , equipped

with a flat connection A ∈ Aflat(P ). Then there is an isomorphism of based principal

G-bundles

φ : (P, p0)
∼=
−→

(
EH(A), [m̃0, e]

)
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such that φ∗A = AH(A).

In light of Proposition A.0.23, we see that Proposition A.0.24 is a special case

of the following result.

Proposition A.0.25 Let (P, p0) and (Q, q0) be based principal G-bundles over M

with flat connections A and B, respectively. If H(A) = H(B), then there is a based

isomorphism φ : P → Q such that φ∗A = B.

Proof. We define φ by defining its restrictions φm := φ|Pm
to each fiber of P , be-

ginning with the fiber Pm0 over m0 ∈M . Since we require φ(p0) = q0, equivariance

forces us to define φ(p0 · g) = q0 · g for any other point p0 · g ∈ Pm0 . Now, given

another point m ∈ M , choose a smooth path γ : I → M with γ(0) = m0 and

γ(1) = m. Then we define φm on Pm via parallel transport:

φm = TBγ ◦ φm0 ◦ T
A
γ .

Since each of the maps on the right is G-equivariant, so is their composition φm.

We must check that our definition of φm is independent of the chosen path γ.

It is easy to check (using Lemma A.0.10) that this will follow once we show that

for every smooth loop γ : I →M based at m0, we have

TBγ ◦ φm0 ◦ T
A
γ = φm0 . (A.3)

To check (A.3), we begin by noting that TAγ (p0) · ρA([γ]) = p0, so we have

TBγ ◦ φm0 ◦ T
A
γ (p0) =

(
TBγ ◦ φm0

)
(p0 · ρA([γ]))

= TBγ (q0 · ρA([γ])) = TBγ (q0) · ρA([γ]).

But by assumption, A and B have the same holonomy, so TBγ (q0) · ρA([γ]) = q0.

Thus we have

TBγ ◦ φm0 ◦ T
A
γ (p0) = q0 = φm0(p0),

and (A.3) follows by equivariance. Hence the map φ is well-defined. We note

that φ is easily seen to be smooth: the connections A and B are locally trivial
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by Proposition A.0.11, and parallel transport for the trivial connection is clearly

smooth.

To prove that φ∗AP = AQ, we work locally. Given p ∈ P , choose a path

γ : [0, 1]→ M with γ(0) = m0, γ(1) = πP (p) and cover γ([0, 1]) ⊂ M by open sets

U1, ..., Uk over which the connections AP and AQ are both trivial. We may now

subdivide γ into subpaths γi : [ti−1, ti] → M , where i = 1, ..., k, t0 = 0, tk = 1 and

(after renumbering the Ui if necessary) γi([ti−1, ti]) ⊂ Ui. Since AP and AQ are

both trivial over Ui, we may choose isomorphisms

ψi : P |Ui
→ Q|Ui

such that (ψi)∗AP = AQ. Moreover, we may choose the ψi in order and assume

that ψ1(p0) = q0, and then (inductively) we may assume that ψi = ψi+1 on the fiber

over ti (here we use the fact that, for any h ∈ G, the trivial connection on Ui×G is

fixed by the constant gauge transformation (u, g) 7→ (u, hg)). It will now suffice to

check that ψi = φ|Ui
. This is easily proven by induction on k, using the following

lemma.

Lemma A.0.26 Let φ : (P, p0)→ (Q, q0) be a map of principal G-bundles, and let

A be a flat connection on P . Then for any p ∈ P , φ(p) is given by the formula

φ(p) = T φ∗Aγ ◦ φm0 ◦ T
A
γ (p),

where γ : [0, 1] → M is any smooth path with γ(0) = m0 and γ(1) = πP (p), and

φm0 is the restriction of φ to the fiber over m0 (so φm0(p0 · g) = q0 · g).

Proof. If γ̃A denotes the A-horizontal lift of γ, with γ̃A(1) = p, then φ ◦ γ̃A = γ̃φ∗A

is the (φ∗A)-horizontal lift of γ ending at φ(p) (cf. the proof of Proposition A.0.15).

So we have

T φ∗Aγ ◦ φm0 ◦ T
A
γ (p) = T φ∗Aγ (φ ◦ γ̃A(0))

= T φ∗Aγ (γ̃φ∗A(0)) = γ̃φ∗A(1) = φ(p).

2
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This complete the proof of Proposition A.0.25. We can now bring together our

results to prove Theorem A.0.20.

Proof of Theorem A.0.20. We just need to check that the holonomy map

H :
∐

[P ]

Aflat(P )/G0(P )→ Hom(π1M,G)

is both surjective and injective. Surjectivity follows immediately from Proposition

A.0.23, which produces, for any ρ ∈ Hom(π1M,G), a bundle Eρ with a connection

Aρ such that H(Aρ) = ρ.

For injectivity, say H(A) = H(B), where A ∈ Aflat(P ) and B ∈ Aflat(Q). Then

by Proposition A.0.25, we have an isomorphism φ : P
∼=
−→ Q such that φ∗A = B.

But if P and Q came from our chosen set of representatives for the isomorphism

classes of principal G-bundles, then we must have P = Q, and moreover φ is now

an element of the based gauge group G0(P ). So [A] = [B] ∈
∐

[P ]Aflat(P )/G0(P ),

proving injectivity. 2

As an easy consequence of this result, we obtain the following more well-known

statement. (A proof of this corollary is given by Morita [36, Theorem 2.9]. However,

Morita does not prove an analogue of Proposition A.0.25 and consequently his

argument does not make the injectivity portion clear.)

Corollary A.0.27 Let G be a connected Lie group. Then there is a bijection be-

tween isomorphism classes of flat principal G-bundles over M and conjugacy classes

of representations ρ : π1M → G. In other words, holonomy defines a (continuous)

bijection ∐

[P ]

Aflat(P )/G(P )
∼=
−→ Hom(π1M,G)/G.

Proof. Surjectivity is immediate from Theorem A.0.20. For injectivity, sayH(A) =

gH(B)g−1 for some g ∈ G, where A ∈ Aflat(P ), B ∈ Aflat(Q). Let p0 ∈ P and q0 ∈ Q

be the given basepoints. Then by Proposition A.0.14, we know that the connections

A and B have the same holonomy, if we compute holonomy of B at q0 · g. Hence

Proposition A.0.25 gives an isomorphism

φ : (P, p0) −→ (Q, q0 · g)
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such that φ∗A = B. But existence of this isomorphism implies that P = Q (and

p0 = q0), and now φ is an unbased gauge transformation of P . 2

The following corollary is the version of Theorem A.0.20 stated in [14], and

identifies those representations arising from a given bundle P .

Corollary A.0.28 Let (P, p0) be a based principal G-bundle on M , and let

HomP (π1(M,m0), G) = {ρ : (Eρ, [m̃0, e]) ∼= (P, p0)}.

Then holonomy induces a continuous bijection

Aflat(P )/G0(P )
∼=
−→ HomP (π1(M,m0), G).

Proof. By Theorem A.0.20, holonomy induces a continuous injection

Aflat(P )/G0(P )
H
→֒ Hom(π1(M,m0), G),

so we just need to identify the image. If A ∈ Aflat(P ), then (EH(A), [m̃0, e]) ∼=

(P, p0) by Proposition A.0.24, so H([A]) ∈ HomP (π1(M,m0), G). Conversely, if

ρ ∈ HomP (π1(M,m0), G) then we are given an isomorphism

φ : (Eρ, [m̃0, e])
∼=
−→ (P, p0);

by Proposition A.0.23 we know that the connection Aρ on Eρ has holonomy ρ (at

[m̃0, e]), and hence the connection φ∗Aρ on P has holonomy ρ (at φ([m̃0, e]) = p0).

2

Remark A.0.29 We note that the space HomP (π1M,G) is always a union of con-

nected components in Hom(π1M,G). This is easily shown using the method in the

proof of Proposition A.0.30 below.

Using the techniques of this appendix, we can now prove the finiteness result

needed in Section 4.2.
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Proposition A.0.30 Assume that π1M is finitely generated, and that G is a real

algebraic variety (i.e. a subset of Rn cut out by polynomial equations). Then only

finitely many isomorphism classes of principal G-bundles over M admit flat con-

nections.

Proof. We will apply a theorem of Whitney [49], stating that any real algebraic

variety has finitely many path components. (To be precise, Whitney proves that real

algebraic varieties have finitely many topological components, but such varieties are

also triangulable [21] and hence their topological and path components coincide.)

Now, since π1M is finitely generated, we know that Hom(π1M,G) embeds into Gk

for some k, and in fact the representation space is precisely the subvariety of Gk cut

out by the relations in π1M . (Note here that even if π1M is not finitely presented,

the ideal defined by the relations in π1M will be finitely generated, by the Hilbert

Basis Theorem.) Thus we conclude that Hom(π1M,G) has finitely many path

components.

Now, let ρ1, ..., ρn ∈ Hom(π1M,G) denote a set of representatives for the path

components of Hom(π1M,G), and let P → M denote a principal G-bundle admit-

ting a flat connection A. We will show that P ∼= Eρi
for some i ∈ {1, ..., n},

where Eρi
denotes the mixed bundle from Definition A.0.21. First, we know

from Proposition A.0.24 that P ∼= EH(A). Now, choose i such that H(A) and

ρi lie in the same path component of Hom(π1M,G). Then there exists a path

R : [0, 1]→ Hom(π1M,G) such that R0 = H(A) and R1 = ρi. Consider the bundle

ER = (M̃ × [0, 1]×G)
/

(m̃, t, g) ∼ (m̃ · γ, t, Rt(γ)
−1g).

This is a principal G-bundle over M × [0, 1], with projection

[(m̃, t, g)] 7→ (πfM(m̃), t);

note that if U ⊂M is an open set over which M̃ is trivial, then ER is trivial over U×

[0, 1]. The Bundle Homotopy Theorem now gives us an isomorphism ER|M×{0}
∼=

ER|M×{1}, and clearly these bundles are just EH(A) and Eρi
, respectively. 2
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