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Abstract. To each discrete group Γ, deformation K–theory associates a spec-

trum built from spaces of finite dimensional unitary representations of Γ. This
provides a stable setting for studying representation spaces. In all known

examples, the deformation K–theory spectrum is 2–periodic above the ratio-

nal cohomological dimension of the group, in the sense that Lawson’s Bott
map is an isomorphism on homotopy. In this article, we show that a large

class of crystallographic groups Γ exhibit such periodicity. This is achieved by

showing that for each n, the one-point compactification of the moduli space
of irreducible n–dimensional unitary representations of Γ is a CW–complex

whose dimension is at most the dimension of the classifying space of Γ. Our

methods involve Soren Illman’s theory of equivariant triangulations, and the
theory of projective representations of finite groups.

As an application of these results, we show that for flat torus bundles E over
tori (and some more general Euclidean space forms), the homotopy groups of

the stable moduli space of flat, unitary connections vanish above the dimension

of E.

1. Introduction

Associated to a discrete group Γ, one has the unitary representation spaces
Hom(Γ, U(n)), as well as the moduli spaces Hom(Γ, U(n))/U(n). Deformation K–
theory, originally defined by Carlsson, offers a homotopical setting in which to study
these spaces. In the author’s previous work, the deformation K–theory of a product
of surface groups (i.e. fundamental groups of aspherical surfaces) was shown to be
2-periodic above the rational cohomological dimension of the group, minus 2 [14].
Specifically, Lawson’s Bott map β : Σ2Kdef(Γ)→ Kdef(Γ) was shown to induce an
isomorphism

π∗(Kdef(Γ))→ π∗+2(Γ)

for ∗ > qcd(Γ)− 2. In this periodic range, it was also shown that these homotopy
groups are isomorphic to the corresponding K–theory groups of BΓ (which in this
case is a product of surfaces). These results are in precise analogy with the Quillen–
Lichtenbaum conjectures in algebraic K–theory, which state that the algebraic K–
theory of a scheme should agree with étale K–theory in dimensions greater the
(virtual) étale cohomological dimension minus 2. Conjectures of Carlsson [1] (see
also the introduction to Lawson [8]) link deformation K–theory to algebraic K–
theory of fields, while étaleK–theory bears many similarities to ordinary topological
K–theory (for example, the Chern character).

This work was partially supported by NSF grants DMS-0353640 (RTG), DMS-0804553, and
DMS-0968766.
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These results were used to calculate the homotopy type of the stable moduli
space

Hom(Γ, U)/U ∼= colim
n

Hom(Γ, U(n))/U(n)

when Γ is a product of surface groups. In particular, it was shown that the homo-
topy groups of this space vanish above the rational cohomological dimension of Γ,
and up to torsion these group agree with H∗(Γ; Z). Since the classifying space of Γ
is a smooth, compact manifold M , this moduli space can also be described as the
moduli spaceMflat(M) of flat, unitary connections on M , up to gauge equivalence.
Specifically, the holonomy representation associated to a flat bundle P → E gives
rise to a homeomorphism∐

P

Aflat(P )/G(P )
∼=−→ Hom(Γ, U(n))/U(n),

where the disjoint union is taken over a set of representatives for the isomorphism
classes of principal U(n)–bundles over M . For further details, we refer the reader
to Ramras [13].

The goal of this article is to provide new examples of this sort of periodicity,
and to apply them to produce new information about stable moduli spaces of flat
connections.

Theorem 1.1. Let A be a finitely generated abelian group of rank k, and consider
an extension

1 −→ A −→ Γ −→ Q −→ 1
in which Q is a finite abelian group. Then the Bott map

β : Kdef
∗ (Γ) −→ Kdef

∗+2(Γ)

is an isomorphism for ∗ > k − 2.

These groups include, for example, all crystallographic groups with abelian point
group (in terms of the above extension, the point group is simply Q). We discuss
the relevant background regarding crystallographic groups in Section 2. A stan-
dard transfer argument shows that for the groups to which Theorem 1.1 applies,
H∗(Γ; Q) = 0 for ∗ > k, but the rational cohomological dimension of Γ could
be less than k. When Γ is crystallographic and torsion-free, Γ acts on Rrk(A) by
isometries, and this is a covering space action [21, Theorem 3.1.3]. The manifold
Rrk(A)/Γ, which is called a (Euclidean) space form, is then a model for the classify-
ing space BΓ. If Rrk(A)/Γ is orientable, Γ has (rational) cohomological dimension
exactly rk(A). Thus in this case, our periodicity result fits with the above results
on surface groups, and with the Quillen–Lichtenbaum conjectures. It would be
extremely interesting if these results could be improved in the case when Rk/Γ is
non-orientable, since then the rational cohomological dimension decreases by (at
least) one. We note that the case of the Klein bottle, the first non-orientable crys-
tallographic group, is covered by the results of [14], as are all products of Klein
bottles and tori. We consider the case of the Klein bottle in Section 10.

When Γ is crystallogrphic but has torsion, then Rrk(A)/Γ is a model for the
classifying space for proper actions (usually denoted EΓ/Γ). This suggests that for
groups with torsion, the periodic range for deformation K-theory may be controlled
by the cohomology of EΓ/Γ.

In [8, 9], Tyler Lawson constructed spectral sequences linking deformation K–
theory to the homology of the one-point compactifications Irr+

n (Γ) of the moduli
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spaces of irreducible U(n)–representations of Γ. As we will see in Section 8, Law-
son’s results allow us to deduce periodicity from the vanishing of H∗(Irr+

n (Γ); Z) for
∗ > k. We will prove the following stronger result.

Theorem 1.2. If Γ sits in an extension

1 −→ A −→ Γ −→ Q −→ 1

as in Theorem 1.1, then each space Irr+
n (Γ) is homeomorphic to a CW–complex of

dimension at most rk(A).

To produce the necessary CW–structures, we will use results of Soren Illman re-
garding equivariant triangulations of algebraic varieties. The bound on dimensions
will come from combining information about the induction maps

IndΓ
H : Hom(H,U(n)) −→ Hom(Γ, U(n))

for A 6 H < Γ with information about projective representations of the quotient
group Q. We note that explicit computations for two particular crystallographic
groups, of the form Z o Z/2Z and Z o Z/4Z, were given by Lawson [9]. In these
cases one sees 1– and 2–dimensional moduli spaces of irreducibles (respectively),
and these are the maximum possible dimensions allowed by Theorem 1.2.

As an application of our results we show that for every flat torus bundle E over
a torus, the homotopy groups of the stable moduli space

Hom(π1E,U)/U ∼= colim
n

Hom(π1E,U(n))/U(n)

vanish above the dimension of E. These moduli spaces may be viewed as stable
moduli space of flat, unitary connections over E (note here that the term flat is be-
ing used in two somewhat different ways). As explained in Section 9.2, this depends
on work of Ratcliffe and Tschantz [16], who showed that π1E has a particularly nice
form. In fact, this result can be iteratively strengthened by replacing the base torus
by a flat torus bundle over a torus (and so on), although we must still require that
the point group of π1E is abelian. Without assuming the point group is abelian, we
can still prove rational periodicity (Proposition 9.7); this is easier and is essentially
a variant on standard transfer-type arguments.

This paper is structured as follows. In Section 3, we introduce notation for the
various spaces of representations we will be considering, and establish some basic
facts about their topology. In Section 4, we explain a basic fact from representation
theory, which guides our arguments by dividing irreducible representations into two
classes: induced representations, and those which produce projection representa-
tions of the quotient group Q. In Sections 5 and 6, we study these two classes of
representations. Section 7 establishes our results on the dimension of the moduli
space of irreducible representations, and Section 8 explains the application to defor-
mation K–theory. In Section 9.2, we discuss the application to stable moduli spaces
of torus bundles over tori. In the final section, we describe an explicit computation
for the Klein bottle.

Acknowledgements: I would like to thank Fred Cohen for suggesting crystallo-
graphic groups as a source of examples in deformation K–theory. I also thank Tyler
Lawson and Qayum Khan for several helpful conversations regarding representation
theory.
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2. Crystallographic groups

A crystallographic group is a discrete subgroup Γ of the isometries of Euclidean
space Rk, such that Rk/Γ is compact (we call k the dimension of Γ). Standard
references for the theory of cyrstallographic groups are Ratcliffe [15, Section 7.5]
and Wolf [21, Chapter 3].

There are finitely many crystallographic groups in each dimension, and from the
classification in Wolf [21, Theorems 3.5.9 and 3.5.10], one sees, for example, that all
three-dimensional crystallographic groups have abelian point group. In dimensions
4, 5, and 6, non-abelian point groups appear, although there are many crystal-
lographic groups in these dimensions with abelian point group (see, for example,
[2]).

By [15, Theorem 7.5.2] and [21, Theorem 3.2.9], every crystallographic group
Γ of dimension k contains a free abelian normal subroup A ∼= Zk (the subgroup
of translations) which is a maximal abelian subgroup of Γ. The point group of
Γ is then the quotient Γ/A. Hence all cystallographic groups sit in extensions of
the form A ↪→ Γ � Q with A free abelian and Q finite. Note that in any such
extension, conjugation in Γ induces an action of Q on A. It turns out (see [15,
Theorem 7.5.5]) that crystallographic groups are precisely those groups Γ sitting in
an extension Zk → Γ → Q, with Q a finite group acting on A via an embedding
Q ↪→ GLk(Z) = Aut(A).

Since we will be working with abstract groups, rather than with groups equipped
with a specific action on Euclidean space, it is helpful to know that the translation
subgroup and the point group can be defined abstractly, independent of any chosen
action. For completeness, we give a proof. A similar result is proven in Wolf [21,
Theorem 3.2.9].

Lemma 2.1. Say Γ is isomorphic to a crystallographic group of isometries of Eu-
clidean space. Then there is exactly one subgroup of A 6 Γ satisfying the following
three conditions: A is free abelian, of finite index, and maximal abelian in Γ. This
subgroup is normal in Γ, and it follows that under any isomorphism of Γ with a
crystallographic subgroup of the isometries of Euclidean space, A is mapped onto
the subgroup of translations. We call A the translation subgroup of Γ.

Proof. If A and A′ are two finite index, free abelian subgroups of a group G, then
the free abelian group A ∩A′ must have finite index in both A and A′, so rk(A) =
rk(A ∩A′) = rk(A′).

Now, if Γ is isomorphic to a crystallographic group, then let A 6 Γ be the
subgroup of translations determined by this isomorphism. Then A has all the
desired properties. If A′ 6 Γ is another free abelian subgroup of finite index, which
is also maximal abelian in Γ, then we know rk(A′) = rk(A), and A′ acts on Rrk(A)

as a discrete group of isometries. By Ratcliffe [15, Theorem 5.4.4], any free abelian
discrete subgroup of rank k in Isom(Rn) acts by translations on some k–plane; since
in our case A′ has full rank, we see that it acts by translations on all of Rrk(A).
Now, [15, Theorem 5.4.3] states that there exists an abelian normal subgroup N C Γ
containing all the translations, so both A and A′ must lie in N . But A and A′ are
maximal abelian, so A = A′ = N . �
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3. Spaces of representations

Let Γ be an infinite discrete group. In this section we set up some basic terminol-
ogy and record some facts about the point-set topology of spaces of unitary represen-
tations of Γ. We denote the set of homomorphisms ρ : Γ→ U(n) by Hom(Γ, U(n)).
This space is naturally topologized using product topology on U(n)Γ (which is the
same as the compact-open topology on Map(Γ, U(n)) ∼= U(n)Γ). One may check
that Hom(Γ, U(n)) is closed in U(n)Γ, hence compact. A generating set S ⊂ Γ
determines an injection from Hom(Γ, U(n)) into a product of |S| copies of U(n),
and by compactness this map is always a homeomorphism onto its image. If our
generating set contains m <∞ elements, then the corresponding embedding gives
Hom(Γ, U(n)) the structure of a real algebraic variety, cut out from the real alge-
braic variety U(n)m by the relations in Γ. For our purposes, it will not be necessary
to consider the relationship between the algebraic structures induced by different
generating sets.

The block sum maps U(n)×U(m)→ U(n+m), which we denote (A,B) 7→ A⊕B,
determine corresponding block sum maps on representation spaces, which we again
denote (ρ, ψ) 7→ ρ ⊕ ψ. The action of the unitary group on itself by conjugation
induces an action of U(n) on Hom(Γ, U(n)).

Definition 3.1. The moduli space of U(n)–representations is the quotient space
Hom(Γ, U(n))/U(n).

Let Irr(Γ, U(n)) ⊂ Hom(Γ, U(n)) denote the subspace of irreducible representa-
tions, i.e. those which are not isomorphic to ρ⊕ψ for any ρ, ψ. Let Sum(Γ, U(n)) ⊂
Hom(Γ, U(n)) denote the complement of Irr(Γ, U(n)). The moduli space of irre-
ducible U(n)–representations is the quotient space Irrn(Γ) = Irr(Γ, U(n))/U(n).

Lemma 3.2. For any discrete group Γ, the space Sum(Γ, U(n)) ⊂ Hom(Γ, U(n))
is closed.

Proof. The block sum maps descend to continuous maps

(1) Hom(Γ, U(k)/U(k)×Hom(Γ, U(n− k))/U(n− k) −→ Hom(Γ, U(n))/U(n),

and Sum(Γ, U(n))/U(n) is the union of the images of the maps (1) as k ranges from
1 to n − 1. Since the domains of these maps are compact, Sum(Γ, U(n))/U(n) is
closed, and hence so is its inverse image Sum(Γ, U(n)) in Hom(Γ, U(n)). �

Note that Irrn(Γ) is the complement of Sum(Γ, U(n))/U(n) inside the moduli
space Hom(Γ, U(n))/U(n). Lawson’s articles [8] and [9] use different notations for
the space (

Hom(Γ, U(n))/U(n)
)
/
(
Sum(Γ, U(n))/U(n)

)
,

which contains the moduli space of irreducibles as a subspace (the complement of
the basepoint). The following observation motivates a more natural name for this
space.

Lemma 3.3. The space Hom(Γ, U(n))/U(n) is compact Hausdorff, and

Irr+
n (Γ) : =

(
Hom(Γ, U(n))/U(n)

)
/
(
Sum(Γ, U(n))/U(n)

)
∼=
(
Hom(Γ, U(n))/Sum(Γ, U(n))

)
/U(n)

is the one-point compactification of the moduli space of irreducible representations.
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Proof. By Lemma 3.2, Sum(Γ, U(n)) is a closed subspace of Hom(Γ, U(n)). Since
Hom(Γ, U(n)) is regular, the quotient Hom(Γ, U(n))/Sum(Γ, U(n)) is Hausdorff. In
general, the quotient of a Hausdorff space by a compact group is Hausdorff (see for
example Munkres [10, Exercise 31.8]), so the action of U(n) on either Hom(Γ, U(n))
or Hom(Γ, U(n))/Sum(Γ, U(n)) produces a Hausdorff quotient space. This proves
the first statement. For the second statement, we now know that the space Irr+

n (Γ) is
a compact Hausdorff space, and the moduli space of irreducibles embeds in Irr+

n (Γ)
as the complement of the basepoint corresponding to Sum(Γ, n)/U(n). Every com-
pact Hausdorff space X is the one-point compactification of X−{x} for each x ∈ X
(see, for example, Munkres [10, Theorem 29.1]), so the result follows. �

We will denote that point at infinity in Irr+
n (Γ) by +, to emphasize the fact that

it corresponds to the space of reducible representations.

Remark 3.4. All spaces encountered in this paper are Hausdorff, as can be shown
using the same methods as in Lemma 3.3.

Although we will not need it for the main results of this paper, we note a simple
fact which is extremely helpful in computations.

Proposition 3.5. If Γ contains an abelian subgroup A of finite index m, then
every irreducible unitary representation of Γ is at most m–dimensional. Hence
Irr+

n (Γ) = {+} for n > m.

This is proven in Serre [19, Section 3.1]. The essential point is that simulta-
neously commuting matrices are simultaneously diagonalizable, so an irreducible
representation of A is 1–dimensional. The result follows by restricting an irre-
ducible representation ρ : Γ → U(n) to a representation ρA of A, and noting that
the translates under G of any irreducible summand in ρA generate Cn.

4. Induced Representations and Projective Representations

The overall structure of our arguments is based on the following result from
representation theory (see Serre [19, Proposition 24]).

Theorem 4.1. Let A be an abelian normal subgroup of finite index in a discrete
group Γ. For every irreducible representation ρ : Γ→ U(n), either

• ρ is isomorphic to IndΓ
H(ρ′) for some proper subgroup H < Γ containing A

and some irreducible unitary representation ρ′ of H, or
• the restriction of ρ to A is scalar (a direct sum of isomorphic 1–dimensional

representations).

This result is proven by letting H be the stabilizer of an isotypic component of
ρ. Serre’s book focuses on finite groups, but the proof extends without change to
(unitary) representations of infinite discrete groups. Here we use the fact that all
irreducible unitary representations of A are 1-dimensional. (This follows from the
fact that commuting unitary matrices are simultaneously diagonalizable.)

Theorem 4.1 shows that if Γ sits in an extension

A −→ Γ −→ Q
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with A finitely generated abelian and Q finite abelian, then every representation
ρ : Γ → U(n) is either induced from a some H < Γ with A 6 H, or else induces a
homomorphism ρ : Q = Γ/A→ PU(n), where PU(n), the projective unitary group,
denotes the quotient of U(n) by the subgroup of scalar matrices λI, λ ∈ S1. (From
now on, we will denote this subgroup simply by S1 ⊂ U(n).) In the former case,
the group H sits in an extension

A −→ H −→ H/A,

and H/A 6 Q is abelian. Thus H still satisfies the hypotheses of our theorems, and
this will allow for an induction argument based on the order of the quotient group
Q. We will analyze these two classes of representations (induced and projective)
separately in the following sections, and then combine our results to prove the main
theorems.

5. Induction

In this section, Γ will denote a discrete group with a normal subgroup H C Γ
of index m < ∞. In order to use Theorem 4.1, we need to analyze the induction
maps

IndΓ
H : Hom(H,U(n))/U(n) −→ Hom(Γ, U(nm))/U(nm).

Abstractly, induction can be defined by viewing a representation ρ : H → U(n) as
a (left) module V over the group ring C[H], and defining IndΓ

H(V ) to be the (left)
C[Γ] module C[Γ]⊗C[H] V .

We need a description of induction as a continuous function between spaces of
unitary matrices. This is easily obtained by choosing a set of coset representatives
γ1, . . . , γm for Γ/H, which yields a direct sum decomposition

C[Γ] ∼= γ1C[H]⊕ · · · ⊕ γmC[H]

of C[Γ] as a right C[H]–module. Now, a representation ρ : H → U(n) gives Cn
a left C[H]–module structure, and we denote this module by Cnρ . We now have a
canonical ordered basis for the complex vector space C[Γ]⊗C[H] Cnρ , given by

γ1 ⊗ e1, γ1 ⊗ e2, · · · , γ1 ⊗ en, γ2 ⊗ e1, · · · , γ2 ⊗ en, · · · , γm ⊗ e1, · · · , γm ⊗ en.

We endow C[Γ] ⊗C[H] Cnρ with a Hermitian metric by declaring the above basis
orthonormal, and we claim that the action of each γ ∈ Γ on C[Γ]⊗C[H] Cnρ is now
unitary. Indeed, if γγi = γjh, then

γ · (γi ⊗ ek) = γjh⊗ ek = γj ⊗ ρ(h)ek =
∑
l

ρ(h)lk(γj ⊗ el),

where ρ(h)lk is the entry (l, k)th entry (lth row, kth column) of ρ(h) ∈ U(n). If we
write out the action of γ as a matrix in our chosen basis, we see that the column
corresponding to γi ⊗ ek contains one copy of the kth column of ρ(h), with zeros
elsewhere. Thus each column has length 1 (since ρ(h) ∈ U(n)). Moreover, since
each γ ∈ Γ permutes the cosets {γiH}mi=1, we see that the columns of this matrix
are orthogonal: no row contains non-zero elements in the columns for γi ⊗ ek and
γj ⊗ ek (if i 6= j), and the columns for γi ⊗ ek and γi ⊗ el consist of the the kth

and lth columns of ρ(h) (which are orthogonal) placed in rows corresponding to
γj ⊗ e1, . . . , γj ⊗ en.



8 D A RAMRAS

Thus we have a well-defined induction map

(2) IndΓ
H : Hom(H,U(n)) −→ Hom(Γ, U(n)),

and it is continuous because the (i, j)th entry of the matrix representing IndΓ
H(ρ)(γ)

is simply an entry of ρ(h), for some h depending only on γ, i, and j. Moreover, we
claim that this map descends to a continuous map

(3) IndΓ
H : Hom(H,U(n))/U(n) −→ Hom(Γ, U(nm))/U(nm).

Indeed, if ρ ∼= ρ′, then Cnρ ∼= Cnρ′ as C[H]–modules, so C[Γ]⊗C[H]Cnρ ∼= C[Γ]⊗C[H]Cnρ′

as C[G]–modules. Therefore, P
(
IndΓ

H(ρ)
)
P−1 = IndΓ

H(ρ′) for some P ∈ GLn(C).
It follows from Proposition 6.5 (below) that if two unitary representations of a
group Γ are conjugate as GLn(C)–representations, then they are conjugate as U(n)–
representations, but in this case one can see explicitly that if ρ′ = XρX−1, then in
the above basis, one has IndΓ

H(ρ′) = (mX)
(
IndΓ

H(ρ)
)
(mX)−1, where mX denotes

the block sum of m copies of the matrix X. Hence if X ∈ U(n), so is mX.
We note that although the maps (2) certainly depend on our chosen isomor-

phism C[Γ] ⊗C[H] Cn ∼= Cnm, the maps (3) are independent of this choice. If we
choose another isomorphism with Cnm such that the corresponding representations
(IndΓ

H(ρ))′ still lie in U(nm), then IndΓ
H(ρ) and (IndΓ

H(ρ))′ are unitary represen-
tations that are linearly isomorphic, and hence they are linearly isometric as well
(see Corollary 6.6, for example).

Having established continuity of the induction maps, we now consider some of
their basic properties. First, note that if ρ is not irreducible, then neither is IndΓ

H(ρ).
Hence we obtain induced maps, which we will still denote by IndΓ

H ,

IndΓ
H : Irr+

n (H)→ Irr+
nm(Γ).

We now discuss Frobenius Reciprocity in the context of unitary representations
of an infinite discrete group Γ. Given unitary representations ψ and ψ′ of Γ, we
may consider ψ and ψ′ as vector spaces with an action of Γ, and we denote the
dimension of the vector space of Γ–equivariant linear maps ψ → ψ′ by

〈ψ,ψ′〉Γ.

Frobenius reciprocity states that if H < Γ has finite index, ψ is a representation of
H, and φ is a representation of Γ, then

〈ψ,ResΓ
Hφ〉H = 〈IndΓ

Hψ, φ〉Γ.

The proof given by Serre [19, Section 7.2]] goes through in this context. This makes
use of the following basic lemma, which results from Schur’s Lemma (automor-
phisms of irreducibles are scalar) and the fact that unitary representations always
admit decompositions into irreducible direct summands, unique up to isomorphism
and permutation of the summands.

Lemma 5.1. If ρ is a unitary representation of Γ, then ρ is irreducible if and only
if 〈ρ, ρ〉 = 1.

Frobenius Reciprocity allows us to identify irreducible induced representations.

Lemma 5.2. There is an action of Γ/H on Irr+
n (H), and IndΓ

H(ρ) is irreducible
if and only if Γ/H acts freely on the orbit of [ρ].
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Proof. There is an action of Γ on Hom(H,U(n)), given by (γ · ρ)(h) = ρ(γhγ−1).
This action descends to a well-defined action on U(n)–isomorphism classes. Each
h0 ∈ H acts trivially because ρ(h0) ∈ U(n) provides an isomorphism between ρ
and h0 · ρ, so we in fact have an action of Γ/H. This action preserves the space of
reducible representations, so it induces the desired action on Irr+

n (H).
Now, Frobenius Reciprocity states that

〈IndΓ
H(ρ), IndΓ

H(ρ)〉Γ = 〈ρ,ResΓ
HIndΓ

Hρ〉.
Since H is normal in Γ, we have

〈ρ,ResΓ
HIndΓ

Hρ〉 = 〈ρ,
⊕

[γ]∈Γ/H

γ · ρ〉

(this follows from [19, Section 7.3, Proposition 22], for example). The right-hand
side is equal to 1 if and only if the action of Γ/H on the orbit of [ρ] is free, since
otherwise ρ appears at least twice (up to isomorphism) in the sum on the right.
Lemma 5.1 completes the proof. �

Definition 5.3. Let Irrn(H)free denote the subspace of Irr+
n (H) on which Γ/H acts

freely, and let Irrnm(Γ)H denote the subspace of Irr+
nm(Γ) consisting of those irre-

ducible representations induced from n–dimensional (irreducible) representations
of H. Note that Irrn(H)free and Irrnm(Γ)H are homeomorphic to subspaces of
Hom(H,U(n))/U(n) and Hom(Γ, U(nm))/U(nm), respectively.

Lemma 5.4. The subspace Irrn(H)free is open in Hom(H,U(n))/U(n).

Proof. In general, if X is Hausdorff and G is a finite group acting on X, then the
subspace on which G acts freely is open. Indeed, its complement can be written as⋃

g∈G
{x ∈ X | g · x = x},

and each of these sets is closed because it is the inverse image of the diagonal under
the continuous map X → X ×X, x 7→ (x, g · x). �

The quotient map for a free action of a finite groups is a covering map, so we
obtain the following result, which plays a key role in Section 7.

Proposition 5.5. The induction map IndΓ
H induces a degree |Γ/H| covering map

Irrn(H)free � Irr+
nm(Γ)H .

In Section 9.2, we will need to consider the interaction between induction and
tensor products. By a construction similar to that given above for induction maps,
one obtains continuous maps

Hom(Γ, U(n))×Hom(Γ, U(m)) ⊗−→ Hom(Γ, U(nm)),

which depend on a choice of ordered basis for the vector space Cn ⊗ Cm, and
which descend to continuous maps on the moduli spaces. These latter maps are
independent of the choices made, and in terms of C[G]–modules, they send a pair
of modules V and W to the module V ⊗C W , with the diagonal action of C[G].

The following well-known fact (see, for example, Serre [19, §7.2]) is sometimes
called the Projection Formula.

Lemma 5.6. For any representations ρ : Γ→ U(n) and ψ : H → U(k), we have

IndΓ
H

(
(ResΓ

Hρ)⊗ ψ
) ∼= ρ⊗ IndΓ

H(ψ).
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6. Projective representations

In this section, Γ will denote a discrete group, A C Γ will denote a finite index
normal subgroup, and Q = Γ/A will denote the quotient group.

Recall from Section 4 that if A is abelian, each irreducible representation ρ : Γ→
U(n) is either induced from a subgroup containing A, or satisfies ρ(A) ⊂ S1. In the
latter case, we obtain a representation ρ : Q = Γ/A → PU(n) = U(n)/S1 (which
we will avoid referring to as the “induced representation”...).

Definition 6.1. Let HomA(Γ, U(n)) denote the subspace of Hom(Γ, U(n)) consist-
ing of representations ρ such that ρ(A) ⊂ S1.

Lemma 6.2. If Γ is finitely generated, then HomA(Γ, U(n)) is a closed, U(n)–
invariant subvariety of Hom(Γ, U(n)). In particular, HomA(Γ, U(n)) is compact.

Proof. Invariance under U(n) follows from the fact that S1 is central in U(n). The
subspace HomA(Γ, U(n)) is cut out from Hom(Γ, U(n)) by the requirements that
for each a ∈ A, all the off-diagonal entries of ρ(a) are zero and all of the diagonal
entries are equal to one another. Thus HomA(Γ, U(n)) is the set of common zeros of
a collection of polynomials, and hence is a closed subvariety of Hom(Γ, U(n)). �

Given a discrete group G, the space Hom(G,PU(n)) has the subspace topology
from the product space PU(n)G. This has a natural action of PU(n) by conjugation.
Using Schur’s theory of projective representations of finite groups, we will be able
to analyze the irreducible representations in HomA(Γ, U(n)) in terms of the map
HomA(Γ, U(n)) → Hom(Q,PU(n)). We will now set up some basic terminology
regarding projective representations. For more detail about this subject, we refer
the reader to Karpilovsky [7, Chapter 3].

Homomorphisms G → PU(n) are closely connected to what are usually called
projective unitary representations, that is, functions ρ : G → U(n) such that
ρ(g1)ρ(g2) = σ(g1, g2)ρ(g1g2) for some scalar σ(g1, g2) ∈ S1 (we assume that
ρ(1) = 1). Replacing U(n) by GLn(C) and S1 by C∗ yields the notion of a pro-
jective linear representation. Each homomorphism G → PU(n) may be lifted (in
many ways) to a projective unitary representation, and conversely each projective
representation defines a homomorphism G→ PU(n).

There are four notions of equivalence between projective unitary representations
ρ : G→ U(n) and ρ′ : G→ U(n). We say that ρ and ρ′ are projectively equivalent if
there exists a matrix A ∈ GLn(C) such that for each g ∈ G, Aρ(g)A−1ρ′(g)−1 ∈ C∗.
We write ρ ∼GL ρ

′ in this situation. By requiring the matrix A to lie in U(n), we
obtain a (potentially) stricter notion of equivalence, projective unitary equivalence,
which we denote by ρ ∼U ρ′. Next, we say that ρ and ρ′ are linearly equivalent
(ρ ≈GL ρ′) if there exists a matrix A ∈ GLn(C) such that Aρ(g)A−1 = ρ′(g) for
all g ∈ G. Finally, we obtain the notion of unitary linear equivalence (ρ ≈U ρ′) by
requiring the matrix A to lie in U(n).

The reader may check that isomorphism classes (i.e. PU(n) conjugacy classes) of
homomorphisms G→ PU(n) correspond bijectively with projective unitary equiva-
lence classes of projective representations.

We say that a projective representation ρ : G → U(n) is irreducible if there is
no proper, non-zero subspace of Cn that is invariant under each of the matrices
ρ(g), g ∈ G. We say that a homomorphism G → PU(n) is irreducible if one of its
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lifts to a projective representation is irreducible. Note that if ρ and ρ′ are two such
lifts, then for each g ∈ G, ρ(g) and ρ′(g) differ by a scalar, and hence the invariant
subspaces for ρ and ρ′ are the same. Thus all projective representations associated
to an irreducible homomorphism G → PU(n) are irreducible. On the other hand,
if ρ : G→ U(n) is an irreducible projective representation, then the corresponding
homomorphism ρ : G→ PU(n) is irreducible as well, since ρ itself is a lift of ρ.

We note that irreducibility is preserved under projective equivalence: if ρ : G→
U(n) is irreducible and ρ ∼GL ρ′, then ρ′ is irreducible as well. In particular,
a homomorphism ρ : G → PU(n) is irreducible if and only if all of its PU(n)–
conjugates are irreducible.

We note another simple but important fact regarding irreducible projective rep-
resentations.

Lemma 6.3. A representation ρ ∈ HomA(Γ, U(n)) is irreducible if and only if
ρ : Q→ PU(n) is irreducible.

Proof. Choose a set of coset representatives {γi}i for the cosets of A, and lift ρ
to a projective representation ρ̃ : Q → U(n) by setting ρ̃([γi]) = ρ(γi). Note that
for each γ ∈ Γ, we have γ = γia for some a ∈ A and some i, so ρ(γ) = ρ(γia) =
ρ̃([γi])ρ(a). Since ρ(A) ⊂ S1, we see that each matrix comprising the representation
ρ is a scalar multiple of a matrix appearing in ρ̃, and of course each matrix appearing
in ρ̃ also appears in ρ. Hence ρ̃ and ρ have the same invariant subspaces, so ρ̃ is
irreducible if and only if ρ is irreducible. �

Our next goal is to show that for irreducible projective unitary representations
ρ : G → U(n), the equivalence relations ≈GL and ≈U coincide, as do the relations
∼U and ∼GL.

Lemma 6.4. Let ρ : G→ GL(V ) be an irreducible projective representation of G
on a finite-dimensional complex vector space V . If 〈 , 〉 and 〈 , 〉′ are two ρ–invariant
Hermitian metrics on V , (i.e. 〈ρ(g)v, ρ(g)w〉 = 〈v, w〉 for all g ∈ G, and similarly
for 〈 , 〉′) then there exists a scalar t ∈ R+ such that

〈v, w〉′ = t〈v, w〉

for all v, w ∈ V .

Proof. Let V ∗ denote the dual space consisting of conjugate–linear functionals on
V ; that is

V ∗ = {f : V → C | ∀ v, w ∈ V, λ ∈ C, f(v + λw) = f(v) + λf(w)}.

Note that V ∗ is a complex vector space under point-wise addition and (ordinary)
scalar multiplication. Any Hermitian metric 〈 , 〉 on V induces a complex-linear
isomorphism φ : V

∼=→ V ∗, where φ(v) = φv : V → C is given by the formula

φv(w) = 〈v, w〉 ∈ C.

Now, any projective representation ρ : G → GL(V ) induces a projective rep-
resentation ρ∗ : G → GL(V ∗) (called the contragradient of ρ). If we write the
resulting actions of G on V and V ∗ as ρ(g)v = g · v and ρ∗(g)f = g · f , then ρ∗ is
defined by the formula

(g · f)(v) = f(g−1 · v).
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One may now check that g · f is conjugate linear, and that, up to multiplication
by scalars, this formula gives an action of G on V ∗. Hence ρ∗ is a projective
representation of G.

Next, say we have two ρ–invariant metrics 〈 , 〉 and 〈 , 〉′ on V . Then a short com-
putation shows that the resulting isomorphisms φ, φ′ : V → V ∗ are G–equivariant,
with respect to the representations ρ and ρ∗. Hence the linear isomorphism

X = φ−1φ′ : V → V

satisfies X−1ρX = ρ. Since ρ is irreducible, the usual proof of Schur’s lemma shows
that X = tI for some t ∈ C. Now for any v ∈ V , φ′(v) = φ(tv) = tφ(v), meaning
that

〈v, w〉′ = t〈v, w〉
for any w ∈ V . All that remains is to check that t ∈ R+; this follows from the
assumption that 〈 , 〉 and 〈 , 〉′ are (positive definite) Hermitian metrics. �

Proposition 6.5. If ρ, ρ′ : G→ U(n) are irreducible projective unitary represen-
tations of a discrete group G, then ρ ≈GL ρ

′ ⇐⇒ ρ ≈U ρ′.

Proof. The direction ρ ≈U ρ′ =⇒ ρ ≈GL ρ′ is immediate. For the converse, let
P ∈ GLn(C) be a matrix satisfying P−1ρ(g)P = ρ′(g) for all g ∈ G. Define a
Hermitian metric on Cn by setting 〈v, w〉P = 〈Pv, Pw〉, where 〈 , 〉 is the standard
Hermitian metric on Cn. Then 〈 , 〉P is an invariant metric for the representation
ρ′, because

〈ρ′(g)v, ρ′(g)w〉P = 〈Pρ′(g)v, Pρ′(g)w〉 = 〈ρ(g)Pv, ρ(g)Pw〉
= 〈Pv, Pw〉 = 〈v, w〉P ,

with the third equality following from the fact that ρ(g) ∈ U(n).
Now, both 〈 , 〉 and 〈 , 〉P are ρ′–invariant. By Lemma 6.4, it follows that 〈 , 〉P =

t〈 , 〉 for some t ∈ R+. The matrix U = 1√
t
P still satisfies U−1ρU = ρ′, and

U ∈ U(n) because

〈Uv,Uw〉 = 〈 1√
t
Pv,

1√
t
Pw〉 =

1
t
〈Pv, Pw〉

=
1
t
〈v, w〉P =

1
t

(t〈v, w〉) = 〈v, w〉

for any v, w ∈ Cn. �

Corollary 6.6. If ρ, ρ′ : G → U(n) are irreducible projective unitary representa-
tions of a discrete group G, then ρ ∼GL ρ

′ ⇐⇒ ρ ∼U ρ′.

Proof. Again, the direction ρ ∼U ρ′ =⇒ ρ ∼GL ρ′ is immediate, so we assume
that ρ ∼GL ρ′. This means that for some matrix P ∈ GLn(C) and some function
λ : G→ C∗, we have

(4) Pρ(g)P−1 = λ(g)ρ′(g)

for all g ∈ G.
We claim that λ(g) ∈ S1 for each g ∈ G. If g has order m, then raising both sides

of (4) to the mth power shows that Pρ(g)mP−1 = λ(g)mρ′(g)m. Since ρ and ρ′ are
projective unitary representations, we have ρ(g)m, ρ′(g)m ∈ S1, so Pρ(g)mP−1 =
ρ(g)m and hence λ(g)m = ρ(g)m/ρ′(g)m ∈ S1. This implies that λ(g) itself lies in
S1, as desired.
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Now, setting ρ′′(g) = λ(g)ρ′(g), we see that ρ′′(g) : G→ U(n) is still a projective
unitary representation, and now ρ ≈GL ρ

′′ (via the matrix P ∈ GLn(C)). By Propo-
sition 6.5, there exists a matrix U ∈ U(n) with Uρ(g)U−1 = ρ′′(g) = λ(g)ρ′(g) for
all g ∈ G, so ρ(g) ∼U ρ′(g), as desired. �

Using Corollary 6.6, we will deduce a key finiteness result for projective unitary
representations of finite groups. This will be a corollary of the following classical
result due to Schur [17]. Discussions of this result may be found in Karpilovsky [7]
and Tappe [20, Corollary 3.6].

Theorem 6.7 (Schur). For any finite group G, the number of projective equiva-
lence classes (∼GL–classes) of irreducible projective representations G → GLn(C)
is finite.

We sketch the argument, originally due to Schur [17]. Each projective represen-
tation ρ : G → GLn(C) corresponds to a cohomology class in H2(G; C∗). Specifi-
cally, given g, h ∈ G, we have σ(g, h) := ρ(g)ρ(h)ρ(gh)−1 ∈ C∗, and the assignment
(g, h) 7→ σ(g, h) is a C∗–valued 2–cocycle on G. If ρ ∼GL ρ′, then the corresponding
cocyles are cohomologous [7, Chapter 3, Lemma 1.1 (i)], so we have a well-defined
class in H2(G; C∗) associated to each ∼GL–class of projective representations. Now,
for any finite group G, it turns out that the group H2(G; C∗) is finite (for a short
proof, see [7, Chapter 2, Theorem 3.2]).

Schur showed that each cohomology class contains only finitely many ∼GL–
classes of irreducible projective representations.1 This is proven in three steps.
First, one observes that ≈GL–classes of projective representations with cocycle σ
are in bijection with isomorphism classes of modules over the twisted group algebra
Cσ[G], and irreducible projective representations correspond to irreducible modules.
Here Cσ[G] is the C–algebra with basis {g | g ∈ G} and with multiplication induced
by setting g1g2 = σ(g1, g2)(g1 · g2) (for more detail on twisted group algebras, see
[7, Section 3.2]).

The second step is to show that for any cocycle σ, there are finitely many isomor-
phism classes of irreducible modules over Cσ[G]. In fact, these isomorphism classes
are in bijection with the so-called σ–regular conjugacy classes in G [7, Theorem
6.7]. (An extension of this result can be found in Tappe [20].) We now conclude
that there are finitely many ≈GL–classes of irreducible projective representations
with cocycle σ. The final step is to check that if σ′ is cohomologous to σ, then every
projective representation with cocyle σ′ is ∼GL–equivalent to a projective represen-
tation with cocycle σ ([7, Lemma 1.1 (ii)]). This shows that there are finitely many
∼GL–classes of irreducible projective representations with associated cohomology
class [σ] ∈ H2(G; C∗).

Remark 6.8. For ordinary representations of finite groups, the fact that there are
finitely many irreducibles is often proven by observing that the group ring C[G] is
semisimple. If G is solvable, then a theorem of Passman [11, Theorem 3] asserts
that Cσ[G] is semisimple. For our main results, we will only consider the case
where G is abelian, so Passman’s result is sufficient for our purposes. In general,
one could try to prove this result by the same averaging argument used to show that
the ordinary group ring C[G] is semisimple (see, for example, Serre [19, Chapter 6,

1In fact, when G is abelian there is at most one ∼GL–class per cohomology class, as proven by
Frucht [4] and, for more general fields, by Yamazaki [22, Section 6.1].
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Proposition 9]). However, in order to average over the group G, one must divide
by
∑
g∈G α(g, g−1) ∈ C∗ rather than by the order of G. It is unclear when this sum

is non-zero.

Combining Corollary 6.6 and Theorem 6.7 yields a finiteness result for irreducible
projective unitary representations of finite groups.

Corollary 6.9. For any finite group G, there are finitely many projective unitary
equivalence classes (∼U–classes) of irreducible projective representations ρ : G →
U(n). Equivalently, there are finitely many irreducible elements in the moduli space
Hom(Q,PU(n))/PU(n).

Corollary 6.10. The space HomA(Γ, U(n)) is the disjoint union (topologically)
of the subspaces HomA(Γ, U(n)) ∩ Sum(Γ, U(n)) and

HomA(Γ, U(n))[ψ] : = {ρ : Γ→ U(n) | ρ(A) ⊂ S1, ρ ∼= ψ : Q→ PU(n)},

where ψ ranges over the finite set of irreducibles in Hom(Q,PU(n))/PU(n).

Proof. By Lemma 6.3, HomA(Γ, U(n)) is the disjoint union, set-theoretically, of
the above spaces. Lemma 3.2 tells us that Sum(Γ, U(n)) is closed in Hom(Γ, U(n)),
so HomA(Γ, U(n)) ∩ Sum(Γ, U(n)) is closed in HomA(Γ, U(n)). Each subspace
HomA(Γ, U(n))[ψ] is closed in HomA(Γ, U(n)) as well, because it is the inverse image
of the point [ψ] under the continuous map HomA(Γ, U(n))→ Hom(Q,U(n))/U(n)
sending ρ to [ρ].

We have now partitioned HomA(Γ, U(n)) into a finite number of disjoint closed
sets, and hence each must be open as well, completing the proof. �

We now study the subspaces HomA(Γ, U(n))[ψ]. Each of these subspaces is the
union, over ψ′ ∼= ψ, of the subspaces

HomA(Γ, U(n))ψ′ := {ρ ∈ HomA(Γ, U(n)) | ρ = ψ′}.

If ψ′ = PψP−1 for some P ∈ PU(n), then P and P−1 induce inverse homeomor-
phisms between HomA(Γ, U(n))ψ and HomA(Γ, U(n))ψ′ . In fact, as we now show,
HomA(Γ, U(n))[ψ] is a locally trivial fiber bundle with these fibers.

Proposition 6.11. Let ψ : Q→ PU(n) be a homomorphism for which the subspace
HomA(Γ, U(n))[ψ] is non-empty. Then the map

HomA(Γ, U(n))[ψ]
π−→ PU(n) · ψ ⊂ Hom(Q,PU(n)),

given by π(ρ) = ρ, is a fiber bundle over the orbit of ψ, with fiber HomA(Γ, U(n))ψ.

Proof. Let Stab(ψ) ⊂ PU(n) be the stabilizer of ψ under the PU(n)–action, and
let Stab(ψ) denote the inverse image of Stab(ψ) in U(n). Note that both of these
subgroups are closed. Since U(n) is a compact Lie group and Stab(ψ) is a closed
subgroup, the quotient map qψ : U(n) → U(n)/Stab(ψ) is a principal Stab(ψ)–
bundle (see, for example, Duistermaat and Kolk [3, 1.10.7 and 1.11.4]). Hence qψ
admits local sections. Choose an open covering {Vi}i of U(n)/Stab(ψ) admitting
local sections αi : Vi → U(n). Since U(n)/Stab(ψ) is a Lie group, it is regular (in
fact, quotients of regular spaces by compact groups are always regular), so we may
choose an open cover {Uj}j of U(n)/Stab(ψ) such that for each j there exists i
with Uj ⊂ Vi.
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We have homeomorphisms

U(n)/Stab(ψ)
∼=→ PU(n)/Stab(ψ) ∼= PU(n) · ψ,

which we treat as identifications. So we will consider {Uj}j and {Vi}i as coverings
of PU(n)/Stab(ψ) and PU(n) · ψ.

We claim that π is trivial over each open set Uj . In fact, we will show that π is
trivial over the closures of the Uj . Since Uj ⊂ Vi for some i = i(j), if we set βj = αi
then βj is a section of qψ over Uj . We have fiber-preserving maps

φj : Uj ×HomA(Γ, U(n))ψ −→ π−1(Uj)

given by
φj(u, ρ) = βj(u)ρβj(u)−1,

and we claim these maps are homeomorphisms. Note that continuity of φj follows
immediately from the fact that βj and the action of U(n) on Hom(Γ, U(n)) are
continuous.

The space Uj is compact, since it is closed in the compact space PU(n)/Stab(ψ),
and HomA(Γ, U(n))ψ is compact because it is closed in HomA(Γ, U(n)), which is
compact by Lemma 6.2. So the domain of φj is compact, and it will suffice to check
that φj is a bijection.

First we check that φj is surjective. Consider a representation ρ ∈ π−1(Uj).
Then ρ = [x]ψ[x]−1 for some x ∈ U(n) with qψ(x) ∈ Uj (where Uj is viewed as
a subspace of U(n)/Stab(ψ)). Let u = qψ(x) ∈ Uj . Now βj(u) = xk for some
k ∈ Stab(ψ), and we have

[βj(u)]ψ[βj(u)]−1 = [x][k]ψ[k]−1[x]−1 = [x]ψ[x]−1 = ρ,

or in other words ψ = [βj(u)]−1(ρ)[βj(u)]. Now βj(u)−1ρβj(u) ∈ HomA(Γ, U(n))ψ,
and φj(u, βj(u)−1ρβj(u)) = ρ.

Next, we check that φj is injective. If φj(u, ρ) = φj(u′, ρ′), then

(5) βj(u′)−1βj(u)ρβj(u)−1βj(u′) = ρ′.

Since ρ = ρ′ = ψ, we see that βj(u′)−1βj(u) ∈ Stab(ψ). But since βj is a section of
qψ, this implies that u′ = u, and by (5), we have ρ′ = ρ as well, proving injectivity.

�

We will now analyze the individual fibers HomA(Γ, U(n))ψ of the bundles from
Proposition 6.11. Each such subspace admits a restriction map to Hom(A,S1).
Note that when A is a finitely generated abelian group, Hom(A,S1) is a disjoint
union of tori of dimension rk(A).

Proposition 6.12. For each ψ : Q→ U(n), the restriction map

R : HomA(Γ, U(n))ψ −→ Hom(A,S1)

has the structure of a (non-surjective) finite covering map with structure group
Hom(Q,S1).

Proof. The action of Hom(Q,S1) on HomA(Γ, U(n))ψ is given by

(χ · ρ)(γ) = χ([γ])ρ(γ).

Since χ([γ]) is central in U(n), χ ·ρ is a homomorphism with (χ ·ρ)(A) ⊂ S1, so we
have a well-defined action. Moreover, χ · ρ = ρ = ψ and the action is free because
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χ · ρ(γ) = ρ(γ) implies that χ([γ]) = 1 for all γ ∈ Γ. Hence the quotient map for
this action is a covering map whose structure group is the finite group Hom(Q,S1).

If a ∈ A, then (χ · ρ)(a) = χ(1)ρ(a) = ρ(a), so the restriction map R factors
through the quotient space for this action. We must show that the induced map

Φ: (HomA(Γ, U(n))ψ) /Hom(Q,S1) −→ R (HomA(Γ, U(n))ψ)

is a homeomorphism. We claim that HomA(Γ, U(n))ψ is compact. This space is
the inverse image of ψ ∈ Hom(Q,PU(n)) under the map

HomA(Γ, U(n)) −→ Hom(Q,PU(n)),

so HomA(Γ, U(n))ψ is closed in HomA(Γ, U(n)), and HomA(Γ, U(n)) is compact
by Lemma 6.2. It now follows that the domain of Φ is compact, so to show that
Φ is a homeomorphism we need only show that it is injective (Φ is surjective by
definition).

Say Φ(ρ) = Φ(ρ′). Then we know that ρ = ρ′ = ψ and ρ|A = ρ′|A. The first
condition implies that for any γ ∈ Γ, we have ρ(γ) = λ(γ)ρ′(γ), for some λ(γ) ∈ S1,
and the second condition implies that λ(a) = 1 if a ∈ A. We simply need to check
that λ : Γ→ S1 is a homomorphism. For any γ ∈ Γ, we have λ(γ) = ρ(γ)ρ′(γ)−1.
Now

λ(γ1γ2) = ρ(γ1γ2)ρ′(γ1γ2)−1 = ρ(γ1)ρ(γ2)ρ′(γ2)−1ρ′(γ1)−1

= ρ(γ1)λ(γ2)ρ′(γ1)−1 = ρ(γ1)ρ′(γ1)−1λ(γ2)

= λ(γ1)λ(γ2).

�

Next, we need the following fact regarding the images of the restriction maps R.

Proposition 6.13. If A is a finitely generated abelian group and Q is abelian,
then for each homomorphism ψ : Q → PU(n), the image of HomA(Γ, U(n))ψ in
Hom(A,S1) is a closed subvariety.

The proof depends on the existence of a particular type of presentation for the
groups in question.

Lemma 6.14. Consider an extension of groups

1→ A→ Γ→ Q→ 1

in which A is a finitely generated abelian group and Q is finite. If Q has a presen-
tation of the form

Q = 〈q1 . . . , ql | r1(q1, . . . , ql) = . . . = rp(q1, . . . , ql) = 1〉,
for some words ri in the free group on l letters, and A has a presentation of the
form

〈a1 . . . , ak+m | aiaj = ajai ∀i, j and an1
1 = · · · = anm

m = 1〉,
then for some words wi and uij in the free group on k +m letters, then

〈α1, . . . , αk+m, γ1 . . . , γl| ri(γ1 . . . , γl) = wi(α1, . . . , αk+m)∀i,
αiαj = αjαi ∀i, j, α

nj

j = 1, j = 1, . . . ,m,

γiαjγ
−1
i = uij(α1, . . . , αk+m)∀i, j 〉,

(6)

is a presentation for Γ.
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Note that the words uij and wi are not unique.

Proof. To begin, we must specify the words uij and wi. Choose elements q̃i ∈ Γ
lying over qi ∈ Q. Since A is normal in Γ, we know that q̃iaj q̃−1

i ∈ A, and hence
q̃iaj q̃

−1
i = uij(a1, . . . , ak+m) for some word uij . Next, since ri(q1, . . . , ql) = 1 in Q,

we know that ri(q̃1, . . . , q̃l) ∈ A, and hence ri(q̃1, . . . , q̃l) = wi(a1, . . . , a) for some
word wi.

Now, let Γ̃ denote the group presented by (6), and let Ã denote the subgroup
generated by α1, . . . , αk+m. Let Φ: Γ̃ → Γ be the homomorphism defined by
Φ(αi) = ai and Φ(γi) = q̃i. Then Φ is surjective, and its restriction to Ã is a
surjection onto A < Γ. The third set of relations in (6) ensure that Ã is normal in
Γ̃, and we define Q̃ = Γ̃/Ã. The map Φ induces a surjection Φ: Q̃ � Q, and we
have a commutative diagram

(7) 1 // Ã //

����

Γ̃ //

Φ
����

Q̃ //

Φ
����

1

1 // A // Γ // Q // 1.

The map Γ̃ → Q̃ induces a surjection from the free group on the generators γi
onto Q̃, and this surjection factors through the quotient group

〈γ1, . . . , γl | ri(γ1, . . . , γl) = 1 ∀i〉 ∼= Q.

Hence we have a surjection Q � Q̃, meaning that Q̃ is a finite group of order at
most |Q|. The existence of the surjection Φ̃ : Q̃� Q now shows that both of these
surjections must in fact be isomorphisms.

Next, we show that the map Ã → A is injective. Each element α ∈ Ã has
the form αp1

1 α
p2
2 · · ·α

pk+m

k+m for some pi ∈ Z. Our presentation for A shows that if
Φ(α) = 0, then pi is a multiple of ni for 1 6 i 6 m, and pi = 0 for i > m. But such
elements are already trivial in Γ̃, so Φ is injective when restricted to Ã.

We have now shown that the two outer maps in (7) are isomorphisms, and the
5-lemma shows that Φ is an isomorphism as well. �

Proof of Proposition 6.13. The image of HomA(Γ, U(n))ψ in Hom(A,S1) is
the set of representations ρ : A → S1 which can be extended to representations
ρ̃ : Γ→ U(n) satisfying [ρ̃(γ)] = ψ[γ] ∈ PU(n) for all γ ∈ Γ.

Since Q is a finite abelian group, it has a presentation of the form

Q = 〈q1, . . . , ql | qiqj = qjqi ∀i, j, qri
i = 1∀i〉

for some ri ∈ N. Hence Lemma 6.14 yields a presentation for Γ of the form

〈α1, . . . , αk+m, γ1 . . . , γl| γiγjγ−1
i γ−1

j = wij(α1, . . . , αk+m)∀i, j
γri
i = wi(α1, . . . , αk+m)∀i,
αiαj = αjαi ∀i, j, a

nj

j = 1, j = 1, . . . ,m,

γiαjγ
−1
i = uij(α1, . . . , αk+m)∀i, j 〉,

(8)

for some words wi, wij , and uij in the free group on k+m letters, and some ni ∈ N.
Now, say ρ : A → S1 lies in Hom(A,S1). Extending ρ to an representation

ρ̃ ∈ HomA(Γ, U(n))ψ amounts to choosing elements ρ̃(γi) ∈ U(n) such that
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(i) [ρ̃(γi)] = ψ([γi])
(ii) ρ̃(γi)ρ̃(γj)ρ̃(γi)−1ρ̃(γj)−1 = wij(ρ(α1), . . . , ρ(αk)) ∈ S1

(iii) ρ̃(γi)ri = wi(ρ(α1), . . . , ρ(αk)) ∈ S1.
(iv) ρ̃(γi)ρ(αj)ρ̃(γi)−1 = uij(ρ(α1), . . . , ρ(αk)) ∈ S1.

Choose ψi ∈ U(n) such that [ψi] = ψ([γi]) ∈ PU(n). Since [γi][γj ][γ−1
i ][γ−1

j ] = 1
in Q, we must have ψiψjψ−1

i ψ−1
j ∈ S1. We set cij = ψiψjψ

−1
i ψ−1

j . Note that since
the ψi are well-defined up to multiplication by scalars in S1, the cij depend only
on ψ : Q→ PU(n).

If ρ : A → S1 extends to ρ̃ ∈ HomA(Γ, U(n))ψ, then Equation (i) implies that
ρ̃(γi) = λiψi for some λi ∈ S1 (i = 1, . . . , l), so by Equation (ii), we must have

(9) wij(ρ(α1), . . . , ρ(αk)) = cij ∈ S1.

Since ρ(αj) ∈ S1, Equation (iv) implies that

(10) ρ(αj) = uij(ρ(α1), . . . , ρ(αk)).

Hence the image of HomA(Γ, U(n))ψ in Hom(A,S1) is contained in the subvariety

Hom(A,S1)Γ
ψ := {ρ : A→ S1 | ρ(αj) = uij(ρ(α1), . . . , ρ(αk))∀i, j,

and wij(ρ(α1), . . . , ρ(αk)) = cij}.
(11)

cut out by (9) and (10). We claim that the image is in fact equal to Hom(A,S1)Γ
ψ.

Say ρ ∈ Hom(A,S1)Γ
ψ. We must show that for some ξi ∈ S1, the assignments

ρ̃(γi) = ξiψi, ρ̃(αi) = ρ(αi) produce a homomorphism ρ̃ : Γ → U(n). The defini-
tion of Hom(A,U(n))Γ

ψ guarantees that for any choice of ξi, these elements satisfy
Equations (i), (ii), and (iv) above. Since [γi]ri = 1 in Q, we know that ψri

i ∈ S1. If
we choose ξi to be an nth

i root of wi(ρ(α1), . . . , ρ(αk)) · ψ−ri
i ∈ S1, then the ρ̃(γi)

will also satisfy (iii). 2

Remark 6.15. We have shown that the image of HomA(Γ, U(n))ψ in Hom(A,S1)
is precisely the subvariety Hom(A,S1)Γ

ψ defined by (11). The equations defining
this subvariety depend only on our presentation for Γ and the numbers cij = cij(ψ).
One may check that cij(ψ) = cij(XψX−1) for any X ∈ PU(n), so the subvariety
Hom(A,S1)Γ

ψ depends only on the isomorphism class of ψ.

7. The dimension of the moduli space of irreducible representations

Throughout this section, Γ will denote an infinite discrete group sitting in an
extension

1 −→ A −→ Γ −→ Q

with A a finitely generated abelian group of rank k > 0 and Q a finite abelian
group.

7.1. Triangulations.

Lemma 7.1. The moduli space Hom(Γ, U(n))/U(n) admits a triangulation in
which Sum(Γ, U(n))/U(n) and each subset

(
HomA(Γ, U(n))[ψ]

)
/U(n), with ψ irre-

ducible, are subcomplexes.
Modding out Sum(Γ, U(n))/U(n) then yields a CW–structure on Irr+

n (Γ) in which
each

(
HomA(Γ, U(n))[ψ]

)
/U(n) is a subcomplex, and + is a vertex.
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Proof. By Illman’s theorem on equivariant triangulations ([6, Theorem B]) there
exists a U(n)–equivariant triangulation of Hom(Γ, U(n)) in which the subvariety
HomA(Γ, U(n)) is a subcomplex. By Schur’s Lemma, Sum(Γ, U(n)) is precisely
the set of representations whose stabilizer (in U(n)) is larger than S1. Hence
Sum(Γ, U(n)) must be a subcomplex as well. By Corollary 6.10, modding out U(n)
gives the desired triangulation of Hom(Γ, U(n))/U(n).

Collapsing Sum(Γ, U(n))/U(n) ⊂ Hom(Γ, U(n))/U(n) to a point now provides
the desired cell structure on Irr+

n (Γ). �

We will need a simple consequence of Brower’s Invariance of Domain theorem.

Lemma 7.2. Let X be a topological space with open subsets U, V ⊂ X. If U∩V 6= ∅
and there exist homeomorphisms f : U

∼=→ Rn, g : V
∼=→ Rm, then n = m.

Proof. Say n > m. Then U ∩ V is open in U ∼= Rn, and hence contains a subset
U ′ ∼= Rn with U ′ open in X. If i : Rm → U ′ ∼= Rn denotes the usual coordinate-
inclusion, we have an injective, continuous map

Rm i
↪→ U ′

j
↪→ V

g→ Rm,

where j denotes the inclusion. By Invariance of Domain, the image of the composite
g◦j◦i must be open. Since g is a homeomorphism, j◦i(Rm) is open in V , and since
U ′ is open in V , i(Rm) must be open in U ′. But i was the standard coordinate-
inclusion of Rm into Rn ∼= U ′, so i(Rm) is a closed subset of U ′. Since U ′ ∼= Rn is
connected, no proper subset can be both open and closed, so i must be surjective
and we must have n = m. �

Lemma 7.3. If X is a k–dimensional simplicial complex, then no open set in X is
homeomorphic to Rm with m > k. Consequently, a simplicial complex of dimension
k cannot be homeomorphic to a simplicial complex of dimension l unless l = k.

Proof. Let D denote the union of the interiors of the maximal simplices in X. Then
D is dense in X, and each point in D has an open neighborhood homeomorphic
to Rl with l 6 k. If U ⊂ X is open and U ∼= Rm, then U contains some point
d ∈ D. Let Vd be an open neighborhood of d homeomorphic to Rl with l 6 k. Then
U ∩ Vd 6= ∅, and Lemma 7.2 implies that m = l 6 k. �

Corollary 7.4. If ψ : Q → PU(n) is irreducible and Hom(Q,PU(n))Γ
ψ is non-

empty, then the subspace HomA(Γ, U(n))ψ is homeomorphic to a finite simplicial
complex of dimension at most k.

Proof. By Proposition 6.12, HomA(Γ, U(n))ψ is a finite cover of the subvariety

Hom(A,S1)Γ
ψ ⊂ Hom(A,S1) ∼= (S1)k.

By basic results on triangulations of algebraic varieties (e.g. Hironaka [5]), there
exists a triangulation of (S1)k with Hom(A,S1)Γ

ψ as a subcomplex. By Lemma 7.3,
this triangulation is at most k–dimensional. Since any cover of a simplicial complex
has a triangulation of the same dimension, the result follows. Note that all of these
triangulations have finitely many cells, since (S1)k is compact and the covering is
finite. �
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7.2. The moduli space.

Theorem 7.5. For any n > 0, there is a triangulation of Hom(Γ, U(n))/U(n)
in which Sum(Γ, U(n))/U(n) is a subcomplex and all simplices outside of this sub-
complex have dimension at most k = rk(A). Consequently, the one-point com-
pactification Irr+

n (Γ) of the moduli space of irreducible U(n)–representations of Γ is
homeomorphic to a CW–complex of dimension at most k = rk(A).

Proof. The proof is by induction on |Q|. When |Q| = 1, Γ ∼= Zk, and hence Irr+
n (Γ)

is a point for n > 1. Now, say A has a presentation

〈a1 . . . , ak+m | aiaj = ajai ∀i, j and an1
1 = · · · anm

m = 1〉.
When n = 1, all representations are irreducible, and a homomorphism ρ : A →
S1 is determined by the elements ρ(ai), i = 1, . . . , k + m. For i = 1, . . . ,m,
we know that ρ(ai) lies in the discrete set of nth

i roots of unity, while the ele-
ments ρ(am+1), . . . , ρ(ak+m) can be arbitrary elements of S1. Hence Hom(A,S1) =
Hom(A,S1)/S1 is homeomorphic to a disjoint union of rank k tori (S1)k, and
Irr+

1 (A) = Hom(A,S1)
∐
{+}. This completes the base case.

We now assume the result for all extensions

A′ −→ Γ′ −→ Q′

(with A finitely generated abelian and Q′ finite abelian) such that |Q′| < |Q|.
Consider the triangulation of Hom(Γ, U(n))/U(n) produced by Lemma 7.1. We

claim that any maximal simplices of dimension greater than k must lie either in
Sum(Γ, U(n))/U(n) or in

(
HomA(Γ, U(n))[ψ]

)
/U(n) for some irreducible ψ. Let σ

be a maximal simplex of dimension m > k, and assume σ does not lie in any of
these subcomplexes. Then

(12)
◦
σ⊂

⋃
A6H<Γ

Irrn(Γ)H ,

where
◦
σ is the interior of σ and Irrn(Γ)H denotes the subspace of representations

induced from H (Definition 5.3). Now, let Irr+
n (Γ)H = Irrn(Γ)H ∪ {+}. Then

Irr+
n (Γ)H is the image of the composite map

Hom(H,U(n))/U(n)
IndΓ

H−−−→ Hom(Γ, U(n))/U(n) −→ Irr+
n (Γ),

and since Hom(H,U(n))/U(n) is compact and Irr+
n (Γ) is Hausdorff, we see that

Irr+
n (Γ)H is closed in Irr+

n (Γ). We now have
◦
σ=

⋃
A6H<Γ

(Irr+
n (Γ)H)∩ ◦σ .

Since Irr+
n (Γ)H is closed in Irr+

n (Γ), the intersection Irr+
n (Γ)H∩

◦
σ is closed in

◦
σ∼=

Rm. By the Baire Category Theorem, Irr+
n (Γ)H0∩

◦
σ must have non-empty interior

(as a subset of
◦
σ) for some subgroup H0. Thus Irr+

n (Γ)H0∩
◦
σ contains a subset V ,

open in
◦
σ, such that V is homeomorphic to Rm. Since σ is maximal,

◦
σ is open

in Irr+
n (Γ), and hence V is open in Irr+

n (Γ) as well. Thus V is open as a subset
of Irr+

n (Γ)H0 . In fact, V cannot contain the basepoint +, since + is a vertex and
cannot lie in the interior of a cell of dimension m > k > 0. Hence V is an open
subset of Irrn(Γ)H0 . By Proposition 5.5, induction induces a covering map

IndΓ
H0

: Irrn/r(H0)free � Irr n
r

(Γ)H0 ,
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(where r is the index of H0 in Γ) and by shrinking V if necessary, we can find
an open subset V ′ ⊂ Irrn/r(Γ)H0 whose inverse image in Irrn/r(H0)free is a dis-
joint union of open sets homeomorphic to Rm. Since Irrn/r(H0)free is open in
Hom(H0, U(nr ))/U(nr ) (Lemma 5.4), these sets are open in Hom(H0, U(nr ))/U(nr
as well. Thus there exists an open neighborhood U ∼= Rm of Hom(H0, U(nr ))/U(nr )
lying outside Sum(H0, U(nr ))/U(nr ). By our induction hypothesis, there exists a
triangulation of Hom(H0, U(nr ))/U(nr ) with Sum(H0, U(nr ))/U(nr ) as a subcom-
plex and such that all simplices outside this subcomplex have dimension at most
k. Hence each point x ∈ U lies in a maximal simplex τ in Hom(H0, U(nr ))/U(nr ) of

dimension at most k, and U must intersect
◦
τ non-trivially. But

◦
τ is an open subset

of Hom(H0, U(nr ))/U(nr ) homeomorphic to Rl for some l 6 k, and U ∼= Rm with
m > k. This contradicts Lemma 7.2.

Hence any maximal simplex of Hom(Γ, U(n))/U(n) with dimension greater than
k must lie in Sum(Γ, U(n))/U(n) or in

(
HomA(Γ, U(n))[ψ]

)
/U(n) for some irre-

ducible ψ. Now, if σ is any simplex of Hom(Γ, U(n))/U(n) of dimension greater
than k, then σ is contained in some maximal simplex τ , and since τ lies in one of
these subcomplexes, so must σ. So all simplices in Hom(Γ, U(n))/U(n) of dimension
greater than k lie in one of these subcomplexes.

Let σ ⊂
(
HomA(Γ, U(n))[ψ]

)
/U(n) (ψ irreducible) be a maximal simplex of this

subcomplex. We need to show that the dimension m of σ is at most k. Each
point in σ corresponds to an irreducible representation ρ, and Schur’s Lemma tells
us that the stabilizer of ρ in U(n) is just S1. Thus the inverse image of σ in
HomA(Γ, U(n))[ψ] ⊂ Hom(Γ, U(n)) is simply the U(n)–simplex σ×PU(n). Since σ

was maximal in Irr+
n (Γ), its interior

◦
σ is open in Irr+

n (Γ), and the inverse image of
◦
σ in HomA(Γ, U(n))[ψ] is an open set homeomorphic to Rm ×PU(n). Since PU(n)
is a manifold of dimension n2 − 1, this yields an open subset of HomA(Γ, U(n))[ψ]

homeomorphic to Rm+n2−1.
We have shown that each set HomA(Γ, U(n))ψ is homeomorphic to a simplicial

complex of dimension at most k (Corollary 7.4). Moreover, by Proposition 6.11,
HomA(Γ, U(n))[ψ] is a locally trivial fiber bundle over the manifold PU(n)/Stab(ψ)
with fiber HomA(Γ, U(n))ψ. Since PU(n)/Stab(ψ) has dimension at most n2−1, we
can cover PU(n)/Stab(ψ) by open subsets homeomorphic to Rl for some l 6 n2−1,
over which HomA(Γ, U(n))[ψ] is trivial. Each fiber HomA(Γ, U(n))ψ contains a
dense subset (the interiors of the maximal simplices) in which each point has a
neighborhood (open in the fiber) homeomorphic to some Rp with p 6 k. Hence
we can find dense subset D of HomA(Γ, U(n))[ψ] such that each point in D has
a neighborhood in HomA(Γ, U(n))[ψ] which is homeomorphic to Rj for some j 6
k+n2−1. Above, we found an open subset of HomA(Γ, U(n))[ψ] homeomorphic to
Rm+n2−1. By Lemma 7.2, we must have m+n2−1 = j 6 k+n2−1, so m 6 k. �

8. Periodicity in stable representation theory

We now combine our results on the moduli space Irr+
n (Γ) with Tyler Lawson’s

work on deformation K–theory in order to show that Kdef(Γ) is 2–periodic above
dimension k − 2. We begin by recalling some definitions and results from Lawson
[8, 9].
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Definition 8.1. The deformation representation ring of Γ, denoted Rdef(Γ), is the
spectrum Sp(Rep(Γ)) associated to the topological abelian monoid

Rep(Γ) :=
∞∐
n=0

Hom(Γ, U(n))/U(n).

Explicitly, the spaces in the spectrum Sp(Rep(Γ)) are simply

ΩBRep(Γ), BRep(Γ), BBRep(Γ), . . . ,

where at each stage we form the (simplicial) classifying space B(−) of the previous
stage. Note here that if M is an abelian topological monoid, so is BM , because the
multiplication map M ×M → M is a homomorphism of monoids, and therefore
yields a multiplication BM ×BM ∼= B(M ×M)→ BM .

Theorem 8.2 (Lawson). There is a homotopy cofiber sequence of spectra

Σ2Kdef(Γ)
β−→ Kdef(Γ) −→ Rdef(Γ),

where β denotes the Bott map in deformation K–theory.

The Bott map β is induced from the ordinary Bott map β : Σ2ku → ku in
connective K–theory by smashing over ku with Kdef(Γ). This uses the ku–module
structure on Kdef(Γ) constructed in [8].

Theorem 8.2 shows that periodicity of Kdef(Γ) is controlled by the homotopy
groups π∗Rdef(Γ). These homotopy groups are in turn linked to the homology of
the moduli space Irr+

n (Γ) by the next result.

Theorem 8.3 (Lawson). There is a tower of fibration sequences of spectra

· · · // Sp(Rep(Γ, n− 1)) //

qn

��

Sp(Rep(Γ, n)) //

qn

��

· · ·

HZ ∧ Irr+
n−1(Γ) HZ ∧ Irr+

n (Γ)

(i.e. the homotopy fiber of each qi is Sp(Rep(Γ, i−1))) and Rdef(Γ) is the homotopy
colimit of the top horizontal sequence.

In this theorem, HZ denotes the Eilenberg–MacLane spectrum associated to Z,
and Rep(Γ, n) denotes the submonoid of Rep(Γ) generated by representation of
dimension at most n. Said another way, Rep(Γ, n) ⊂ Rep(Γ) consists of represen-
tation whose irreducible summands all have dimension at most n. Note that for
any CW–complex X, the homotopy groups of the spectrum HZ∧X are simply the
(reduced) integral homology groups of X, so

π∗
(
HZ ∧ Irr+

n (Γ)
) ∼= H̃∗(Irr+

n (Γ); Z).

It is useful to note that for a based space X, the spectrum HZ ∧ X can also be
viewed as the spectra associated to the topological abelian monoid SpSym∞(X).
As explained above, the zeroth space of this spectrum is ΩBSym∞(X), but since
Sym∞(X) is connected, it has a homotopy inverse, and for monoids M with a
homotopy inverse there is a weak equivalence M ' ΩBM ; see Segal [18] for proofs
of these statements. The Dold-Thom theorem then yields the weak equivalence of
spectra HZ ∧X ' Sp(Sym∞X).
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Theorem 8.4. If Γ is an infinite discrete group such that H∗(Irr+
n (Γ); Z) = 0 for

all n > 0 and all ∗ > k, then π∗Sp(Rep(Γ)) = 0 for ∗ > k, and the Bott map

β∗ : π∗Kdef(Γ) −→ π∗+2K
def(Γ)

is an isomorphism for ∗ > k − 2, and injective for ∗ = k − 2.

Proof. By Theorem 8.2, it suffices to show that π∗Rdef(Γ) = 0 for ∗ > k. By
Theorem 8.3, we have

(13) π∗R
def(Γ) = colim

n
π∗Sp(Rep(Γ, n)),

and there are long exact sequences

· · · −→ π∗HZ ∧ Irr+
n−1(Γ) −→ π∗Sp(Rep(Γ, n− 1)) −→ π∗Sp(Rep(Γ, n))

−→ π∗HZ ∧ Irr+
n (Γ) −→ · · · .

As noted above, π∗HZ∧ Irr+
n (Γ) ∼= H̃∗(Irr+

n ; Z), so these groups are zero for ∗ > k.
Hence for ∗ > k, the maps

π∗Sp(Rep(Γ, n− 1)) −→ π∗Sp(Rep(Γ, n))

are isomorphisms for every n. Since Rep(Γ, 0) consists of trivial representations
only, Sp(Rep(Γ, 0)) = Sp(N) = HZ, and π∗Sp(Rep(Γ, 0)) = 0 for ∗ > 0. We now
conclude from Theorem 8.3 that for ∗ > k, π∗Sp(Rep(Γ, n)) = 0 for all n, and now
(13) completes the proof. �

Recall from the introduction that when Γ is crystallographic and torsion-free, k
is precisely the dimension of the classifying space Rk/Γ of Γ, which is flat manifold
(covered by the torus Rk/A). So when Rk/Γ is orientable, we have shown that
Kdef(Γ) is periodic above the (rational) cohomological dimension of Γ, minus 2.

A standard transfer argument shows that in general, H∗(Γ; Q) = 0 for ∗ > k,
but the rational cohomological dimension of Γ could be less than k. For instance,
when Γ is crystallographic and torsion-free but Rk/Γ is non-orientable, then qcd(Γ)
is strictly less than k.

In the author’s previous work on surface groups [14], it was shown that if Γ is
a the fundamental group of a product of aspherical surfaces, then the zeroth space
of the spectrum Sp(Rep(Γ)) is weakly equivalent to the stable moduli space

colim
n

Hom(Γ, U(n))/U(n) ∼= Hom(Γ, U)/U.

This relies on the following fact: for each representation ρ : Γ→ U(n), there exists
a representation ψ : Γ→ U(m) (for some m) such that ρ⊕ ψ lies in the connected
component of the trivial representation. We call the monoid Rep(Γ) stably group-
like when it has this property.

Question 8.5. For which crystallographic groups Γ is Rep(Γ) stably group-like?

In the next section, we offer one interesting class of crystallographic groups for
which Rep(Γ) is stably group-like.
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9. The stable moduli space

In this section, we will consider what we call flat iterated torus bundles. This
class of space forms T is constructed as follows. First, T0 denotes the class of (finite
rank) tori. We recursively define Ti to be the class consisting of all space forms E
which (geometrically) fiber over a space form in Ti−1 with flat tori as fibers. Note
that since space forms are determined up to affine equivalence by the isomorphism
type of their fundamental group (Wolf [21, Theorem 3.3.1]), if E ∈ Ti then any
space form with fundamental group isomorphic to π1E also lies in Ti. The class
T is simply the union of the Ti. The notion of geometric fibering is defined in
Ratcliffe and Tschantz [16], and is a bit stronger than the topological notion of a
fiber bundle. For our purposes, the important point will be that the fundamental
groups of space forms in T admit particularly nice (recursive) decompositions.

Say Γ = π1E for some E ∈ Ti. Then there exists a (geometric) fiber bundle

(S1)l −→ E −→ Ei−1

with Ei−1 ∈ Ti−1, and from the long exact sequence in homotopy we see that
π1(S1)l ∼= Zl is normal in Γ, with quotient π1(Ei−1). Ratcliffe and Tschantz show
[16, §7, Lemma 5] that π1(S1)l lies inside the translation subgroup of Γ.

With this in mind, we define a class of groups Z as follows. First, Z0 is the class
of finitely generated free abelian groups. We recursively define Zi to be the class
of torsion-free crystallographic groups Γ that sit in extensions

(14) Zl −→ Γ −→ Γi−1,

with Γi−1 ∈ Zi−1 and the image of Zl contained in the translation subgroup of Γ.
We let Z =

⋃
iZi.

Recall here that if Γ is an abstract crystallographic group (i.e. Γ is isomorphic
to some discrete, cocompact subgroup of the isometries of Euclidean space), then
the translation sugroup of Γ is well-defined (Lemma 2.1).

Proposition 9.1. The class Z is precisely the class of groups isomorphic to the
fundamental group of some E ∈ T .

Proof. The above discussion shows, inductively, that if E ∈ Ti then π1E ∈ Zi.
Conversely, we will show that for all i, each Γ ∈ Zi is isomorphic to π1E for some
E ∈ Ti. For i = 0, this is immediate from the definitions, so assume the statement
for i− 1 and consider Γ ∈ Zi. Then there exists an extension

Zl −→ Γ −→ Γi−1,

with Γi−1 ∈ Zi−1 and the image N of Zl contained in the translation subgroup of
Γ. If we consider the action of Γ on Rn by isometries, then each x ∈ N acts via a
translation

⇀
v 7→⇀

v +ax
for some ax ∈ Rn. Set V = Span({ax |x ∈ N}). Then the results of [16, §3, 6]
tell us that Γ/N ∼= Γi−1 acts effectively on Rn/V by isometries, and the quotient
(Rn/V )/Γi−1 is a (compact) space form. Moreover, the space form Rn/Γ geo-
metrically fibers over (Rn/V )/Γi−1 with fiber the flat torus V/N ∼= (S1)l. Since
Γi−1 ∈ Zi−1, we know that Γi−1 = π1Ei−1 for some space form Ei−1 ∈ Ti−1. As
noted above, since (Rn/V )/Γi−1 is a space form with fundamental group Γi−1, we
have (Rn/V )/Γi−1 ∈ Ti−1 as well. By definition of Ti, we now see that E ∈ Ti. �
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Our goal is to study the stable moduli spaceMflat(E) of flat unitary connections
over a flat iterated torus bundle E. As discussed in the introduction, the holonomy
representation associated to a flat connection gives rise to a homeomorphism

Mflat(E)
∼=−→ colim

n
Hom(π1, U(n))/U(n) ∼= Hom(π1E,U)/U.

Theorem 9.2. Let E be a flat iterated torus bundle, and assume that the point
group of π1E is abelian. Then the homotopy groups of Mflat(E) vanish above the
dimension of E. Moreover, the stable moduli space is homotopy equivalent to a
finite product of Eilenberg–MacLane spaces:

Mflat(E) '
dim(E)∏
i=0

K (πi(Mflat(E), i) .

Remark 9.3. Note that for flat torus bundles over tori, i.e. spaces E ∈ T1, the
fundamental group π1E always has abelian point group, since the point group is a
quotient of the fundamental group of the base torus.

Further bundles to which Theorem 9.2 applies may be constructed as follows.
Take a group Γi−1 ∈ Zi−1 with abelian point group Q, and consider a semi-direct
product Γ = ZloΓi−1 in which Γi−1 acts on Zl via a representation Γi−1 → Q→ Zl
(which need not be faithful on Q). This gives a (split) extension

Zl −→ Γ −→ Γi−1.

Let A C Γi−1 denote the subgroup of translations. Then in the semi-direct product
Γ, we see that A acts trivially on Zl. Hence these subgroups generate a free abelian
subgroup Zl × A inside of Γ with quotient isomorphic to Q. The action of Q on
Zl ×A is simply the diagonal action, which is faithful since Q acts faithfully on A.
It now follows from Ratcliffe [15, Theorem 7.5.5] that Γ is a crystallographic group,
with translation subgroup Zl ×A. Since the semi-direct product of two torsion-free
groups is always torsion-free, we find that Γ ∈ Zi, and Rl+rk(A)/Γ ∈ Ti.

We will prove Theorem 9.2 result by showing that for any E ∈ T , Z×Mflat(E)
is weakly equivalent to the zeroth space of the Ω–spectrum Sp(Rep(π1E)). This
relies on the following general fact, proven in Ramras [13, Section 6].

Lemma 9.4. Let Γ be a finitely generated discrete group, and assume that for
all ρ : Γ → U(n) there exists ψ : Γ → U(m) such that ρ ⊕ ψ ∈ Hom(Γ, U(n + m))
lies in the connected component of the trivial representation. Then then the zeroth
space of the spectrum associated to the monoid Rep(Γ) is weakly equivalent to Z×
Hom(Γ, U)/U .

We call Rep(Γ) stably-grouplike when the hypotheses of Lemma 9.4 are satisfied.
We will show that the groups in Z satisfy the even stronger condition that for
each representation ρ, there exists an integer m > 0 such that the m–fold block
sum of ρ with itself, denoted mρ, lies in the connected component of the trivial
representation.

Lemma 9.5. Let Γ be a group in Z, and let A ∼= Zk 6 Γ be the subgroup of
translations. Let In ∈ Hom(A,U(n)) denote the trivial representation. Then for
some p > 0, the p–fold block sum pIndΓ

A(In) lies in the connected component of the
trivial representation.
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Proof. We prove the result for each class Zi, by induction on i. When i = 0,
Γ is free abelian of finite rank. The fact that commuting unitary matrices are
simultaneously diagonalizable shows that Hom(Zr, U(m)) is connected (for any r
and m). We now assume the result for groups in Zi−1 and consider some Γ ∈ Zi.
Consider an extension

Zl −→ Γ −→ Γi−1

of the form (14). Since A C Γ, the representation IndΓ
A(In) is trivial on A, and also

on Zl 6 A. We may now view IndΓ
A(In) as a unitary representation of the quotient

group Γ/Zl ∼= Γi−1. Since Γi−1 ∈ Zi−1, by our induction hypothesis we know
that there exists an integer m such that pIndΓ

A(In) lies in the connected component
of the trivial representation in Hom(Γi−1, U(pn[Γ : A])). This yields a path in
Hom(Γ, U(pn[Γ : A])) from mIndΓ

A(In) to the trivial representation. �

Proposition 9.6. For any group Γ ∈ Z and any representation ρ : Γ → U(n),
there exists an integer d > 0 such that dρ lies in the connected component of the triv-
ial representation in Hom(Γ, U(nm)). In particular, the monoid Rep(Γ) is stably-
grouplike.

Proof. Again, we prove the result for each Zi by induction on i, and the base case
follows as in Lemma 9.5. We will use the notation ψ ' ψ′ to mean that there exists
a path connecting the representations ψ and ψ′. Note that since U(n) is connected,
any two isomorphic representations are connected by a path: ψ ∼= ψ′ =⇒ ψ ' ψ′.

Say Γ ∈ Zi. Let Zl 6 A 6 Γ be as in Lemma 9.5. By Lemma 9.5, rIndΓ
A(1) '

Ir[Γ:A] for some r (where 1 denotes the trivial 1–dimensional representation). Now,

r[Γ : A]ρ ∼= ρ⊗ Ir[Γ:A] ' ρ⊗
(
rIndΓ

A(1)
)

∼= ρ⊗ IndΓ
A(Ir) ∼= IndΓ

A

(
ResΓ

A(ρ)⊗ Ir
) ∼= IndΓ

A

(
rResΓ

A(ρ)
)
,

where we have used the Projection Formula (Lemma 5.6).
Since rResΓ

A(ρ) is a representation of the free abelian group A, we know that
qrResΓ

A(ρ) ' Iqrn for some q. Let ψt : [0, 1] → Hom(A,U(n)) denote a continuous
path with ψ0 = qrResΓ

A(ρ) and ψ1 = Iqrn. Then IndΓ
A(ψt) is a continuous path

qIndΓ
A

(
rResΓ

A(ρ)
) ∼= IndΓ

A

(
qrResΓ

A(ρ)
)
' IndΓ

A(Iqrn)).

By Lemma 9.5, there exists s such that

sIndΓ
A(Iqrn)) ' Is[Γ:A]qrn.

Combining the various paths displayed above yields a path from sqr[Γ : A]ρ to
the trivial representation. �

Proof of Theorem 9.2. By Proposition 9.6 and Lemma 9.4, there is a weak
equivalence Z×Mflat(E) ' ΩBRep(π1E). The homotopy groups of an Ω–spectrum
agree with those of its zeroth space, and π∗Sp(Rep(π1E)) = 0 for ∗ > dim(E)
by Theorem 8.4. To see that Mflat(E) has the homotopy type of a product of
Eilenberg-MacLane spaces, one uses the fact that ΩBRep(Γ) is a topological abelian
monoid. Note that triangulations of Hom(Γ, U(n))/U(n) give the stable moduli
spaceMflat(E) the structure of an Ind-CW complex, soMflat(E) has the homotopy
type of a CW-complex. See [13, Corollary 6.4] and [14, Lemma 5.7] for details. 2
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We end this section by noting that rational vanishing results can be obtained
without the assumption that the point group of Γ is abelian. This is essentially a
representation-theoretical version of the statement that if a space X has a finite
cover Y → X with H∗(Y ; Q) = 0 for ∗ > k, then H∗(X; Q) = 0 for ∗ > k as well.
The proof of this cohomological statement is a simple application of the transfer;
for the representation theoretical version induction maps will play the role of the
transfer.

Proposition 9.7. Let E be a flat iterated torus bundle. Then for ∗ > dim(E), we
have π∗Mflat(E)⊗Q = 0, and consequently the rationalized Bott map

βQ
∗ : Kdef(π1E)⊗Q −→ Kdef(π1E)⊗Q

is an isomorphism for ∗ > dim(E)− 2.

Proof. This is essentially a parametrized version of the proof of Proposition 9.6,
so we will only sketch the argument. We will show that for any map ρ : Sk →
Mflat(π1E), k > dim(E), the map dρ is nullhomotopic for some d > 0. Note here
that dρ may be interpreted either as the d–fold block-sum of ρ, or as the d–fold sum
of ρ with itself in πkMflat(π1E). These classes are homotopic by the arguments in
[12].

Consider the map ρ ⊗ Indπ1E
A (1) = Indπ1E

A (Resπ1E
A (ρ)) where A ⊂ π1E is the

translation subgroup. Since π∗Mflat((S1)rk(A)) = 0 for ∗ > rk(A) = dim(E), we
know that Resπ1E

A (ρ) is nullhomotopic, so ρ ⊗ Indπ1E
A (1) is nullhomotopic as well.

By Lemma 9.5, we know that tIndπ1E
A (1) ' It[Γ:A] for some t > 0. Tensoring this

path with ρ shows that the nullhomotopic map tρ ⊗ Indπ1E
A (1) is homotopic to

ρ⊗ It[Γ:A]
∼= t[Γ : A]ρ �

10. The Klein bottle

We end with an example, showing that when Γ is a torsion-free crystallographic
group whose classifying space is non-orientable, Irr+

n (Γ) can still have dimension
equal to the rank of the translation subgroup of Γ. The smallest such crystallo-
graphic group is the fundamental group of the Klein bottle,

K = 〈c, d | cdc−1 = d−1〉.

The subgroup of translations in K is generated by the commuting elements c2 and
d, so by Theorem 7.5 Irr+

2 (K) is at most two-dimensional.

Claim. There is a homeomorphism Irr+
2 (K) ∼= (S1 × S1)/(S1 × {1}).

We sketch the proof. Let ρ : K → U(2) be an irreducible representation. Then ρ
is determined by the two unitary matrices C = ρ(c) and D = ρ(d). Up to conjugacy
in U(2), we may assume that D is diagonal, and since D is conjugate to its inverse,
the eigenvalues of D must be λ and λ−1 for some λ ∈ S1 \{±1} (if both eigenvalues
lie in the set {±1}, then ρ is reducible). Since C interchanges the eigenspaces of
D, we see that

C =
[

0 c1
c2 0

]
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for some c1, c2 ∈ S1, and up to conjugacy we may assume that c1 = 1. So every
irreducible U(2)–representation of K is conjugate to one of the form

(15)
([

0 1
c 0

]
,

[
eiθ 0

0 e−iθ

])
,

with c ∈ S1 and θ ∈ (0, 2π). The only redundancy in this collection is that con-

jugating (15) by
[

0 1
c 0

]
leaves the first coordinate fixed, but interchanges eiθ

and e−iθ. We now see that all irreducible representations have the form (15) with
c ∈ S1 and θ ∈ (0, π), and the one-point compactification Irr+

2 (K) is obtained by
collapsing S1 × {0, 1} to a point inside S1 × [0, π].

Although the second homology group of Irr+
2 (K) is non-zero, an explicit analysis

of the boundary maps for the sequences in Theorem 8.3 shows that π2R
def(K) = 0.

In fact, one may calculate π∗Rdef(K) and π∗K
def(K) completely using Theorems

8.3 and 8.2, reproducing the calculations in [13]. The key is that the boundary
maps for the cofiber sequence in Theorem 8.3 can be made quite explicit. These
cofiber sequences result from the fact that the square of spectra

Sp
(
Sym∞ (Sum(Γ, U(n))/U(n))+

)
//

��

Sp
(
Sym∞ (Hom(Γ, U(n))/U(n))+

)
��

SpRepn−1(Γ) // SpRepn(Γ)

is a homotopy pushout square, meaning that the induced map between the homo-
topy cofibers of this square is a weak equivalence (see Lawson [9, Section 2]). By the
Dold-Thom Theorem, the homotopy cofiber of the first row is simply Sp

(
Irr+

n (Γ)
)
,

and the boundary map for the top sequence agrees with the boundary map in
homology for the cofiber sequence

(16) Sum(Γ, U(n))/U(n) −→ Hom(Γ, U(n))/U(n) −→ Irr+
n (Γ).

Next, the inclusion Sum(Γ, U(n))/U(n) ↪→ Repn−1(Γ) induces a map of monoids

Sym∞ (Sum(Γ, U(n))/U(n))+ −→ Repn−1(Γ),

and a map of spectra

(17) Sp
(
Sym∞ (Sum(Γ, U(n))/U(n))+

)
−→ SpRepn−1(Γ).

The boundary map for homotopy cofiber sequence in Theorem 8.3 is formed by
composing the homological boundary map for the sequence (16) with the map on
homotopy induced by (17), using the Dold-Thom Theorem to identify the target
and source of these maps. For the Klein bottle, the homological boundary maps
are easily computed, and the map Sym∞ (Sum(K,U(2))/U(2))+ −→ Rep1(K) can
be understood using the homeomorphisms

Irr1(K) ∼= S1
∐

S1, Sum(K,U(2))/U(2) ∼= Sym2(Irr1(K)),

Rep1(K) ∼= Sym∞Irr1(K).
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[17] I. Schur. Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutio-

nen. J. reine angew. Math., 127:20–50, 1904.
[18] Graeme Segal. Categories and cohomology theories. Topology, 13:293–312, 1974.

[19] Jean-Pierre Serre. Linear representations of finite groups. Springer-Verlag, New York, 1977.

Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathe-
matics, Vol. 42.

[20] Jürgen Tappe. Irreducible projective representations of finite groups. Manuscripta Math.,

22(1):33–45, 1977.
[21] Joseph A. Wolf. Spaces of constant curvature. Publish or Perish Inc., Houston, TX, fifth

edition, 1984.
[22] Keijiro Yamazaki. On projective representations and ring extensions of finite groups. J. Fac.

Sci. Univ. Tokyo Sect. I, 10:147–195 (1964), 1964.

New Mexico State University, Department of Mathematical Sciences, P.O. Box 30001,

Department 3MB, Las Cruces, New Mexico 88003-8001
E-mail address: ramras@nmsu.edu

URL: http://www.math.nmsu.edu/~ramras/


