
Math 204-2, Fall 2008
Proof-Writing Assignment 2

DUE: Tuesday, 12/2/08

Please hand in solutions to both problems. Your answers will be
graded on both correctness and on clarity of presentation. Please make
sure to write clearly, and think carefully about the logic of your argu-
ments. Remember that a proof is a logical sequence of deductions, and
you should make clear why each step in your proof follows from the
previous one.

A) The purpose of this problem is to think carefully about two fun-
damental results regarding vector spaces. We’ve already seen these
results in class, on the homework, and on exams. Please give a clear
and complete proof of each of the following results (if you use a result
from a previous homework or test, include a proof of that result).

i) Prove that if {v1, . . . , vk} is a linearly independent subset of a finite
dimensional vector space V , then there is some collection of vectors
{vk+1, . . . , vn} such that {v1, . . . , vn} forms a basis for V .

ii) Prove that if V is a vector space containing a finite spanning set,
then V is in fact finite dimensional.

B) Let U, V , and W be finite dimensional vector spaces, and let S :
U → V and T : V → W be linear transformations. Recall that the
composite transformation T ◦ S : U → W is defined by T ◦ S(u) =
T (S(u)).

i) Prove that ker(S) is a subspace of ker(T ◦ S), while range(T ◦ S) is
a subspace of range(T ).

ii) Consider the case where U = V = W and S = T . Prove that
if range(T ◦ T ) = range(T ), then ker(T ) ∩ range(T ) = {0}. (Hint:
first show, using part i) and the Rank-Nullity Theorem, that ker(T ) =
ker(T ◦ T ). Now see what you can say about a vector v that lies in
both ker(T ) and in range(T ).)
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C) Early in this course, we learned that row reduction does not change
the solution set of a linear system. In other words, if two linear systems
are row equivalent, then they have the same solution set. We now have
the necessary tools to prove the converse of this statement. This is
a great application of all the abstract things we’ve learned to a nice,
concrete problem.

Theorem 1 Let Ax = 0 and A′x = 0 be two homogeneous m × n
linear systems. If the solution sets for these linear systems are the
same (i.e. if {x ∈ Rn |Ax = 0} = {x ∈ Rn |A′x = 0}) then there is
some sequence of row operations that transforms the matrix A into the
matrix A′.

The goal of this problem is to give a proof of this theorem. I suggest
proving it by filling in the following outline.

i) Show that Theorem 1 is equivalent to the following result.

Theorem 2 If A and A′ are m×n matrices with the same nullspace,
then there exists an invertible matrix B such that BA = A′.

Now we’ll prove Theorem 2.

ii) Let {v1, . . . , vk} be a basis for the nullspace of A and A′. Use problem
A) part i) to obtain a basis {v1, . . . , vk, vk+1, . . . , vn} for Rn.

iii) Show that the set {Avk+1, . . . , Avn} is linearly independent in Rm.
(Hint: this is very similar to the proof Theorem 5 in Section 5.4.)

iv) Show that there exists an isomorphism T : Rm → Rm such that
T (Avk+1) = A′vk+1, T (Avk+2) = A′vk+2, . . . , T (Avn) = A′vn. (Hint:
remember that you can define a linear transformation just by specifying
its values on a basis. You’ll have to use Problem A) part i) again.)

v) Now put the pieces together: show that if B is the matrix for your
transformation T with respect to the standard basis for Rm, then B is
invertible and BA = A′.

Extra Credit: What can you say about the case of non-homogeneous
systems? Is it still true that if Ax = b and A′x = b′ have the same
solution set, then the augmented system (A|b) can be transformed into
the augmented system (A′|b′) using row operations? (Hint: consider the
relationship between solutions to the augmented system and solutions
to the associated homogeneous system.)


