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Abstract. For a discrete group G, the relationship between Carlsson’s defor-

mation K–theory spectrum and the complex connective K–theory of BG can

be viewed as a homotopy limit problem in the sense of Thomason, providing a
natural map of ku–algebras Kdef(G)→ F (BG+,ku). We show that this map

is closely related to the natural maps Hom(G, U(n)) −→ Map(BG, BU(n)),

and that it agrees on homotopy groups with the topological Atiyah–Segal map
introduced in [3]. Using results of T. Lawson, we study this map for prod-

ucts of surface groups and for crystallographic groups, and give applications

to questions about families of flat bundles and spaces of flat connections.

1. Introduction

There is a close relationship between representation theory and K–theory, first
observed by Atiyah in the context of finite groups [1]. Given a discrete group G
and a representation ρ : G → U(n), one may form the “mixed” vector bundle
EG ×G Cn → BG, which represents a class in K0(BG). It is an exercise to check
that this bundle (or rather its associated principle U(n)–bundle) is classified by the
map Bρ : BG → BU(n), where we use the functorial simplicial model for these
classifying spaces. In Baird–Ramras [3], this map was extended to a homomorphism

(1) αG : Kdef
n (G) −→ K−n(BG),

where Kdef
n (G) is the Grothendieck group of (unbased homotopy classes of) Sn–

families of unitary representations of G. This map, which we call the topological
Atiyah–Segal map, is closely related to the classical Novikov Conjecture on the
homotopy invariance of higher signatures: if BΓ is homotopy equivalent to a finite
CW complex and (1) is rationally surjective for n >> 0, then Ramras–Willett–
Yu [19, Lemma 3.15 and Corollary 4.3] implies that the analytical assembly map is
rationally injective (which implies the Novikov Conjecture for G).

If G is finitely generated, one has an isomorphism

Kdef
n (G) ∼= πn(Kdef(G),

where Kdef(G) is Carlsson’s deformation K–theory spectrum. This spectrum is
built from the representation spaces Hom(G,U(n)), and computations have shown
that in certain cases, its homotopy groups are closely related to theK–theory ofBG.
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In this article, we present a construction, due to Carlsson (private communication),
which provides a natural map

(2) Kdef(G) −→ F (BG+,ku)

in the derived category of ku–algebras. Throughout the paper, F will denote the
based mapping spectrum, and BG+ will denote BG with a disjoint base point.
This map is obtained by viewing Kdef(G) and F (BG+,ku) as the fixed points and
homotopy fixed points (respectively) of the K–theory of a certain G–equivariant
category. This formulation fits into the notion of homotopy limit problems, as
expounded by Thomason [23]. Briefly, a homotopy limit problem asks whether,
given a space or spectrum X with a G–action, the natural inclusion

XG → XhG

of fixed points into the homotopy fixed is a weak equivalence. A large number of
problems in homotopy theory fit into this framework: the work of Atiyah mentioned
above, and subsequent work of Atiyah and Segal [2]; the Sullivan conjecture [22, 14];
Segal’s Burnside ring conjecture [21, 5]; and the Quillen–Lichtenbaum Conjecture
(see, for example, [20]).

This paper establishes relationships between the homotopy limit problem for
deformation K–theory and the natural maps

(3) B : Hom(G,U(n))) −→ Map∗(BG,BU(n)).

Here Map∗ denotes the based mapping space. These maps were related to the
topological Atiyah–Segal map αG in [3], and combining these relationships leads to
the conclusion that homotopy limit problem induces αG on homotopy groups. A
full discussion of this point still needs to be added to the paper. This shows
in particular that the topological Atiyah–Segal map is a map of ku–algebras, which
is not at all apparent from the explicit description in [3] in terms of flat families.

Combined with previous work of the author [17], this leads to the conclusion that
if G is a product fundamental groups of aspherical surfaces, then the natural map
(2) induces an isomorphism on homotopy in dimensions greater than the rational
cohomological dimension of G, minus 2 (Theorem 5.1). (At the moment, the proof
only works in the orientable case, although the computations in [17] suggest that
it should go through in the non-orientable case as well.) Similar (but somewhat
weaker) results are obtained for crystallographic groups in Section 7. (As discussed
above, these results imply the Novikov Conjecture for the groups in question. Sig-
nificantly simpler proofs were given in Ramras–Willett–Yu [19] using non-spherical
families.)

In Sections 6 and 8 we consider consequences of these results for families of flat
vector bundles and homotopy groups of spaces of flat connections, building on the
results in Baird–Ramras [3, Sections 3 and 5].

Acknowledgements: The author thanks Gunnar Carlsson for his help in formu-
lating the homotopy limit problem discussed in this article, and Tyler Lawson for
suggesting the homotopy in Lemma 4.1.
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THE HOMOTOPY LIMIT PROBLEM IN STABLE REPRESENTATION THEORY 3

We now recall the construction of deformation K–theory given in [15]. For any
discrete group G, we construct the topological permutative category R(G) with
object space

Ob R(G) =
∞∐
n=0

Hom(G,U(n))

and morphism space

Mor R(G) =
∞∐
n=0

Hom(G,U(n))× U(n),

where the pair (ρ,A) ∈ Mor R(G) is viewed as an isomorphism ρ → AρA−1, and
composition is determined by (B,AρA−1) ◦ (A, ρ) = (BA, ρ). When n = 0, we set
U(0) = Hom(G,U(0)) = {0}. Block sum of unitary matrices gives this category
a permutative structure, with 0 ∈ Hom(G,U(0)) as unit, and the deformation
K–theory spectrum of G is defined to be the K–theory spectrum associated to
R(G). For background on topological permutative categories and their associated
K–theory spectra, see [12].

3. The homotopy limit construction

In this section, we explain Carlsson’s construction of the natural map

Kdef(G) −→ F (BG+,ku).

We begin by defining a topological permutative category on which G acts by
permutative functors, such that the fixed point category is precisely the category
R(G) giving rise to deformation K–theory.

Definition 3.1. The category R̃(G) has object space

Ob R̃(G) =
∐
n

Hom(G,U(n))

and morphism space

Mor R(G) =
∐
n

Hom(G,U(n))×Hom(G,U(n))× U(n).

The morphism (ρ, ψ,A) has domain ψ and codomain ρ, and composition is given
by

(φ, ρ,B) ◦ (ρ, ψ,A) = (φ, ψ,BA).

We think of R̃(G) as the category of G–equivariant Hermitian inner product
spaces, with linear isometries as morphisms.

Again, block sum of unitary matrices gives R̃(G) the structure of a topological
permutative category. Moreover, R̃(G) admits a (right) action of G by continuous
permutative functors: given γ ∈ G, we define a functor (roughly, conjugation by γ)

cγ : R̃(G) −→ R̃(G)

by cγ(ρ) = ρ, and cγ(ρ, ψ,A) = (ρ, ψ, ρ(γ)−1Aψ(γ)). We leave it to the reader to
verify that these maps are (continuous) permutative functors, and that all together
they define a right action of G on R̃(G).
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Given a category D and a (right) action of a group H on D by functors, the fixed
point category DH is the category with objects (ObD)H and morphisms (MorD)H .
Note that if φ · h = φ for some φ ∈ MorD, then both the domain and codomain of
φ must be fixed by h, and moreover if φ, ψ ∈ (MorD)H are composable, then since
h acts via a functor, (φ◦ψ) ·h = (φ ·h)◦ (ψ ·h) = φ◦ψ. Hence DH is a subcategory
of D.

Lemma 3.2. There is an isomorphism of topological permutative categories R(G) ∼=
R̃(G)G, and consequently there is an isomorphism of K–theory spectra Kdef(G) ∼=
(K(R̃(G)))G.

Proof. The inclusion functor R(G)→ R̃(G), defined on morphisms and objects by

ρ 7→ ρ, (ρ,A) 7→ (AρA−1, ρ, A),

is an isomorphism onto the subcategory R̃(G)G ⊂ R̃(G). Note that the inclusion
functor is permutative, and that R̃(G)G is a sub-permutative category of R(G)
(meaning that it is closed under the block sum operation).

It is elementary to check that fixed points commute with the construction of the
K–theory spectrum of a permutative category (in fact, fixed points commute with
May’s the functor [12] from permutative categories to Γ– categories). �

Next, we show that there is a natural weak equivalence between the homotopy
fixed points of the action of G on K(R̃(Γ)) and the mapping spectrum F (BG+,ku).
Here we interpret ku as the K–theory spectrum of the topological permutative
category Vect of finite-dimensional Hermitian inner product spaces and linear
isometries (to be precise, the objects in Vect consist of the discrete set of nat-
ural numbers, and the morphisms are

∐
n U(n)) as in [10]. Equivalently, ku is the

deformation K–theory spectrum of the trivial group. Given an Ω spectrum S, and
a group H, an action of H on S is an action of H on each of the (based) spaces
S0, S1, . . . in the spectrum S, so that the binding maps ΣSi → Si+1 are equivariant
(where ΣSi = S1 ∧ Si with trivial H–action on the S1 factor). We call a spectrum
with an H–action an H–spectrum. The (naive) homotopy fixed point spectrum of
an H–spectrum S is then the equivariant mapping spectrum

ShH := FH(EH,S),

formed from the sequence of spaces MapH(EH,Si). Note that this is still an Ω–
spectrum, because the homeomorphism

Map(EH,ΩSi) ∼= ΩMap(EH,Si)

restricts to a homeomorphism

MapH(EH,ΩSi) ∼= ΩMapH(EH,Si).

The following result is standard.

Proposition 3.3. Let S and T be H–spectra, and let f : S → T be an H–
equivariant map which is also a weak equivalence of spectra (in the non-equivariant
sense). Then the induced map ShH → ThH is a weak equivalence as well.

This may be proven by noting that the homotopy fixed point spectrum is the
homotopy limit, over the one-object category BH, of the functor BH → Spectra
representing the action. Since homotopy limits are homotopy invariant in the ap-
propriate sense, the proposition follows.
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In our case, the K–theory spectrum of a permutative category with H–action is
an Ω-spectrum with H–action, and hence we can define the homotopy fixed point
spetrum in the above manner.

Lemma 3.4. There is a weak homotopy equivalence

F (BG+,ku) '−→ K(R̃(G))hG

Proof. Consider the full subcategory R̃I(G) ⊂ R̃(G) on the trivial representa-
tions In, n = 0, 1, 2, . . .; note that R̃I(G) ∼= Vect, where Vect is the category
of Hermitian inner product spaces discussed above, and hence its K–theory spec-
trum is precisely ku. The inclusion i of this subcategory into R̃(G) is an equiv-
alence of permutative categories, with inverse the continuous permutative functor
q : R̃(G) → R̃I(G) defined by q(ρ) = Idim ρ and q(ρ, ψ,A) = (Idim ρ, Idimψ, A)
(note that the domain and codomain of any morphism in R̃(G) have the same
dimension). The composition iq is the identity functor on Vect, while the iden-
tity matrices In ∈ U(n) yield a natural isomorphism ν : qi → Id eR(Γ) (that is,
νρ = Idim ρ).

It is a basic fact that continuous permutative functors induce maps of K–theory
spectra. Hence the maps i and q induce maps K(i) and K(q) between K(R̃(G)) and
ku = K(Vect), and we want to verify that maps are weak equivalences. We have
K(i) ◦ K(q) = K(iq) = IdVect. The above natural transformation shows that the
map on classifying spaces induced by the functor qi is homotopic to the identity.
The zeroth space of the K–theory spectrum of a permutative category P is simply
ΩB|P| (this follows from [12, Construction 10, Step 2]), so we conclude that on
zeroth spaces, the map K(qi) is homotopic to the identity. Since K–theory spectra
are connective, it follows that i and q induce inverse isomorphisms on homotopy
groups, and hence are weak equivalences of spectra. By Proposition 3.3, the map

kuhG −→ K(R̃(Γ))hG

induced by i is a weak equivalence as well.
To complete the proof, we just need to check that kuhG = FG(EG,ku) is

equivalent to F (BG,ku). Since G acts trivially on the subcategory R̃I(G) ∼= Vect,
its action on ku ∼= K(Vect) is trivial and we have FG(EG,ku) ∼= F (EG/G,ku) ∼=
F (BG,ku). �

We now have natural maps of spectra

Kdef(G)
∼=−→ K(R̃(G))G ↪→ K(R̃(G))hG '←− K(R̃I(G))hG

∼=←− F (BG+,ku),

each natural in the group G. After passing to the derived category of spectra, we
obtain the desired natural transformation

Kdef(G) −→ F (BG+,ku).

It follows from work of Lawson [10] that the spectrum ku can be rigidified to
a commutative S–algebra kur in the sense of Elmendorff–Kriz–Mandell–May [7],
and moreover Kdef(G) and F (BG+,ku) can be rigidified to modules over this S–
algebra. The above map then corresponds to a map in the derived category of
kur–algebras.

Lawson has given a rather different construction of the spectrum
Kdef(G), in which the ring structure arises from an external pairing of
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universes. It is known that additively (i.e. as spectra) Lawson’s model
agrees with the model presented here (based on permutative categories),
but the comparison goes through a third model for which it seems more
difficult to construct a ring structure. The following (incomplete) ar-
gument (Proposition 3.5) outlines how one might show that the ring
spectra produced by Lawson are equivalent (as rings) to the model used
here.

The need for such a comparison is simply that we will use Lawson’s
product formula below, which he proved using his model for Kdef(G).
A different approach, which seems simpler, is to instead give a direct
proof of the product formula for the (bi)permutative model of Kdef(G).
The product formula states that Kdef(G × H) ' Kdef(G) ∧ku K

def(H) (as
rings), and Lawson’s proof proceeds by filtering both sides by rank and
showing that natural map induces weak equivalences on the filtration
quotients. The additive comparisons between the two models respect
these filtrations, and hence can be used to deduce the product formula
for the (bi)permutative model from Lawson’s version. It should be noted
that the map Kdef(G)∧kuK

def(H)→ Kdef(G×H) is induced by functoriality,
and is automatically a ring map for either model.

Proposition 3.5. The natural map Kdef(G)→ F (BG+,ku) corresponds to a map
Kdef(G)r → F (BG+,kur)in the derived category of kur–algebras.

Proof. (Sketch) The spectra K(R(G)) = Kdef(G), K(R̃(G)), and ku can be rigid-
ified by taking the simplicial permutative categories of singular simplices in the
underlying categories. These simplicial categories are in fact simplicial bipermuta-
tive categories under tensor product of representations and unitary matrices. The
results of Elmendorff and Mandell [8] now show that the associated simplicial K–
theory spectrum is equivalent to a simplicial object in the category of commutative
ring symmetric spectra, and then apply Schwede’s functor from symmetric spectra
to S–algebras.

It remains to show that this rigidification process produces S–algebras that are
equivalent, in the derived category of S–algebras, to the model used by Lawson.
In [16], a comparison between the spectrum Kdef(R(G)) and Lawson’s explicit Γ–
space model for deformation K–theory was given. The intermediate spectrum is
the spectrum associated to the monoid

(4)
∐
n

Hom(Γ, U(n))×U(n) (EU(n)× V (n)) ,

where EU(n) denotes the categorical model and V (n) is the Stiefel manifold on
n–frames in C∞, and projecting onto the EU(n) and the V (n) factors gives equiva-
lences from this model to the models for Kdef(G) used here and in Lawson’s work,
respectively. These equivalences passes to equivalences between the associated sin-
gular objects. The technical part of this proof will be to check that the monoid
(4) gives rise to an E∞ ring spectrum, and that the comparison maps respects the
multiplications. Roughly speaking, the multiplication on (4) is induced by ten-
sor product of representations in the Hom factor, Kronecker product of unitary
matrices in the U(n) factor, and the tensor product map

V (n)× V (m)→ V (nm)
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given by tensoring an n–frame with an m–frame to obtain an nm–frame in C∞⊗C∞
(with Hermitian inner product induced by 〈v⊗w, v′⊗w′〉 = 〈v, v′〉〈w,w′〉) and then
applying an isomorphism C∞ ⊗ C∞ ∼= C∞.

The final step is to compare Lawson’s rigidification of his model for Kdef(G) with
the analogous rigidification of the singular object associated to Lawson’s model.
This can be done using the results on simplicial spectra in [7]. �

4. The homotopy limit problem and maps between classifying spaces

In this section we compare the natural map

Kdef(G) −→ F (BG+,ku)

constructed in Section 3 with the maps

Bn : Hom(G,U(n)) −→ Map(BG,BU(n))

sending representations to the induced maps between classifying spaces.
To begin, we define two functors associated to a representation ρ : G → U(n).

Let EG denote the translation category of G; that is, EG has an object for each
g ∈ G and a unique morphism g → h for each g, h ∈ G (we write this morphism
simply as g → h). We will also use the notation EG to denote the geometric
realization of this category; recall that EG is a model for the universal principal
G–bundle, via the action of G on EG defined by right multiplication, and the
quotient EG/G is (the realization of) the category BG with a single object ∗ and
MorBG(∗, ∗) = G, with composition given by multiplication (that is, g ◦ h = gh).
We define

(5) Cρ : EG→ R(G)

to be the constant functor at the object ρ ∈ R(G); that is, Cρ(g) = ρ and Cρ(g →
h) = In for all g, h ∈ G. Next, we define the functor

(6) Bρ : EG→ R(G)

by Bρ(g) = In, where In denotes the trivial representation G→ U(n), and Bρ(g →
h) = ρ(hg−1).

We can also define parametrized versions of the functors Cρ and Bρ. Given a
space X and a mapping ρ : X → Ob (R(G)) =

∐
n Hom(G,U(n)), we define the

maps
Cρ, Bρ : X × EG −→ |R(G)|

to be the adjoints of the maps X → F (EG+,R(G)) given by x 7→ Cρ(x) and
x 7→ Bρ(x) respectively. To see that Cρ and Bρ are continuous, it suffices to consider
the universal example, in which X = Ob R(G) and ρ is the identity map. Then we
have continuous functors

Ob R(G)× EG→ R(G)

(considering Ob R(G) as a category with only identity morphisms) whose realiza-
tions yield Cρ and Bρ, which must then be continuous. (Note that continuity of Bρ
depends on continuity of the evaluation map Hom(G,U(n))×G→ U(n).)
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Lemma 4.1. For any map ρ : X → Hom(G,U(n)), the maps Cρ and Bρ are
G–equivariantly homotopic as maps

X × EG −→ R(G) ↪→ R̃(G).

Proof. For each ψ ∈ Hom(G,U(n)), there is a natural transformation η : Cψ → Bψ
defined by ηg = ψ(g). (Note that ψ(g) ∈ U(n) is a morphism in R̃(G) from
Cψ(g) = ψ to Bψ(g) = In, but this morphism is not equivariant, and hence does
not live in the smaller category R(G).) The fact that η is a natural between functors
out of EG is summarized by the following commutative diagram in R̃(G), associated
to a morphism g → h in EG:

Cψ(g) = ψ

Cψ(g→h)=In

��

ηg=ψ(g) // Bψ(g) = In

Bψ(g→h)=ψ(hg−1)

��
Cψ(h) = ψ

ηh=ψ(h)
// Bψ(h) = In.

Now, given a map ρ : X → Hom(G,U(n)), we obtain a homotopy

(7) X × EG× I −→ R̃(G)

between Cρ and Bρ as the adjoint of the map

X −→ F ((EG× I)+, R̃(G))

defined by x 7→ ηρ(x). Continuity can be checked in the same way as for Cρ and
Bρ, noting that a natural transformation between functors f, g : C → D can be
viewed as a functor C × I → D, where I is the category with objects {0, 1} and
a unique morphism 0 → 1. It is an exercise in the definitions to check that the
functor EG × I → R̃(G) corresponding to η is G–equivariant, and it follows that
the homotopy (7) is G–equivariant. �

We need to review the McDuff–Segal approach to group completion [13]. Given a
topological monoid M with multiplication (m,n) 7→ m∗n and an element m0 ∈M ,
let M∞(m0) denote the infinite mapping telescope of the sequence

M
∗m0−→M

∗m0−→M
∗m0−→ · · · ,

where ∗m0 denotes the map m 7→ m ∗m0. McDuff and Segal construct a weakly
contractible space (M∞(m0))M and a map qm0(M∞(m0))M → BM whose fiber
over the basepoint ∗ ∈ BM is precisely M∞(m0). If m0 satisfies the condition that
for all m ∈M , there exists n ∈M and k ∈ N such that m ∗ n lies in the connected
component of

mk
0 :=

k︷ ︸︸ ︷
m0 ∗ · · · ∗m0,

then we say that M is stably group-like with respect to m0. If, furthermore, there
is a homotopy H : M×M×I →M such that H0(m,n) = m∗n, H1(m,n) = n∗m,
and Ht(mk

0 ,m
l
0) = mk+l

0 for all t ∈ [0, 1], then natural map

M∞(m0) ↪→ hofib(qm0)

is a weak equivalence by the proof of Ramras [15, Theorem 3.6]. The existence of
the homotopy H for the monoids considered here depends on some linear algebra,
explained in [15, §4].
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The realization of the category R(G) is the monoid of homotopy orbit spaces

Rep(G)hU :=
∐
n

Hom(G,U(n))hU(n)

(for a proof, see Ramras [15, Proposition 2.4] or Lawson [9, §6.2]).
For the remainder of this section, we assume that the monoid Rep(G) is sta-

bly group-like with respect to a representation ρ0 ∈ Hom(G,U(n)) (n > 0). Let
V denote the realization of the category R̃(G), and note that by Lemma 3.4, V
is homotopy equivalent to the geometric realization of Vect, which is the space∐
nBU(n). It follows that π0V ∼= N, so V is stably group-like with respect to any

of its non-zero elements, and in particular the object ρ0 ∈ R̃(G). We denote the map
qρ0 : Rep(G)∞(ρ0) → BRep(G) by qR and we denote the map qρ0 : (V∞(ρ0))V →
BV by qV . In order to compare the natural map Kdef(G) → F (BG+,ku) to the
maps B : Hom(G,U(n)) → Map(BG,BU(n)), we consider the following diagram,
whose various maps are explained below.

(8) ΩBRep(G) //

'
��

(ΩB(V))hG

'
��

ΩΣRep(G)

(I)

77nnnnnnnnnnnn
hofib(qR) (II) (hofib(qV))hG (ΩΣV)hG

ggOOOOOOOOOOO

(III)

Rep(G)× N π //

OO

B

77
Rep(G)∞(ρ0)

'

OO

B // (V∞(ρ0))hG

'

OO

(V × N)hG

OO

πoo

Our goal will be to show that the rectangle (II) commutes, at least on homotopy
groups, since this will relate the natural map Kdef(G) → F (BG+,ku), which is
quite closely related to the top map, to the bottom map B, which (as we will
explain) is just built from the maps B : Hom(G,U(n)) → F (BG+, BU(n)). We
begin by explaining the various maps in this diagram.

The top map is the restriction to Rep(G) of the map on zeroth spaces induced by
the map of spectra Kdef(G)→ F (BG+,ku) (or more precisely, it is the restriction
of the map on zeroth spaces induced by Kdef(G) = K(R̃(G))G ↪→ K(R̃(G))hG).
Note that Rep(G) is the monoid of objects in R(G), and this gives inclusions
Rep(G) ↪→ |R(G)| and ΩBRep(G) ↪→ ΩB|R(G)|. The vertical weak equivalences
are those arising from the McDuff–Segal group completion picture, discussed above.
The maps labeled π send the nth copy of the relevant monoid to the nth stage of the
mapping telescope. The polygons (I) and (III) require some further explanation.
The maps labelled B are induced by the maps

Hom(G,U(n)) −→ Map(BG,V)

whose adjoints
Hom(G,U(n))×BG→ V

are induced by the maps Bρ from Lemma 4.1. Note that for each ρ ∈ Hom(G,U(n)),
the functor Bρ : EG → R̃(G) factors through the projection functor EG → BG,
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inducing the functorial map Bρ : BG → BU(n), where BU(n) is viewed as the
automorphisms of the object In ∈ Ob R̃(G). It follows that the bottom portion of
the diagram is commutative, that is, π ◦B = B ◦ π : Rep(G)× N→ (V∞(ρ0))hG.

Consider a topological monoid M and an element m ∈ M . Then there is a
natural map ΣM → BM , resulting from the fact that the space of 1-simplices in
BM is precisely M (note here that Σ denotes the reduced suspension, with the
identity element e ∈ M as basepoint). Furthermore, we have a map M → ΩΣM
given by sending x ∈M to the loop

αx(t) = [(x, t)] ∈ ΣM = (M × I)/ ∼ .

We now define a map M × N → ΩΣM by sending (x, n) to the composite loop
α−1
mn · αx. (We use the convention that γ · γ′ represents the loop which traverses γ

for t ∈ [0, 1/2] and γ′ for t ∈ [1/2, 1].) We can now consider the diagram

(9) ΩBM

��
ΩΣM

88rrrrrrrrrrr
hofib(qm)

M × N π //

OO

M∞(m)

OO

Polygon (I) in Diagram 8 is created in exactly this manner, with M = Rep(G).
Polygon (III) is created by applying this process to V and then forming the induced
diagram on homotopy fixed sets; this makes sense since whenever G acts on M by
monoid maps, the maps in Diagram (9) are G–equivariant.

Lemma 4.2. Diagram 9 is homotopy commutative. Furthermore, if G acts on M
by monoid maps, then this homotopy is a homotopy through G–equivariant maps
M × N → hofib(qm). Consequently, the polygons (I) and (III) in Diagram 8 are
homotopy commutative.

This result follows by (a parametrized version of) the argument at the end of
the proof of Ramras [15, Theorem 3.6]. (The argument given in that paper simply
showed that the Diagram 9 induces a commutative diagram after passing to path
components; extending that argument to prove the lemma is routine.)

We have now shown that polygons (I) and (III), as well as the lower portion of
Diagram 8, are (homotopy) commutative. We claim that the outermost circuit of
the diagram is homotopy commutative as well; that is, the two maps Rep(G)×N→
(ΩB(V))hG are homotopic. This follows quite easily from Lemma 4.1.

Proposition 4.3. For any k > 0, the diagram

(10) πkΩBRep(G) //

'
��

πk(ΩB(V))hG

'
��

πkhofib(qR) πk(hofib(qV))hG

πkRep(G)∞(ρ0)

'

OO

B // πk(V∞(ρ0))hG

'

OO



THE HOMOTOPY LIMIT PROBLEM IN STABLE REPRESENTATION THEORY 11

is commutative.

Proof. The basic idea is that in any diagram of groups the form

(11) D //

∼=
��

D′

∼=
��

A // //

??��������
55A // C C

``@@@@@@@@
oo

in which the map A→ A is surjective and both triangles, the outer circuit (from A
to D′) and the lower circuit (from A and C) are commutative, the middle square
must be commutative as well. (This follows from a simple diagram chase.)

In order to apply this to Diagram (8) and deduce the commutativity of (10), we
set A and C to be the direct sums⊕

n∈N
πk(Rep(G)× {n}, ρn0 ) and

⊕
n∈N

πk(V × {n}, ρn0 )

respectively. The vertical maps on either side of Diagram (8) send (ρn0 , n) to the loop
α−1
ρn0
· αρn0 , which is canonically homotopic to the constant loop at the basepoint.

So we have canonical maps from these direct sums to the homotopy groups of
ΩBRep(G) and ΩBV (based at the constant loop at the basepoint of the classifying
space). Similarly, the maps labelled π send (ρn0 , n) to the point ρn0 in the nth

stage of the relevant mapping telescope, and there is a canonical path from this
point to the basepoint (0, 0) of the telescope (here (0, 0) represents the formal unit
0 ∈ Hom(G,U(n)) at the initial stage of the telescope). The map⊕

n∈N
πk(Rep(G)× {n}, ρn0 ) −→ πkRep(G)∞(ρ0)

is surjective; more precisely, this map induces an isomorphism

colim
n→∞

πk(Rep(G)× {n}, ρn0 )
∼=−→ πkRep(G)∞(ρ0).

The result now follows from general observation in the first paragraph. (Note that
the diagrams still commute despite our adjustments to the basepoints. This follows
from the fact that all the fundamental groups of the spaces appearing in Diagram
(8) are abelian, since these spaces are infinite loop spaces.) �

Proposition 4.4. Assume that Rep(G) is stably group-like with respect to the
trivial one-dimensional representation. The natural map Kdef(G) → F (BG+,ku)
is an isomorphism (respectively, a surjection or an injection) on πk if and only if
the map

B : Hom(G,U)→ Map∗(BG,BU)

is an isomorphism (respectively, a surjection or an injection) on πk (k > 0).

Proof. We need to consider the a version of Diagram (8) in which the monoid
Rep(G) is replaced by larger monoid Rep(G)hU , since then the top map in the
diagram,

ΩBRep(G)hU → (ΩBV)hG,

becomes the map on zeroth spaces induced by

Kdef(G)→ (Kdef(R̃(G)))hG ' F (BG+,ku).
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Rather than trying to define a natural mapping out of Rep(G)hU generalizing the
map B : Rep(G) → F (BG,ku), we simply observe that Rep(G)hU fibers over∐
nBU(n) with Rep(G) as fiber, and moreover this fibration splits, via the maps

BU(n) → Hom(G,U(n))hU(n), x 7→ [In, x̃], where x̃ is any lift of x to EU(n)
(continuity of this splitting follows from the fact that EU(n) → BU(n) is lo-
cally trivial). Similarly, (Rep(G)hU )∞(ρ0) fibers over colimnBU(n) with fiber
Rep(G)∞(ρ0). Hence the homotopy groups πk (Rep(G)hU , [ρn0 , ∗]) split as direct
sums πk(Rep(G), ρn0 )⊕ πkBU(dim(ρn0 )). One has an analogous fibering relating

(V∞(ρ0))hG ' Map(BG,ΩB(
∐
n

BU(n))

to

Map∗

(
BG,ΩB

(∐
n

BU(n)

))
and

ΩB

(∐
n

BU(n)

)
' Z× colim

(∐
n

BU(n) ⊕ε
dim(ρ0)

−−−−−−→
∐
n

BU(n) ⊕ε
dim(ρ0)

−−−−−−→ · · ·

)
and another relating

(V × N)hG =
∐
n

Map(BG,BU(n))

to
∐
n Map∗(BG,BU(n)) and

∐
nBU(n). Consequently, we may extend Diagram

(8) to a diagram of homotopy groups based on the monoid Rep(G)hU simply by
letting the maps corresponding to B be the direct sums of the maps in Diagram
(8) and the identity maps on π∗BU(n) or π∗Z× colimnBU(n).

We can now extend Proposition 4.3 to this larger diagram, and the desired
conclusion follows immediately. �

The method in Baird–Ramras [3, Section 4] can be used to extend the
ideas in the previous proof to arbitrary finitely generated groups. The
basic idea is that Rep(G) is the filtered colimit, over n ∈ N, of the sub-
monoids generated by representations of dimension at most n, and each
of these is stably group-like with respect to In so long as G is finitely
generated. In that paper (see Proposition 4.19), the topological Atiyah–
Segal map was shown to bear a similar relationship to the map B. Com-
bining these ideas leads to the conclusion that the topological Atiyah–
Segal map agrees with the map on homotopy induced by the homotopy
limit problem.

5. Products of groups

In this section, we examine compare the homotopy limit problem for a direct
product of groups to the homotopy limit problems for the factors.

Proposition 5.1. Let G and H be finitely generated groups such that BG and BH
are homotopy equivalent to finite CW complexes. Moreover, assume that π∗Kdef(G)
and π∗Kdef(H) are finitely generated (abelian) groups for each ∗, and that the Bott
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maps βG and βH induce split injections on homotopy in each dimension. Un-
der these condition, if the natural map Kdef(G) → F (BG+,ku) induces an iso-
morphism on π∗ for ∗ > k, and the natural map Kdef(H) → F (BH+,ku) in-
duces an isomorphism on π∗ for ∗ > l, then the natural map Kdef(G × H) →
F (B(G×H)+,ku) induces an isomorphism on π∗ for ∗ > k + l + 1.

We note that the hypotheses of this theorem apply to all surface groups (Ram-
ras [17, Theorem 6.1]), and to free groups (Lawson [11]). Also, this result fits with
the expectation that for many groups, the from deformation K–theory to topologi-
cal K–theory will be an equivalence above the rational cohomological dimension of
the group, minus 2. Let us say, for the moment, that G is good if Kdef(G×H)→
F (B(G × H)+,ku) induces an isomorphism on π∗ for ∗ > Qcd(G) − 2. Say G
and H are good. Assuming its other conditions are met, Proposition 5.1 tells
us that Kdef(G × H) → F (B(G × H)+,ku) induces an isomorphism on π∗ for
∗ > (Qcd(G)− 2) + Qcd(H)− 2) + 2 = Qcd(G×H)− 2, so then G×H is good as
well.

Proof. This proof is incomplete: at the end, I need to assume that
F (BG+,ku) and F (BH+,ku) have a relatively simple structure as ku–
modules. This holds when G and H are products of aspherical orientable
surface groups (or free groups) because then BG and BH are (stably)
wedges of spheres. For non-orientable surfaces some additional argument
is needed.

The projections G← G×H → H induce maps onKdef in the opposite directions,
and composing with the multiplication map µ for the ku–algebra Kdef(G×H), we
obtain a mapping

(12) Kdef(G)∧kuK
def(H) −→ Kdef(G×H)∧kuK

def(G×H)
µ−→ Kdef(G×H),

which is an equivalence of ku–algebras (this is Lawson’s Product Formula [10]).
To simplify notation, let Γ = G×H, and note that BG+∧BH+ = (BG×BH)+ '

BΓ+. A construction for function spaces analogous to the product map (12) now
yields a commutative diagram

(13) Kdef(G) ∧ku K
def(H)

��

αG∧αH // F (BG+,ku) ∧ku F (BH+,ku)

��
Kdef(Γ) ∧ku K

def(Γ)
αΓ∧αΓ //

µ

��

F (BΓ+,ku) ∧ku F (BΓ+,ku)

µ

��
Kdef(Γ)

αΓ // F (BΓ+,ku).

Commutativity of this diagram follows from the fact that α is a natural transfor-
mation of functors from discrete groups to ku–algebras. Note here that for any
based space X, the ku–algebra structure on F (X,ku) is induced by the map

F (X,ku) ∧ F (X,ku) −→ F (X ∧X,ku ∧ ku)
µ∗−→ F (X ∧X,ku) ∆∗−→ F (X,ku),

where the first map is the external pairing of function spectra, the second is induced
by multiplication in ku, and the last is induced by the diagonal ∆: X → X ∧X.
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This map coequalizes the two maps

F (X,ku) ∧ ku ∧ F (X,ku) −→ F (X,ku) ∧ F (X,ku)

given by left and right multiplication in ku, and hence induces the desired map out
of F (X,ku) ∧ku F (X,ku).

To complete the proof, we will show that the vertical composite on the right side
of this diagram is an equivalence, and that the map αG∧αH induces an isomorphism
on homotopy groups in dimensions greater than k + l + 2.

First we consider the righ-hand side of (13). Let X∗ = F (X,S) denote the
Spanier–Whitehead dual of X (where X is a finite based CW complex). We consider
F (X,S) to be the function spectrum from [7, Section I.1], which has the structure
of an L–spectrum since S is an L–spectrum [7, Proposition I.4.4]. Note that we
have a weak equivalence of L–spectra F (X,S) ' FS(Σ∞X,S); this follows from [7,
Proposition II.1.4, Theorem I.8.5], which, respectively, give an isomorphism

FS(Σ∞X,S) ∼= S ∧L F (X,S)

and a weak equivalence
S ∧LM −→M

for arbitrary L–spectra M .
If Y is another finite based CW complex, there is a natural equivalence f : (X ∧

Y )∗ '−→ X∗ ∧ Y ∗ (see, for example, Cohen [6, p. 73]). Hence if X and Y are
unbased finite CW complexes, we have

(X × Y+)∗ = (X+ ∧ Y+)∗ ' (X+)∗ ∧ (Y+)∗.

Moreover, for any finite based CW complex X, and any S–module M , we have
F (X,M) ' X∗ ∧M . This equivalence comes from the chain of equivalences

X∗ ∧M = F (X,S) ∧M ' F (X,S ∧M) ' F (X,M).

The equivalence F (X,S) ∧R ' F (X,S ∧R) is guaranteed by [7, Theorem III.7.9],
which states that the natural map

F (X,S) ∧M = FS(Σ∞X,S) ∧M → FS(Σ∞X,S ∧M)

is an equivalence in the derived category of S–modules, so long as Σ∞X is weakly
equivalent to a finite cell S–module. In general, the suspension spectrum of a finite
CW complex is a finite cell S–module; this follows by induction from the natural
weak equivalences

Sn ' S ∧L Sn ' S ∧L LSn

(see [7, Proposition I.8.2 and Theorem I.4.6]).
Applying Spanier–Whitehead duality to the right-hand side of Diagram (13)

yields the maps

((BG+)∗ ∧ ku) ∧ku ((BH+)∗ ∧ ku)
−→ ((BG+)∗ ∧ (BH+)∗ ∧ ku) ∧ku ((BG+)∗ ∧ (BH+)∗ ∧ ku)

' ((BΓ+)∗ ∧ ku) ∧ku ((BΓ+)∗ ∧ ku)
∆∗∧µ−−−−→ ((BG×BH)+)∗ ∧ ku

But this composite is the same as the map

((BG+)∗ ∧ ku) ∧ku ((BH+)∗ ∧ ku)
f∧µ−−−→ ((BG×BH)+)∗ ∧ ku,

which is an equivalence since both f and µ : ku ∧ku ku→ ku are equivalences.
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The connectivity estimate for αG∧αH now follows easily if theKdef(G), Kdef(H),
F (BG+,ku) and F (BH+,ku) are all wedges of cyclic ku–modules. This is the case
for the deformation K–theory spectra since we have assumed that the Bott map is
a split injection and the homotopy groups are finitely generated (and for surface
groups and free groups, it also follows from the explicit calculations in Ramras [17]).
For the function spectra, this is the case if the domain space is (stably) a wedge of
spheres. In general, I’m unsure how the Bott map behaves in negative degrees. I
think it should suffice to sort out the case of RP2.

�

6. Vector bundles over products of surfaces

Note: This section needs to be rewritten in light of the results in
Baird–Ramras [3], which show that the notion of flat family considered
here is really the same as a family of bundles admitting a smoothly
varying family of flat connections. Also, for the case of a single surface,
the results below appear in [3, Section 3].

The results below are written without the orientability condition, al-
though this may need to be added in light of the gap in Section 5.

Given a space X with universal cover X̃ and a representation ρ : π1X → U(n),
we can form the mixed bundle

Eρ → X

by setting Eρ = (X̃×Cn)/π1X, where π1X acts diagonally via deck transformations
of X̃ and the representation ρ. We call such bundles flat, since when X is a manifold
these bundles admit flat connections (whose holonomy representation is precisely
ρ). We call an m–dimensional complex vector bundle E → X stably flat if for some
n ∈ N, the bundle E ⊕ Cn is flat. Moreover, we call a vector bundle E → X × Sk
(k > 0) a family of vector bundles over X (parametrized by Sk) and we say that a
family is flat if it has the form

(X̃ × Sk × Cn)/π1X

where π1X acts on Sk × Cn via some family of representations

ρ : Sk → Hom(π1X,U(n)).

That is, γ ∈ π1X acts on Y × Cn by γ · (y, z) = (y, ρy(γ)z). Finally, we call a
family of bundles over X a stably flat family if after adding some trivial family
εn := X × Sk × Cn, it becomes a flat family.

In this section, we consider the following problem.

Problem 6.1. Given a manifold M and family E → M × Sk of complex vector
bundles over M , when is E a (stably) flat family?

There are two necessary conditions E must satisfy in order to be a flat family.
First of all, the restriction of E to M × {z} must be flat for every z ∈ Sk; note
that since Sk is path connected, these restrictions are isomorphic for different z
and hence one is stably flat if and only if the others are. Second, we claim that the
restriction of E to {m}×Sk must be trivial for every m ∈M . Letting f : M → BG
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denote a classifying map for the universal cover of M , we know that if E is the flat
family associated to ρ : Sk → Hom(G,U(n)), then E is classified by the composite

Sk ×M Id×f−−−→ Sk ×BG (Bρ)∨−−−−→ BU(n).

Letting Eρ = ((Bρ)∨)∗(EU(n)), we see that the restriction of E to Sk × {m} is
the pullback of Eρ|Sk×{f(m)}. However, Eρ|Sk×{f(m)} is isomorphic to Eρ|Sk×{x} for
each x ∈ BG, and when x is the basepoint ∗ ∈ BG, Eρ|Sk×{∗} is classified by the
constant map to the basepoint ∗ ∈ BU(n). Hence if E is a flat family, its restriction
to Sk × {m} must be trivial for each m ∈M .

Similarly, if E is stably flat, then EM×{z} must be stably flat for every z ∈ Sk,
and E|Sk×{m} must be stably trivial for each m ∈M .

We note that in general, these conditions alone do not imply that E is (stably)
flat. Let M be a 2l − k–dimensional closed, orientable manifold, and consider a
bundle E → Sk ∧M with cl(E) = m[Sk] ⊗ [M ] ∈ H2l(Sk ∧M) ∼= H2l−k(M) for
some m ∈ Z (note that such bundles exist because the Chern character is a rational
isomorphism, and the cup product structure on a suspension is trivial). Letting
E′ denote the pullback of E to Sk ×M , we see that E′ is trivial when restricted
to either factor (since its classifying map factors through the smash product), and
cl(E′) is non-zero in rational cohomology. However, it is proven in [3] that the
Chern classes of a flat family are rationally trivial above the dimension of the
sphere parametrizing the family. Hence E′ cannot be a flat family if l > k. More
generally, we find that there is a third condition E must satisfy in order to be a
stably flat family: its Chern classes must vanish rationally above the dimension
of the parametrizing sphere. However, as we will see by analyzing the Heisenberg
manifold, even this third condition is not enough to guarantee that E is stably flat.

Now consider the case where M = S is a closed, aspherical surface (possibly
non-orientable), and let g̃ be the genus of the orientation double cover of S (which
is just S if S is orientable). In this case, the answer to Problem 6.1 is that if
1 6 k 6 (n − 1)g̃, then every bundle over S × Sk which is flat when restricted to
M × {z}, and trivial over {m} × Sk, is in fact flat. In Ramras [17, Theorem 3.4],
it was shown using Morse theory for the Yang–Mills functional that the map

(14) B : Hom(π1S,U(n))→ Map∗(Bπ1M,BU(n))

is (at least) (1, (n − 1)g̃)–connected. This means that for all choices of basepoint,
B induces isomorphism on π∗ for 1 ≤ ∗ < (n − 1)g̃, a surjection on πeg, and an
injection on π0. Bundles E → S × Sk ' Bπ1S × Sk are classified by unbased
maps f : Bπ1S × Sk → BU(n). Under our assumption that E is trivial over
∗ × Sk, we know that there is a homotopy from f |∗×Sk to the constant map at
the basepoint ∗ ∈ BU(n). Now, since ∗ × Sk ↪→ Bπ1S × Sk is a CW inclusion
(and in particular a cofibration) the Homotopy Extension Property allows us to
extend this homotopy over all of Bπ1S × Sk. At time 1, this homotopy gives us
a map Sk → Map∗(Bπ1S,BU(n)) that still classifies E (note that this is still an
unbased map out of Sk, though). So the bundles we are interested in are classified
by unbased maps Sk → Map∗(Bπ1S,BU(n)) whose image lies in a component
corresponding the flat bundles, i.e. a component in the image of the map (14).

The result from [17] quoted above says that

B : Hom(π1S,U(n))→ Map∗(Bπ1M,BU(n))
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is surjective on homotopy groups, or in other words on based maps

Sk → Map∗(Bπ1S,BU(n)).

In general, if a map f : X → Y induces isomorphisms on homotopy groups with
respect to all basepoints, then it also induces bijections between these unbased
mapping spaces (with an obvious caveat in case some path components of Y are
disjoint from the image of f) . We record this observation in the next lemma.

Lemma 6.2. Consider a map f : X → Y , and let Yf ⊂ Y denote the union
of the path components of Y that meet the image of f . If f : X → Y induces
isomorphisms f∗ : π1(X,x0)

∼=−→ π1(Y, f(x0)) for all x0 ∈ X and isomorphisms
f∗ : πk(X,x0)

∼=−→ πn(Y, f(x0)) for all x0 in X, then f induces a bijection

[Sk, X]
∼=−→ [Sk, Yf ]

between unbased homotopy classes of unbased maps.

Proof. Recall that for any based, path connected CW complex (Z, z0) there is an
action of π1(X,x0) on the space 〈Z,X〉 of base-point preserving homotopy classes of
basepoint preserving maps from Z to X, and the quotient of 〈Z,X〉 by this action is
precisely the set of unbased homotopy classes of unbased maps from Z into the path
component Xx0 of x0. In our case, this says that πk(X,x0)/π1(X,x0) ∼= [Sk, Xx0 ].
The result now follows from the commutative diagrams

πk(X,x0)

/π1(X,x0)

��

∼= // πk(Y, f(x0))

/π1(Y,f(y0))

��
[Sk, Xx0 ] // [Sk, Yf(y0)]

.

�

We can now see that every bundle E → S×Sk that is flat in the S–direction and
trivial in the Sk–direction is in fact flat (assuming 1 6 k 6 (n− 1)g̃): such bundles
are classified by maps Sk → Map∗(Bπ1S,BU(n)) whose image is inside the image of
B, and all such maps are in fact of the form Bρ for some ρ : Sk → Hom(π1S,U(n)).

Next, consider the following closely related problem. Given a bundle p : E →
Sk × M such that E|{z}×M is flat for each z, can we find a family of flat con-
nections Az that vary continuously with z ∈ Sk? (A flat connection on E can be
viewed as a continuous mapping A : p∗(T (Sk ×M))→ T (E) splitting the natural
map π : TE → p∗(T (Sk ×M)), where now E denotes the principal U(n)–bundle
associated to E, and by a continuous family of flat connections we simply mean a
map p∗(TM (Sk ×M)) → T (E), still splitting π, where TM (Sk ×M) denotes the
sub-bundle of T (Sk×M) consisting of vectors tangent to M .) Note that if E is the
flat family associated to ρ : Sk → Hom(G,U(n)), then the connections associated
to the various representations ρ(z) form such a continuous family.

When M = S is a closed, aspherical surface, the only bundles E → Sk × S
with E|{z}×S flat for each z that cannot be equipped with a continuous family of
flat connections after stabilizing (in fact, the only ones which are not stably flat
families) are those bundles formed from non-trivial bundles on Sk by pulling back
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along the projection Sk ×S → Sk. This follows from the previous discussion, after
examining the long exact sequence in homotopy associated to the split fibration

Map∗(S,BU) −→ Map(S,BU) −→ BU.

The bundles described above are those classified by maps Sk ×S → BU not in the
image of πkMap∗(S,BU), and all other bundles E → Sk × S with E|{z}×S flat for
each z also have E|Sk×{m} trivial for each m ∈ S, so that the previous discussion
shows that they are stably flat.

We now use the results of the previous section to study Problem 6.1 for products
of closed, aspherical surfaces. Note that if M is an aspherical manifold, then there
is a homotopy equivalence M ' Bπ1M , and hence a weak equivalence of spectra

F (Bπ1M,ku) ' F (M,ku).

Once a universal cover of M is chosen, these maps become canonical: they are
induced by the map M → Bπ1M classifying the universal cover as a principal
(π1M)–bundle.

Proposition 6.3. Let M = S1×· · ·×Sk be a product of aspherical surfaces. Then
the natural map

Kdef(π1M)→ F (BM+,ku)
induces an isomorphism on homotopy in dimensions greater than Qcd(M) − 2.
Consequently, the natural map

B : Hom(π1M,U) −→ Map∗(M,BU)

induces an isomorphism on homotopy in dimensions greater than Qcd(M)− 2.

Proof. The monoid Rep(π1M) is stably group-like with respect to the trivial rep-
resentation 1 ∈ Hom(π1M,U(1)) (Ramras [17, Lemma 6.4]), so we may set ρ = 1
when applying the results of the previous section.

When k = 1, this follows from Proposition 4.4 together with Ramras [17, The-
orem 3.4]. One now extends to the case k > 1 by applying Proposition 5.1. The
final statement follows by applying Proposition 4.4 once more. �

Reinterpreting the last statement in Proposition 6.3, we arrive at the following
(partial) answer to Problem 6.1 for products of surfaces.

Corollary 6.4. Let M = S1 × · · ·Sk be a product of aspherical surfaces, and let
E →M ×Sk be an m–dimensional complex vector bundle whose restriction to each
M ×{z} (z ∈ Sk) is flat, and whose restriction to ∗×Sk is trivial. If k > Qcd(M),
then E is stably flat, and the Chern classes ci(E) are torsion for i > k.

Proof. We need to show that the isomorphism on homotopy groups based at the
trivial representation actually leads to an isomorphism on homotopy groups at all
basepoints. This follows from the fact that both spaces are (homotopy equivalent
to) loop spaces, and hence loop multiplication provides homotopy equivalences be-
tween their components; moreover since B is a map of monoids it commutes with
loop multiplication and hence induces isomorphisms on homotopy at all basepoints.
(The loop spaces in question are ΩBRep(G) and ΩB (

∐
n Map(M,BU(n))); see Di-

agram 8.)
The consequences regarding Chern classes follow from Baird–Ramras [3, Theo-

rem 3.3]. �
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Question 6.5. It seems like what I’ve said here is that in dimensions in which the
cohomological obstructions are forced to vanish, we can always realize a point-wise
flat family by a family of representations (modulo ruling out the above simple cases).
One could hope, though, that the cohomological obstruction is really the only one,
and that even in lower degrees all we have to assume about the bundle is that the
appropriate Chern classes are rationally trivial. This would probably require a finer
analysis of the map α for products of groups, so as to say something about it in low
dimensions.

7. Applications to crystallographic groups

Let Γ be virtually free abelian of finite rank; that is Γ has a finite index subgroup
T < Γ such that T ∼= Zk. If T is normal and Γ/T acts faithfully on T , then
Γ is crystallographic and we call T the translation subgroup. Using the transfer
in complex K–theory, we can deduce rational information about the deformation
K–theory of such groups.

Proposition 7.1. If Γ be virtually free abelian of finite rank k, then the natural
map

Kdef
∗ (Γ)⊗Q αΓ⊗Q−−−−→ K−∗(BΓ)⊗Q

is surjective for ∗ > k − 2.

Proof. Since T 6 Γ has finite index, the map BΓ = EΓ/Γ
f−→ EΓ/T is a finite

covering. Consider the commutative diagram

Kdef
∗ (Γ)

i∗

��

αΓ // K−∗(BΓ)

(Bi)∗

��

f∗

''NNNNNNNNNNN

Kdef
∗ (T )

αT
∼=

// K−∗(BT ) K−∗(EΓ/T )
φ∗

'
oo

where i is the inclusion i : T ↪→ Γ and φ is induced by Ei : ET → EΓ. Recall there
there is a transfer map f∗ : K∗(BT ) → K∗(BΓ) associated to the finite covering
f , and this map satisfies f∗ ◦ f∗(x) = [Γ : T ]x = kx for all x ∈ K∗(BΓ) (Becker–
Gottlieb [4, Theorem 5.5]. This shows that f∗ ⊗ 1Q is surjective (in general, if
h : A → B is a map of abelian groups such that for all b ∈ B, there exists n ∈ N
such that nb ∈ =(h), then h ⊗ 1Q → A ⊗ Q → B ⊗ Q is surjective, because for
any (b, r/s), we know that nb = h(a) for some n ∈ N and some a ∈ A and now
h⊗ 1Q(a, r/(sn)) = (nb, r/(sn)) = (b, r/s)). �

Proposition 7.2. If Γ is a flat iterated torus bundle over a torus, then the natural
map

Kdef
∗ (Γ)⊗Q αΓ⊗Q−−−−→ K−∗(BΓ)⊗Q

is an isomorphism for ∗ > k − 2.

Proof. We need to establish injectivity. Consider the commutative diagram

Kdef
∗ (Γ)

i∗

��

αΓ // K−∗(BΓ)

(Bi)∗

��
Kdef
∗ (T )

αT
∼=

// K−∗(BT )
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It suffices to show that i∗ is injective. This follows from an argument analogous to
the proof of Ramras [18, Proposition 10.5]. Details will be added later.

�

8. Applications to spaces of flat connections

The results below are written without the orientability condition, al-
though this may need to be added in light of the gap in Section 5.

In Baird–Ramras [3], it is shown that if BΓ is homotopy equivalent to a smooth
manifold M and P → M is a principal U(n)–bundle, then there is a weak equiva-
lence

Aflat(P ) ' hofib (Hom(Γ, U(n)) −→ Map∗(BΓ, BU(n))) ,
where on the right the homotopy fiber is computed at the classifying map for P
(which is well-defined up to homotopy if we fix a homotopy equivalence M → BΓ).
In this section, we combine our main results with this fact in order to derive results
about π∗Aflat(P ) when M is either a product of surfaces or a flat manifold.

In Baird–Ramras [3, Corollary 5.7], it was shown that if M is a d–dimensional
aspherical manifold and P →M is a flat, principal U(n)–bundle, then the homotopy
groups π∗(Aflat(P ), A0) are non-trivial in dimensions m 6 Qcd(M) − 3, where
Qcd(M) is the rational cohomological dimension (and A0 is a arbitrary basepoint).
If M is a surface, this result is vacuous, and it follows from Yang–Mills theory
that the homotopy groups π∗(Aflat(P ), A0) for ∗ 6 0 6 f(n), where the upper
bound f(n) tends to infinity with n. Our results show that despite the non-trivial
low-dimensional homotopy, this high-dimensional vanishing persists, in a sense, for
products of surfaces.

Theorem 8.1. If X is a product of aspherical surfaces and circles and P → X is a
flat, principal U(n)–bundle, then for each A0 ∈ Aflat(P ) and each ∗ > Qcd(X)− 3,
we have

π∗(Aflat(P ), A0) = 0.

The results of Section 7 lead to analogous results for flat iterated torus bundles
over tori, at least rationally. Precise statements will be added later.
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